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Abstract
In this paper, wewill describe the general form of commutingmappings of Hochschild
extension algebras and characterize the properness of commuting mappings on a spe-
cial class of Hochschild extension algebras with the so-called p.
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1 Introduction

Let R be a commutative ring with identity and A be a unital algebra over R. We denote
Z(A) the center of A. Throughout this paper we shall write [x, y] for the commutator
xy − yx of x, y ∈ A. Recall that an R-linear mapping θ : A → A is said to be
commuting if [θ(x), x] = 0 for all x ∈ A. A commuting mapping θ of A is called
proper if it is of the form

θ(x) = λx + μ(x), ∀x ∈ A,

where λ ∈ Z(A) andμ is an R-linear mapping from A intoZ(A). The purpose of this
paper is to identify a class of algebras on which every commuting mapping is proper.

To the best of our knowledge, the first important result on commuting mappings
is the Posner’s theorem [17] which says that the existence of a nonzero commut-
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ing derivation on a prime ring A implies that A is commutative. An analog of the
Posner’s theorem for automorphisms [13] states that if θ is a commuting automor-
phism on a noncommutative prime ring, then θ = Id. Commuting derivations and
commuting automorphisms and their generalizations are successfully used in the field
of automatic continuity [7,10,14]. In this direction, abundant results related to the
noncommutative Singer–Wermer conjecture have been obtained. For example, every
commuting derivation of a Banach algebra A has its range in the Jacobson radical of
A [14]. An account on commuting mappings in C∗-algebras can be found in the book
[1]. The extensive applications of commuting mappings in the field of analysis is one
of the main motivations of our present work.

Another motivation of this paper is the connection between commuting mappings
and Lie-type isomorphisms, which was initiated by Brešar [4,5] when he studied the
Herstein’s conjecture of Lie isomorphisms on prime rings. We encourage the reader to
read the well-written survey paper [6] for a much more detailed understanding of this
topic. It was Cheung [8,9] who initiated the study of additive commuting mappings on
triangular algebras. He determined a class of triangular algebras, containing Hilbert
space nest algebras (a type of non-selfadjoint, non-semiprime operator algebras), on
which every additive commuting mapping is proper. Following the ideas of Brešar
and Cheung, Benkovič-Eremita [2] and Xiao-Wei-Fošner [20] studied the Lie-type
isomorphisms of triangular algebras.

In 2010, Xiao and Wei [18] identified a class of Morita context rings, named gen-
eralized matrix algebras, which contains the triangular algebras defined by Cheung
in [9]. They studied the commuting linear mappings [18], the commuting traces of
bilinear mappings and Lie isomorphisms [19]. In this paper, we shall identify another
generalization of the triangular algebras and study the commuting linear mappings on
such algebras.

Let R be a commutative ringwith identity. Throughout, all the algebras andmodules
are assumed to be defined over R. Let A be a unital algebra over R and E be an A-
bimodule. Recall that a Hochschild 2-cocycle is a bilinear mapping T : A × A → E
satisfying

aT (b, c) + T (a, bc) = T (ab, c) + T (a, b)c

for all a, b, c ∈ A. The R-linear space A ⊕ E can be equipped with an associative
operation for a given Hochschild 2-cocycle as

[
a
x

] [
b
y

]
:=

[
ab

ay + xb + T (a, b)

]

for all a, b ∈ A and x, y ∈ E . Note that we write the elements of A ⊕ E as column
vectors, not as the usual row vectors, which is more helpful for our calculation. Then
A⊕E forms an R-algebra under the vector addition and themultiplication just defined.
We call this algebra theHochschild extension of A from E by the 2-cocycle T , denoted
by HT . We refer the reader to the book [10] for more information on Hochschild
cohomology and its applications in the field of automatic continuity, which motivated
this paper and its subsequent work.
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For the Hochschild extension HT , if T = 0, then HT degenerates to the trivial
extension algebra. Several researchers have studied the R-linear mappings on the
trivial extension algebras both in algebra [3,11,12,16] and in analysis [15,21]. Our
aim is to obtain sufficient conditions on the Hochschild extension HT so that every
commuting mapping of HT is proper.

2 Structure of CommutingMappings

Let A be a unital algebra over R and E be an A-bimodule. For a given Hochschild
2-cocycle T : A × A → E , HT is the Hochschild extension of A from E by the
2-cocycle T . We denote Z(HT ) the center of HT . A direct computation shows

Lemma 2.1 The center of HT is

Z(HT ) =
{[

a0
x0

]
: a0 ∈ Z(A), [a0, x] = 0,

[a, x0] = T (a0, a) − T (a, a0),∀ a ∈ A, x ∈ E

}
.

We say that E is faithful as an A-bimodule if is is faithful as a left A-module and
also as a right A-module.

Corollary 2.2 If E is faithful as A-bimodule, then the center of HT is

Z(HT ) =
{[

a0
x0

]
: [a0, x] = 0, [a, x0] = T (a0, a) − T (a, a0),∀ a ∈ A, x ∈ E

}
.

Proof It is sufficient to show that a0 ∈ Z(A) if [a0, x] = 0 for all x ∈ E . Indeed, for
any a ∈ A we get

(a0a − aa0)x = a0(ax) − a(a0x) = (ax)a0 − a(xa0) = (ax)a0 − (ax)a0 = 0.

The assumption that E is faithful as A-bimodule leads to a0a − aa0 = 0 and hence
a0 ∈ Z(A). ��
Corollary 2.3 Suppose that E is faithful as A-bimodule and T is symmetric, then the
center of HT is

Z(HT ) =
{[

a0
x0

]
: [a0, x] = 0, [a, x0] = 0,∀ a ∈ A, x ∈ E

}
.

Let us recall that the natural projection πA : HT → A by

πA :
[
a
x

]
	−→ a.

Now, we immediately give the structure of commuting maps on HT = A ⊕ E .
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Theorem 2.4 Let θ be a commuting mapping of HT = A⊕E. Then θ can be presented
as

θ

([
a
x

])
=

[
μ1(a) + μ2(x)
ν1(a) + ν2(x)

]
(a ∈ A, x ∈ E) , (2.1)

where μ1 : A −→ A, μ2 : E −→ Z(A), ν1 : A −→ E, ν2 : E −→ E are all
R-linear mappings satisfying the following conditions:

(1) μ1 is a commuting mapping of A;
(2) [μ2(x), x] = 0;
(3) [ν1(a), a] = T (a, μ1(a)) − T (μ1(a), a);
(4) [ν2(x), a] − [x, μ1(a)] = T (a, μ2(x)) − T (μ2(x), a) for all a ∈ A, x ∈ E .

Proof Assume that the linear map θ is of the form (2.1) where μ1, μ2 are linear
mappings from A, E to A, respectively; ν1, ν2 are linear mappings from A, E to E ,
respectively. If θ is commuting, then

[θ(X), X ] = 0 (2.2)

for all X ∈ HT .

Taking X =
[
0
x

]
into (2.2) leads to

0 =
[

0
μ2(x)x

]
−

[
0

xμ2(x)

]
.

Thus,

[μ2(x), x] = 0

for all x ∈ E .

Similarly, conditions (1) and (3) follow from

0 =
[
θ

([
a
0

])
,

[
a
0

]]

=
[

μ1(a)a
ν1(a)a + T (μ1(a), a)

]
−

[
aμ1(a)

aν1(a) + T (a, μ1(a))

]

for all a ∈ A.

For a commuting mapping θ , we have

[θ(X),Y ] = [X , θ(Y )]. (2.3)

Choosing X =
[
0
x

]
and Y =

[
a
0

]
in (2.3), we compute that

[θ(X),Y ] =
[

μ2(x)a − aμ2(x)
ν2(x)a − aν2(x) + T (μ2(x), a) − T (a, μ2(x))

]
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and

[X , θ(Y )] =
[

0
xμ1(a) − μ1(a)x

]
.

Thus, μ2(x) ∈ Z(A) and [ν2(x), a] − [x, μ1(a)] = T (a, μ2(x)) − T (μ2(x), a) for
all a ∈ A, x ∈ E .

Conversely, suppose that all the conditions (1)− (4) are satisfied. It is easy to show
that

[
(μ1(a) + μ2(x))a

(μ1(a) + μ2(x))x + (ν1(a) + ν2(x))a + T ((μ1(a) + μ2(x)), a)

]

=
[

a(μ1(a) + μ2(x))
x(μ1(a) + μ2(x)) + a(ν1(a) + ν2(x)) + T (a, (μ1(a) + μ2(x)))

]

for all a ∈ A, x ∈ E . That is, θ(X)X = Xθ(X) for all X =
[
a
x

]
∈ HT = A ⊕ E .

��

3 TheMain Theorem

Let HT be the Hochschild extension of A from E by the 2-cocycle T . In this section,
we suppose that the unital algebra A has a nontrivial idempotent p such that

px(1 − p) = x,∀x ∈ E . (3.1)

We know that triangular algebra T = T (A, M, B) can be regarded as the trivial
extension algebra H0 = (A ⊕ B) ⊕ M of A ⊕ B from M , in which case M is
considered as an (A ⊕ B)−bimodule under the following module operations:

(a, b)x = ax, x(a, b) = xb

for all (a, b) ∈ A ⊕ B, x ∈ M . Then T (A, M, B) has an idempotent p as above.
Indeed, take p = (1A, 0). By a direct verification, equality (3.1) holds on T (A, M, B).

Set q = 1 − p. It follows from (3.1) that px = xq = x, xp = qx = 0 for

any x ∈ E . Thus for any x ∈ E,

[
a
y

]
∈ Z(HT ), we have [p, x] = x and y =

T (a, p) − T (p, a).

Lemma 3.1 Suppose that the unital algebra A has a nontrivial idempotent p satisfying
(3.1). Let a0 ∈ Z(A) with [a0, x] = 0 and

T ([a, p], a0) = T (a0, [a, p]), (3.2)

for all a ∈ A, x ∈ E, then a0 ∈ πA(Z(HT )).
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Proof By lemma 2.1, it is sufficient to show that there is x0 ∈ E such that

[a, x0] = T (a0, a) − T (a, a0), ∀ a ∈ A.

It follows from cocycle identity and a0 ∈ Z(A) that

aT (a0, p) = −T (a, a0 p) + T (aa0, p) + T (a, a0)p

= [aT (p, a0) − T (a, p)a0 − T (ap, a0)] + [a0T (a, p) + T (a0, ap)]

and

T (p, a0)a = −T (pa0, a) + pT (a0, a) + T (p, a0a)

= [T (a0, p)a − a0T (p, a) − T (a0, pa)] + T (a0, a)+
[−T (a, a0) + T (p, a)a0 + T (pa, a0)].

They are

aT (a0, p) = aT (p, a0) − T (ap, a0) + T (a0, ap)

and

T (p, a0)a = T (a0, p)a − T (a0, pa) + T (a0, a) − T (a, a0) + T (pa, a0),

respectively, due to [a0, x] = 0. Using the above two equalities we compute

[a, T (a0, p) − T (p, a0)]
= aT (a0, p) − aT (p, a0) − T (a0, p)a + T (p, a0)a

= −T (ap, a0) + T (a0, ap) − T (a0, pa) + T (a0, a) − T (a, a0) + T (pa, a0)

= −T ([a, p], a0) + T (a0, [a, p]) + T (a0, a) − T (a, a0).

Therefore, [a, T (a0, p) − T (p, a0)] = T (a0, a) − T (a, a0) by the assumption that
T ([a, p], a0) = T (a0, [a, p]). Take x0 = T (a0, p) − T (p, a0) as required. ��
The next theorem is ourmain result which characterizes the properness of a commuting
mapping on HT = A ⊕ E .

Theorem 3.2 Suppose that the unital algebra A has a nontrivial idempotent p such
that px(1 − p) = x for all x ∈ E . Then the commuting mapping

θ

([
a
x

])
=

[
μ1(a) + μ2(x)
ν1(a) + ν2(x)

]

on HT is proper if and only if [μ2(x), y] = 0 for all x, y ∈ E and there exist a R-linear
mapping α : A −→ πA(Z(HT )) and a0 ∈ πA(Z(HT )) such thatμ1(a) = a0a+α(a)

for any a ∈ A.
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Proof Suppose that θ is proper. There exist C =
[
a0
x0

]
∈ Z(HT ) and a R-linear

mapping � : HT −→ Z(HT ) such that θ(X) = XC + �(X) for all X ∈ HT . Let us

choose X =
[
a
0

]
∈ HT . We have

θ(X) =
[

μ1(a)

ν1(a)

]
.

On the other hand,

θ(X) = XC + �(X) =
[

a0a
x0a + T (a0, a)

]
+ �

([
a
0

])
(3.3)

for all a ∈ A. Hence,

[
μ1(a) − a0a

ν1(a) − x0a − T (a0, a)

]
= �

([
a
0

])
∈ Z(HT ). For any

a ∈ A, define α(a) = μ1(a)−a0a which is required. Similarly, take X =
[
0
x

]
∈ HT .

Then by the same computational procedure,μ2(x) ∈ πA(Z(HT )) for all x ∈ E . Thus,
[μ2(x), y] = 0 for all x, y ∈ E .

Conversely, assume that there exist an element a0 and a mapping α satisfying the

conditions as the theorem shows. Let

[
a0
x0

]
∈ Z(HT ). Then,

x0 = T (a0, p) − T (p, a0). (3.4)

By condition (4) of Theorem 2.4, we obtain

[a, ν2(x) − a0x] = [a, ν2(x)] − a0[a, x]
= [μ1(a), x] − T (a, μ2(x)) + T (μ2(x), a) − a0[a, x]
= [α(a), x] + T (μ2(x), a) − T (a, μ2(x))

= T (μ2(x), a) − T (a, μ2(x))

for all a ∈ A. Combining with [μ2(x), y] = 0 yields

[
μ2(x)

ν2(x) − a0x

]
∈ Z(HT ) (x ∈ E). (3.5)

Putting a = p in condition (3) of Theorem 2.4 leads to

ν1(p) = T (μ1(p), p) − T (p, μ1(p)). (3.6)

Besides, linearizing the condition (3) gives that

[a, ν1(b)] = [ν1(a), b] − T (b, μ1(a)) + T (μ1(a), b) + T (μ1(b), a) − T (a, μ1(b))
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for all a, b ∈ A. This implies that

ν1(b) = [ν1(p), b]−T (b, μ1(p))+T (μ1(p), b)+T (μ1(b), p)−T (p, μ1(b)) (3.7)

for all b ∈ A. Combining (3.4) with (3.7), we get

ν1(a) − x0a − T (a0, a) = [ν1(p), a] − T (a, μ1(p)) + T (μ1(p), a) + T (μ1(a), p)

−T (p, μ1(a)) − T (a0, a) − [T (a0, p) − T (p, a0)]a
(3.8)

for all a ∈ A. It follows from (3.6) that

[ν1(p), a] = [T (μ1(p), p) − T (p, μ1(p)), a]
= [T (a0 p, p) − T (p, a0 p) + T (α(p), p) − T (p, α(p)), a]

for all a ∈ A. Note that T (p, a0 p) + pT (a0, p) = T (p, a0)p + T (a0 p, p) =
T (a0 p, p). Then the above equality becomes

[ν1(p), a] = [T (a0, p), a] + [T (α(p), p) − T (p, α(p)), a]. (3.9)

Since

T (a0 p, a) + T (p, a0)a = T (p, a0a) + T (a0, a)

and

T (a, a0 p) + aT (a0, p) = T (a0a, p),

we have

T (μ1(p), a) − T (a, μ1(p)) = T (a0 p, a) − T (a, a0 p) + T (α(p), a) − T (a, α(p))

= T (p, a0a) + T (a0, a) − T (a0a, p) + aT (a0, p)

−T (p, a0)a + T (α(p), a) − T (a, α(p)). (3.10)

Similarly,

T (μ1(a), p) − T (p, μ1(a)) = T (a0a, p) − T (p, a0a) + T (α(a), p) − T (p, α(a)).

(3.11)
Combine the equalities from (3.8) to (3.11) and note that

[T (α(p), p) − T (p, α(p)), a] = T (a, α(p)) − T (α(p), a).

We compute that

ν1(a) − x0a − T (a0, a) = T (α(a), p) − T (p, α(a))
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for all a ∈ A, which implies that

[
α(a)

ν1(a) − x0a − T (a0, a)

]
∈ Z(HT ). (3.12)

Taking into account the formulas (3.5) and (3.12), we obtain

[
μ1(a) + μ2(x)
ν1(a) + ν2(x)

]
−

[
a
x

] [
a0
x0

]
∈ Z((HT )

for all

[
a
x

]
∈ HT which shows that θ is proper.

4 Applications

In this section,we applyTheorem3.2 to a special class of algebras containing triangular
algebras. Suppose thatA,B are unital algebras over a commutative ring R andM, an
(A, B)−bimodule which is faithful as a leftA−module as well as a right B−module.
The element in A ⊕ B is denoted by a ⊕ b (a ∈ A, b ∈ B), where A ⊕ B is the
direct product of A and B which has its usual pairwise operations. Like in triangular
algebras, M is an A ⊕ B−bimodule equipped with the module operations

(a ⊕ b)x = ax, x(a ⊕ b) = xb

for all a ⊕ b ∈ A⊕ B, x ∈ M. We will consider the properness of commuting maps
on Hochschild extension algebras HT = (A ⊕ B) ⊕ M of A ⊕ B from M by the
Hochschild 2-cocycle T . Recall that the multiplication on HT = (A ⊕ B) ⊕ M is

[
a1 ⊕ b1

x1

] [
a2 ⊕ b2

x2

]
=

[
a1a2 ⊕ b1b2

a1x2 + x1b2 + T (a1 ⊕ b1, a2 ⊕ b2)

]

and its center is

Z(HT ) =
{[

a0 ⊕ b0
x0

]
: a0x= xb0,

ax0 − x0b = T (a0 ⊕ b0, a ⊕ b) − T (a ⊕ b, a0 ⊕ b0),

∀ a ⊕ b ∈ A ⊕ B, x ∈ M
}
.

It should be mentioned that the extension algebra HT = (A⊕ B) ⊕M has a non-
trivial idempotent p = 1A ⊕ 0 satisfying conditions (3.1) and (3.2). By Lemma 3.1,
a0⊕b0 ∈ πA⊕B(Z(HT )) exactlywhen a0x = xb0 for all x ∈ M.Applying [9, propo-
sition 3], Z(S) is determined by πA(Z(HT )) or πB(Z(HT )) due to the faithfulness
of M. Concretely, there exists a unique algebraic isomorphism ϕ from πA(Z(HT ))

to πB(Z(HT )) such that ax = xϕ(a) for all x ∈ M.
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If T = 0, then the trivial extension algebra HT = (A⊕B)⊕M is just the triangular
algebra T = T (A,M,B). As consequences of Theorem 2.4 and Theorem 3.2, we
have the next two theorems which can derive the results of Cheung [9].

Theorem 4.1 Let θ be a commuting mapping of HT = (A ⊕ B) ⊕ M of the form:

θ

([
a ⊕ b
x

])
=

[
( f AA(a) + f AB(b) + gA(x)) ⊕ ( fBA(a) + fBB(b) + gB(x))

hA(a) + hB(b) + ν2(x)

]
,

where fAA : A −→ A, f AB : B −→ A, fBA : A −→ B, fBB : B −→ B,

gA : M −→ A, gB : M −→ B, hA : A −→ M, hB : B −→ M, ν2 : M −→ M
are all R-linearing mappings. Then the following statements are equivalent:

(1) θ is proper: i.e., θ(X) = XC + �(X) for all X ∈ HT , where C ∈ Z(HT ) and �

maps HT into Z(HT ).

(2) f AB(B) ⊆ πA(Z(HT )), fBA(A) ⊆ πB(Z(HT )), and gA(x) ⊕ gB(x) ∈
πA⊕B(Z(HT )) for all x ∈ M.

(3) f AA(1A) ∈ πA(Z(HT )), fBA(1A) ∈ πB(Z(HT )), and gA(x) ⊕ gB(x) ∈
πA⊕B(Z(HT )) for all x ∈ M.

Proof Let μ1, μ2, ν1 be as in Theorem 3.2. Then, μ1(a⊕ b) = ( f AA(a)+ f AB(b))⊕
( fBA(a)+ fBB(b)), μ2(x) = gA(x)⊕ gB(x), ν1(a ⊕ b) = hA(a)+ hB(b). First, we
will get some information from the fact that θ is a commuting mapping.

By Theorem 2.4(1), μ1 is commuting. Hence,

0 = [μ1(a ⊕ 0), a ⊕ 0] = [ f AA(a) ⊕ fBA(a), a ⊕ 0] = ( f AA(a)a − a fAA(a)) ⊕ 0,

which implies that f AA is a commuting map onA. Similarly, fBB is also a commuting
map on B. Again, combining with 0 = [μ1(a ⊕ b), a ⊕ b] for all a ⊕ b ∈ A⊕B. we
have that the image of f AB and fBA is in Z(A) and Z(B), respectively.

By Theorem 2.4(2), 0 = [μ2(x), x] = [gA(x) ⊕ gB(x), x], i.e.,

gA(x)x = xgB(x) (4.1)

for all x ∈ M. It follows from Theorem 2.4(4) that [ν2(x), p] − [x, μ1(p)] =
T (p, μ2(x)) − T (μ2(x), p). Therefore,

ν2(x) = f AA(1A)x − x fBA(1A) + T (gA(x) ⊕ gB(x),

1A ⊕ 0) − T (1A ⊕ 0, gA(x) ⊕ gB(x)). (4.2)

Combining equality (4.2) with

[ν2(x), a ⊕ 0] − [x, μ1(a ⊕ 0)] = T (a ⊕ 0, μ2(x)) − T (μ2(x), a ⊕ 0)
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leads to

a(x fBA(1A) − f AA(1A)x)

= x fBA(a)− f AA(a)x+T (a ⊕ 0, gA(x) ⊕ gB(x))−T (gA(x) ⊕ gB(x), a ⊕ 0)

+ aT (gA(x) ⊕ gB(x), 1A ⊕ 0) − aT (1A ⊕ 0, gA(x) ⊕ gB(x)).
(4.3)

Applying the cocycle identity, we compute

T (a ⊕ 0, gA(x) ⊕ gB(x)) = T ((a ⊕ 0)(1A ⊕ 0), gA(x) ⊕ gB(x))

=−T (a ⊕0, 1A ⊕ 0)gB(x)+aT (1A ⊕ 0, gA(x) ⊕ gB(x))+T (a ⊕0, gA(x)⊕ 0);
(4.4)

T (gA(x) ⊕ gB(x), a ⊕ 0) = T (gA(x) ⊕ gB(x), (a ⊕ 0)(1A ⊕ 0))

= −gA(x)T (a ⊕ 0, 1A ⊕ 0) + T (agA(x) ⊕ 0, 1A ⊕ 0) (4.5)

and

aT (gA(x) ⊕ gB(x), 1A ⊕ 0) = (a ⊕ 0)T (gA(x) ⊕ gB(x), 1A ⊕ 0)

= −T (a ⊕ 0, gA(x) ⊕ 0) + T (agA(x) ⊕ 0, 1A ⊕ 0)
. (4.6)

Taking these equalities from (4.3)to (4.6) into account, we get

a(x fBA(1A) − f AA(1A)x)

= x fBA(a) − f AA(a)x + gA(x)T (a ⊕ 0, 1A ⊕ 0) − T (a ⊕ 0, 1A ⊕ 0)gB(x)
(4.7)

for all a ∈ A, x ∈ M. Similarly, using the same computational skills and

[ν2(x), 0 ⊕ b] − [x, μ1(0 ⊕ b)] = T (0 ⊕ b, μ2(x)) − T (μ2(x), 0 ⊕ b),

we can prove that

( f AA(1A)x − x fBA(1A))b

= x fBB(b) − f AB(b)x − gA(x)T (1A ⊕ 0, 0 ⊕ b) + T (1A ⊕ 0, 0 ⊕ b)gB(x)
(4.8)

for all b ∈ B, x ∈ M.

Now, (1) �⇒ (2). Suppose that the commuting mapping θ onHT =(A⊕B)⊕M
is proper. Then applying Theorem 3.2, 0 = [μ2(x), y] = [gA(x) ⊕ gB(x), y] =
gA(x)y − ygB(x) which shows that gA(x) ⊕ gB(x) ∈ πA⊕B(Z(HT )) for all x ∈ M
by Lemma 3.1. Also, μ1(a ⊕ b) = (a0 ⊕ b0)(a ⊕ b) + α(a ⊕ b), where a0 ⊕ b0 ∈
πA⊕B(Z(HT )) and α : A ⊕ B −→ πA⊕B(Z(HT )) is a linear mapping. Define
α(a ⊕ b) = (αAA(a) + αAB(b)) ⊕ (αBA(a) + αBB(b)). Then,

μ1(a ⊕ b) = [a0a + αAA(a) + αAB(b)] ⊕ [b0b + αBA(a) + αBB(b)].
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On the other hand,

μ1(a ⊕ b) = ( f AA(a) + f AB(b)) ⊕ ( fBA(a) + fBB(b)).

Combining with these two equalities leads to

f AB(b) = αAB(b) ∈ πA(Z(HT ))

and

fBA(a) = αBA(a) ∈ πB(Z(HT ))

for all a ∈ A, b ∈ B, which is the desired result.
(2) �⇒ (3). fBA(1A) ∈ fBA(A) ⊆ πB(Z(HT )). By the assumption, we have

gA(x)y − ygB(x) = 0,∀x, y ∈ M

which makes (4.7) and (4.8) become

a(x fBA(1A) − f AA(1A)x) = x fBA(a) − f AA(a)x (4.9)

and
( f AA(1A)x − x fBA(1A))b = x fBB(b) − f AB(b)x, (4.10)

respectively. Hence,

f AA(1A)x = x fBA(1A) + x fBB(1B) − f AB(1B)x

= x( fBA(1A) + fBB(1B) − ϕ( f AB(1B)).

This implies that f AA(1A) ∈ πA(Z(HT )).

(3) �⇒ (1). Set a0 ⊕ b0 = [ f AA(1A) − ϕ−1( fBA(1A))] ⊕ [ϕ( f AA(1A)) −
fBA(1A)] ∈ πA⊕B(Z(HT )). We will show that μ1(a ⊕ b) − (a0 ⊕ b0)(a ⊕ b) ∈
πA⊕B(Z(HT )) for all a ⊕ b ∈ A⊕B. Then by Theorem 3.2, we immediately obtain
that θ is proper. Indeed,

μ1(a ⊕ b) − (a0 ⊕ b0)(a ⊕ b) = [ f AA(a) − f AA(1A)a

+ϕ−1( fBA(1A))a + f AB(b)] ⊕
[ fBA(a) + fBB(b) − ϕ( f AA(1A))b + fBA(1A)b].

By (4.9), (4.10) and condition (3), it follows that

[ f AA(a) − f AA(1A)a + ϕ−1( fBA(1A))a + f AB(b)]x
= x fBA(a) − ax fBA(1A) + ax fBA(1A) + f AB(b)x

= x fBA(a) + f AB(b)x

= x fBA(a) + x fBB(b) − ( f AA(1A)x − x fBA(1A))b

= x[ fBA(a) + fBB(b) − ϕ( f AA(1A))b + fBA(1A)b]
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for all x ∈ M. ��
Now, sufficient conditions are given such that every commuting mapping of HT =
(A ⊕ B) ⊕ M is proper.

Theorem 4.2 Let θ be a commuting mapping of HT = (A⊕B)⊕M. If the following
three conditions are satisfied:

(1) Z(B) = πB(Z(HT )), or A = [A,A];
(2) Z(A) = πA(Z(HT )), or B = [B,B];
(3) there exists x0 ∈ M such that

πA⊕B(Z(HT )) = {a ⊕ b : a ∈ Z(A), b ∈ Z(B), ax0 = x0b},

then θ is proper.

The proof of this theorem is the same as that of the main theorem of Cheung [9].
We do not want to give the details here, just remark that the condition (3) implies
gA(x) ⊕ gB(x) ∈ πA⊕B(Z(HT )) from which it follows that (4.9) and (4.10),
two useful equalities when proving [A,A] ⊆ f −1

BA(πB(Z(HT ))) and [B,B] ⊆
f −1
AB (πA(Z(HT ))).
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