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Abstract In this paper, we establish sufficient conditions for exact null controllability
of Sobolev type stochastic differential equations with fractional Brownian motion and
Poisson jumps in Hilbert spaces, where the time fractional derivative is the Hilfer
derivative. The exact null controllability result is derived by using fractional calculus,
compact semigroup, fixed point theorem and stochastic analysis. Finally, an example
is given to show the application of our results.
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1 Introduction

The noises THAT arise in mathematical finance, physics, telecommunication net-
works, hydrology and medicine etc., can be modeled by fractional Brownian motions
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(see [1–3]). Recently, fractional differential equations and stochastic fractional differ-
ential equations driven by fractional Brownian motion have been considered greatly
by the research community in various aspects due to its salient features for real-world
problems (see [4–15]). In addition, controllability problems for different kinds of
dynamical systems have been studied by several authors (see [16–25]), and refer-
ences therein. Moreover, Hilfer proposed a generalized Riemann–Liouville fractional
derivative for short, Hilfer fractional derivative, which includes Riemann–Liouville
fractional derivative and Caputo fractional derivative (see [26,27]). Subsequently,
many authors studied the existence of solutions and controllability for fractional dif-
ferential equations involving Hilfer fractional derivatives (see [28–31]). Few authors
have studied the stochastic fractional differential equations with Poisson jumps (see
[32–35]). On the other hand, the Sobolev-type (fractional) equation appears in a vari-
ety of physical problems such as flow of fluid through fissured rocks, thermodynamics,
propagation of long waves of small amplitude and shear in second-order fluids and so
on. There are many interesting results on the existence and uniqueness of mild solu-
tions and approximate controllability for a class of Sobolev-type fractional evolution
equations. Revathi et al (see [36]) studied the local existence of mild solution for a
class of stochastic functional differential equations of Sobolev type with infinite delay.
Benchaabanea and Sakthivel (see [37]) investigated the existence and uniqueness of
mild solutions for a class of nonlinear fractional Sobolev-type stochastic differential
equations in Hilbert spaces with non-Lipschitz coefficients. Sakthivel et al (see [38])
investigated the approximate controllability of fractional stochastic differential inclu-
sions with nonlocal conditions. However, no work has been reported in the literature
regarding the null controllability of Sobolev-type Hilfer fractional stochastic differ-
ential equations with fractional Brownian motion and Poisson jumps. Motivated by
these facts, the purpose of this paper is to investigate the exact null controllability of
Sobolev-type stochastic differential equations with fractional Brownian motion and
Poisson jumps in Hilbert spaces, where the time fractional derivative is the Hilfer
derivative, of the form

⎧
⎪⎪⎨

⎪⎪⎩

Dν,μ
0+ Gx(t) = Ax(t) + Bu(t) + F(t, x(t)) + σ(t, x(t)) dB

H (t)
dt

+ ∫

Z h(t, x(t), z)Ñ (dt, dz), t ∈ J = (0, b],
I (1−ν)(1−μ)
0+ x(0) = x0,

(1)

where Dν,μ
0+ is the Hilfer fractional derivative, 0 ≤ ν ≤ 1, 1

2 < μ < 1, x(·) takes
values in aHilbert space X with inner product 〈·, ·〉 and norm ‖·‖ and BH is a fractional
Brownian motion (fBm) on a real and separable Hilbert space Y with Hurst parameter
H ∈ ( 12 , 1). The symbol A and G are linear operators on X . The control function u(·)
is given in L2(J,U ), and the Hilbert space of admissible control functions withU as a
separableHilbert space. The symbol B stands for a bounded linear operator fromU into
X . The mappings F : J × X → X, h : J × X × Z → X and σ : J × X → L0

2(Y, X)

are nonlinear functions.
The rest of the paper is organized as follows. In Sect. 2, we collect some notations,

definitions and lemmas of fractional operators, fractional Brownian motion, stochastic
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analysis and exact null controllability. In Sect. 3, we study the exact null controllability
of the system (1). We present an example to illustrate the theoretical result in the final
section.

2 Preliminaries

To study the null controllability of Sobolev-type stochasticHilfer fractional differential
equations with fractional Brownian motion and Poisson jumps, we need the following
basic definitions and lemmas.

Definition 2.1 (see [39,40]) The fractional integral operator of order μ > 0 for a
function f can be defined as Iμ f (t) = 1

�(μ)

∫ t
0

f (s)
(t−s)1−μ ds, t > 0, where �(·) is the

Gamma function.

Definition 2.2 (see [26]) The Hilfer fractional derivative of order 0 ≤ ν ≤ 1 and
0 < μ < 1 is defined as Dν,μ

0+ f (t) = I ν(1−μ)
0+

d
dt I

(1−ν)(1−μ)
0+ f (t).

Fix a time interval [0, b] and let (�, η, P) be a complete probability space furnished
with complete family of right continuous increasing sub-σ -algebras {ηt : t ∈ [0, b]}
satisfying ηt ⊂ η. Let (Z , �, λ(dz)) be a σ -finite measurable space. We are given
stationary Poisson point process (pt )t≥0,which is defined on (�, η, P)with values in
Z and with characteristic measure λ.Wewill denote by N (t, dz) the countingmeasure
of pt such that Ñ (t,	) := E(N (t,	)) = tλ(	) for 	 ∈ �. Define Ñ (t, dz) :=
N (t, dz) − tλ(dz), the Poisson martingale measure generated by pt .

Suppose that {βH (t), t ∈ [0, b]} is the one-dimensional fractionalBrownianmotion
with Hurst parameter H ∈ (1/2, 1). That is, βH is a centered Gaussian process with
covariance function RH (s, t) = 1

2 (t
2H + s2H − |t − s|2H ) (see [1]). Moreover βH

has the following Wiener integral representation: βH (t) = ∫ t
0 KH (t, s)dβ(s), where

β = {β(t), t ∈ [0, b]} is a Wiener process, and KH (t, s) is the kernel given by

KH (t, s) = cH s
1
2−H

∫ t
s (u − s)H− 3

2 uH− 1
2 du for s < t , where cH =

√
H(2H−1)

β(2−2H,H− 1
2 )

and β(p, q) = ∫ 1
0 t p−1(1 − t)q−1, p > 0, q > 0. We put KH (t, s) = 0 if t ≤ s.

We will denote by ζ the reproducing kernel Hilbert space of the fBm. In fact, ζ is
the closure of set of indicator functions {1[0,t], t ∈ [0, b]} with respect to the scalar
product 〈1[0,t], 1[0,s]〉ζ = RH (t, s).

The mapping 1[0,t] → βH (t) can be extended to an isometry from ζ onto the first
Wiener chaos and we will denote by βH (ϕ) the image of ϕ under this isometry. We
recall that for ψ, ϕ ∈ ζ their scalar product in ζ is given by

〈ψ, ϕ〉ζ = H(2H − 1)
∫ b

0

∫ b

0
ψ(s)ϕ(t)|t − s|2H−2dsdt.

Let us consider that the operator K ∗ from ζ to L2([0, b]) is defined by

(K ∗
Hϕ)(s) =

∫ b

s
ϕ(r)

∂K

∂r
(r, s)dr.
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Moreover for any ϕ ∈ ζ , we have

βH (ϕ) =
∫ b

0
(K ∗

Hϕ)(t)dβ(t).

Let X and Y be two real, separable Hilbert spaces and let L(Y, X) be the space
of bounded linear operators from Y to X . For the sake of convenience, we shall use
the same notation to denote the norms in X, Y and L(Y, X). Let Q ∈ L(Y,Y ) be
an operator defined by Qen = λnen with finite trace tr Q = ∑∞

n=1 λn < ∞, where
λn ≥ 0 (n = 1, 2, . . .) are non-negative real numbers and {en} (n = 1, 2, . . .) is a
complete orthonormal basis in Y .

We define the infinite dimensional fBm on Y with covariance Q as

BH (t) = BH
Q (t) =

∞∑

n=1

√
λnenβ

H
n (t),

where βH
n are real, independent fBms. The Y -valued process is Gaussian, starts from

0, and has mean zero and covariance:

E〈BH (t), x〉〈BH (s), y〉 = R(s, t)〈Q(x), y〉, for all x, y ∈ Y and t, s ∈ [0, b].

To define Wiener integrals with respect to Q-fBm, we introduce the space L0
2 :=

L0
2(Y, X) of all Q-Hilbert–Schmidt operatorsψ : Y → X .We recall thatψ ∈ L(Y, X)

is called a Q-Hilbert–Schmidt operator, if ‖ψ‖2
L0
2

:= ∑∞
n=1 ‖√λnψen‖2 < ∞ and

that the space L0
2 equipped with the inner product 〈ϑ,ψ〉L0

2
= ∑∞

n=1〈ϑen, ψen〉 is a
separable Hilbert space. Let φ(s); s ∈ [0, b] be a function with values in L0

2(Y, X);
the Wiener integral of φ with respect to BH is defined by

∫ t

0
φ(s)dBH (s) =

∞∑

n=1

∫ t

0

√
λφ(s)endβ

H
n =

∞∑

n=1

∫ t

0

√
λK ∗(φen)(s)dβn(s), (2)

where βn is the standard Brownian motion.

Lemma 2.3 (see [14, Lemma 2]) If ψ : [0, b] → L0
2(Y, X) satisfies

∫ b
0 ‖ψ(s)‖2

L0
2

<

∞, then the above sum in (2) is well defined as X-valued random variable and we
have

E

∥
∥
∥
∥

∫ t

0
ψ(s)dBH (s)

∥
∥
∥
∥

2

≤ 2Ht2H−1
∫ t

0
‖ψ(s)‖2

L0
2
ds.

Let C(J, L2(�, X)) be the Banach space of all continuous maps from J into
L2(�, X) satisfying the condition supt∈J E‖x(t)‖2<∞. Define C̄={x : ·(1−ν)(1−μ)

x(·) ∈ C(J, L2(�, X))}, with norm ‖ · ‖C̄ defined by
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‖ · ‖C̄ = (sup
t∈J

E‖t (1−ν)(1−μ)x(t)‖2) 1
2 .

Obviously, C̄ is a Banach space. Like [41], we denote C̄ν+μ−νμ = {x : x ∈
C̄, Dν+μ−νμ

0+ x ∈ C̄} C̄ν,μ = {x : x ∈ C̄, Dν,μ
0+ x ∈ C̄}. Obviously, C̄ν+μ−νμ ⊆ C̄ν,μ.

The operators A : D(A) ⊂ X → X andG : D(G) ⊂ X → X satisfy the following
hypotheses:

(I) A and G are closed linear operators.
(II) D(G) ⊂ D(A) and G is bijective.
(III) G−1 : X → D(G) is continuous.

Here, (I) and (II) together with the closed graph theorem imply the boundedness of
the linear operator AG−1 : X → X .

(IV) For each t ∈ J and for λ ∈ (ρ(AG−1)), the resolvent of AG−1, the resolvent
R(λ, AG−1) is the compact operator.

Lemma 2.4 (see [42, Theorem 3.3]) Let T (t) be a uniformly continuous semigroup.
If the resolvent set R(λ, A) of A is compact for every λ ∈ ρ(A), then T (t) is a compact
semigroup.

From the above fact, AG−1 generates a compact semigroup {S(t), t > 0} in X ,
which means that there exists M > 1 such that supt∈J ‖S(t)‖ ≤ M .

For x ∈ X , we define two families of operators {Sν,μ(t) : t > 0} and {Pμ(t) : t > 0}
by

Sν,μ(t) = I ν(1−μ)
0+ Pμ(t), Pμ(t) = tμ−1Tμ(t), Tμ(t) =

∫ ∞

0
μθ�μ(θ)S(tμθ)dθ,

(3)

where

�μ(θ) =
∞∑

n=1

(−θ)n−1

(n − 1)!�(1 − nμ)
, 0 < μ < 1, θ ∈ (0,∞) (4)

is a function of Wright type which satisfies

∫ ∞

0
θ��μ(θ)dθ = �(1 + �)

�(1 + μ�)
for θ ≥ 0. (5)

Lemma 2.5 (see [29, Propositions 2.15,2.16,2.17]) The operator Sν,μ and Pμ have
the following properties:

(i) {Pμ(t) : t > 0} is continuous in the uniform operator topology.
(ii) For any fixed t > 0, Sν,μ(t) and Pμ(t) are linear and bounded operators, and

‖Pμ(t)x‖ ≤ Mtμ−1

�(μ)
‖x‖, ‖Sν,μ(t)x‖ ≤ Mt (ν−1)(1−μ)

�(ν(1 − μ) + μ)
‖x‖. (6)

(iii) {Pμ(t) : t > 0} and {Sν,μ(t) : t > 0} are strongly continuous.
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To study the exact null controllability of (1), we consider the fractional stochastic
linear system

{
Dν,μ
0+ Gy(t) = Ay(t) + F(t) + Bu(t) + σ(t) dB

H (t)
dt , t ∈ J = (0, b],

I (1−ν)(1−μ)
0+ y(0) = y0,

(7)

associated with the system (1). Consider

Lb
0u =

∫ b

0
G−1Pμ(b − s)Bu(s)ds : L2(J,U ) → X,

where Lb
0u has a bounded inverse operator (L0)

−1 with values in L2(J,U )/ker(Lb
0),

and

Nb
0 (y, F, σ ) = G−1Sν,μ(b)Gy +

∫ b

0
G−1Pμ(b − s)F(s)ds

+
∫ b

0
G−1Pμ(b − s)σ (s)dBH (s) : X × L2(J, X) → X.

Definition 2.6 (see[23, Definition 2.2 and Remark 2.3]) The system (7) is said to be
exactly null controllable on J if ImLb

0 ⊃ ImNb
0 or there exists a γ > 0 such that

‖(Lb
0)

∗y‖2 ≥ γ ‖(Nb
0 )∗y‖2 for all y ∈ X .

By [43, Lemma 3], we have the following result.

Lemma 2.7 Suppose that the linear system (7) is exactly null controllable on J . Then
the linear operator (L0)

−1Nb
0 : X × L2(J, X) → L2(J,U ) is bounded and the

control

u(t) = −(L0)
−1

[

G−1Sν,μ(b)Gy0 +
∫ b

0
G−1Pμ(b − s)F(s)ds

+
∫ b

0
G−1Pμ(b − s)σ (s)dBH (s)

]

(t)

transfers the system (7) from y0 to 0, where L0 is the restriction of Lb
0 to [ker Lb

0]⊥
and F ∈ L2(J, X), σ ∈ L0

2(J, L(Y, X)).

3 Exact Null Controllability

In this section, we formulate sufficient conditions for exact null controllability for the
system (1).

First, we give the definitions of mild solution and exact null controllability.
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Definition 3.1 We say x ∈ C̄ is a mild solution to (1) if it satisfies that

x(t) = G−1Sν,μ(t)Gx0 +
∫ t

0
G−1Pμ(t − s)[F(s, x(s)) + Bu(s)]ds

+
∫ t

0
G−1Pμ(t − s)σ (s, x(s))dBH (s)

+
∫ t

0
G−1Pμ(t − s)

∫

Z
h(s, x(s), z)Ñ (ds, dz), t ∈ J.

Definition 3.2 The system (1) is said to be exact null controllable on the interval J if
there exists a stochastic control u ∈ L2(J,U ) such that the solution x(t) of the system
(1) satisfies x(b) = 0.

To prove the main result, we need the following hypotheses:

(H1) The fractional linear system (7) is exactly null controllable on J .
(H2) The function F : J × X → X satisfies the following two conditions:

(i) The function F : J × X → X is continuous. Assume F ∈ C̄μ(1−ν) for any
x ∈ C̄μ(1−ν), which guarantees Dν,μ

0+ x ∈ C̄ exists.
(ii) For each positive number q ∈ N , there is a positive function fq(·) : J → R+

such that

sup
‖x‖2≤q

E‖F(t, x)‖2 ≤ fq(t),

the function s → (t − s)μ−1 fq(s) ∈ L1([0, t], R+), and there exists a δ > 0
such that

lim
q→∞ inf

∫ t
0 (t − s)μ−1 fq(s)ds

q
= δ < ∞, t ∈ J.

(H3) The function σ : J × X → L0
2(K , X) satisfies the following two conditions:

(i) The function σ : J × X → L0
2(K , X) is continuous.

(ii) for each positive number q ∈ N , there is a positive function gq(·) : J → R+
such that

sup
‖x‖2≤q

E‖σ(t, x)‖2
L0
2

≤ gq(t),

the function s → (t − s)μ−1gq(s) ∈ L1([0, t], R+), and there exists a δ > 0
such that

lim
q→∞ inf

∫ t
0 (t − s)μ−1gq(s)ds

q
= δ < ∞, t ∈ J.

(H4) The function h : J × X × Z → X satisfies the following two conditions:
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(i) The function h : J × X × Z → X is continuous.
(ii) For each positive number q ∈ N , there is a positive function χq(·) : J → R+

such that

sup
‖x‖2≤q

∫

Z
E‖h(t, x, z)‖2λ(dz) ≤ χq(t),

the function s → (t − s)μ−1χq(s) ∈ L1([0, t], R+), and there exists a δ > 0
such that

lim
q→∞ inf

∫ t
0 (t − s)μ−1χq(s)ds

q
= δ < ∞, t ∈ J.

Theorem 3.3 If the hypotheses (H1), (H2), (H3) and (H4) are satisfied, then the
system (1) is exactly null controllable on J provided that

[
10δb(1−μ)(1−2ν)M2‖G−1‖2

μ�2(μ)
+ 10δM4‖(L0)

−1‖2‖B‖2‖G−1‖4b2ν(μ−1)+μ

μ(2μ − 1)�2(μ)

]

×[b + b2H ] < 1. (8)

Proof For an arbitrary x(·), define the operator � on C̄ as follows:

(�x)(t) = G−1Sν,μ(t)Gx0 +
∫ t

0
G−1Pμ(t − s)[F(s, x(s)) + Bu(s)]ds

+
∫ t

0
G−1Pμ(t − s)σ (s, x(s))dBH (s)

+
∫ t

0
G−1Pμ(t − s)

∫

Z
h(s, x(s), z)Ñ (ds, dz), t ∈ J, (9)

where

u(t) = − (L0)
−1{G−1Sν,μ(b)Gx0 +

∫ b

0
G−1Pμ(b − s)F(s, x(s))ds

+
∫ b

0
G−1Pμ(b − s)σ (s, x(s))dBH (s)

+
∫ b

0
G−1Pμ(b − s)

∫

Z
h(s, x(s), z)Ñ (ds, dz)}.

It will be shown that the operator � from C̄ into itself has a fixed point. For each
positive integer q, set Bq = {v ∈ C̄, ‖v‖2

C̄
≤ q}. We claim that there exists a positive

number q such that �(Bq) ⊆ Bq . If it is not true, then for each positive number q,
there is a function xq(·) ∈ Bq . But �(xq) /∈ Bq , that is, ‖�(xq))(t)‖2C̄ > q for some
t = t (q) ∈ J , where t (q) denotes that t is dependent on q.
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From (H2) and Lemma 2.5 together with Hölder inequality, we obtain

E

∥
∥
∥
∥

∫ t

0
G−1Pμ(t − s)F(s, x(s))ds

∥
∥
∥
∥

2

≤ M2‖G−1‖2
�2(μ)

E

[∫ t

0
‖(t − s)μ−1F(s, x(s))‖ds

]2

≤ M2‖G−1‖2
�2(μ)

∫ t

0
(t − s)μ−1ds

∫ t

0
(t − s)μ−1E‖F(s, x(s))‖2ds

≤ bμM2‖G−1‖2
μ�2(μ)

∫ t

0
(t − s)μ−1 fq(s)ds. (10)

Also from (H3), Lemmas 2.3 and 2.5 together with Burkholder–Gungy’s inequality,
yields

E

∥
∥
∥
∥

∫ t

0
G−1Pμ(t − s)σ (s, x(s))dBH (s)

∥
∥
∥
∥

2

≤ 2Hb2H−1M2‖G−1‖2
�2(μ)

E

[∫ t

0
‖(t − s)μ−1σ(s, x(s))‖L0

2
ds

]2

≤ 2Hb2H−1M2‖G−1‖2
�2(μ)

∫ t

0
(t − s)μ−1ds

∫ t

0
(t − s)μ−1E‖σ(s, x(s))‖2

L0
2
ds

≤ 2Hb2H+μ−1M2‖G−1‖2
μ�2(μ)

∫ t

0
(t − s)μ−1gq(s)ds. (11)

Similarly from (H3) and Lemma 2.5 together with Hölder inequality, we obtain

E

∥
∥
∥
∥

∫ t

0
G−1Pμ(t − s)

∫

Z
h(s, x(s), z)Ñ (ds, dz)

∥
∥
∥
∥

2

≤ M2‖G−1‖2
�2(μ)

E

[∫ t

0

∥
∥
∥
∥(t − s)μ−1

∫

Z
h(s, x(s), z)Ñ (ds, dz)

∥
∥
∥
∥

]2

≤ M2‖G−1‖2
�2(μ)

∫ t

0
(t − s)μ−1ds

∫ t

0
(t − s)μ−1

∫

Z
E‖h(s, x(s), z)‖2λ(dz)ds

≤ bμM2‖G−1‖2
μ�2(μ)

∫ t

0
(t − s)μ−1χq(s)ds. (12)

However, from (10), (11) and (12), we have

q ≤ ‖�(xq)(t)‖2C̄ = sup
t∈J

t2(1−ν)(1−μ)E‖�(xq)(t)‖2

≤ 5 sup
t∈J

t2(1−ν)(1−μ)

{

E‖G−1Sν,μ(t)Gx0‖2 + E

∥
∥
∥
∥

∫ t

0
G−1Pμ(t − s)F(s, x(s))ds

∥
∥
∥
∥

2
}
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+ 5 sup
t∈J

t2(1−ν)(1−μ)E

∥
∥
∥
∥

∫ t

0
G−1Pμ(t − s)Bu(s)ds

∥
∥
∥
∥

2

+ 5 sup
t∈J

t2(1−ν)(1−μ)

{

E

∥
∥
∥
∥

∫ t

0
G−1Pμ(t − s)σ (s, x(s))dBH (s)

+
∫ b

0
G−1Pμ(t − s)

∫

Z
h(s, x(s), z)Ñ (ds, dz)

∥
∥
∥
∥

2}

≤ 5M2‖G−1‖2‖G‖2E‖x0‖2
�2(ν(1 − μ) + μ)

+ 5b(1−μ)(1−2ν)+1M2‖G−1‖2
μ�2(μ)

∫ t

0
(t − s)μ−1 fq(s)ds

+ 10Hb(1−μ)(1−2ν)+2HM2‖G−1‖2
μ�2(μ)

∫ t

0
(t − s)μ−1gq(s)ds

+ 5b(1−μ)(1−2ν)+1M2‖G−1‖2
μ�2(μ)

∫ t

0
(t − s)μ−1χq(s)ds

+ M2b2μ−1‖(L0)
−1‖2‖B‖2‖G−1‖2

2μ − 1

{
5M2‖G−1‖2‖G‖2E‖x0‖2

�2(ν(1 − μ) + μ)

+ 5b(1−μ)(1−2ν)+1M2‖G−1‖2
μ�2(μ)

∫ b

0
(b − s)μ−1 fq(s)ds

+ 10Hb(1−μ)(1−2ν)+2HM2‖G−1‖2
μ�2(μ)

∫ b

0
(b − s)μ−1gq(s)ds

+ 5b(1−μ)(1−2ν)+1M2‖G−1‖2
μ�2(μ)

∫ b

0
(b − s)μ−1χq(s)ds

}

. (13)

Dividing both sides of (13) by q and taking the lower limit q → +∞, we get

[
10δb(1−μ)(1−2ν)M2‖G−1‖2

μ�2(μ)
+ 10δM4‖(L0)

−1‖2‖B‖2‖G−1‖4b2ν(μ−1)+μ

μ(2μ − 1)�2(μ)

]

×[b + b2H ] ≥ 1.

This contradicts (8). Hence, for positive q, �(Bq) ⊆ Bq for positive number q.
In fact, the operator � maps Bq into a compact subset of Bq . To prove this, we first

show that the set Vq(t) = {(�x)(t) : x ∈ Bq} is a precompact in X , for every fixed
t ∈ J . This is trivial for t = 0, since Vq(0) = {x0}. Let t , 0 < t ≤ b, be fixed. For
0 < ε < t and arbitrary κ > 0, take

(�ε,κ x)(t)

= μ

�(ν(1 − μ))

∫ t−ε

0

∫ ∞

κ

G−1θ(t − s)ν(1−μ)−1sμ−1�μ(θ)S(sμθ)Gx0dθds

+ μ

∫ t−ε

0

∫ ∞

κ

G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ)F(s, x(s))dθds

+ μ

∫ t−ε

0

∫ ∞

κ

G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ)σ (s, x(s))dθdBH (s)

+ μ

∫ t−ε

0

∫ ∞

κ

∫

Z
G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ)h(s, x(s), z)dθ Ñ (ds, dz)
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− μ

∫ t−ε

0

∫ ∞

κ

G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ)B(L0)
−1{G−1Sν,μ(b)Gx0

+
∫ b

0
G−1Pμ(b − τ)F(τ, x(τ ))dτ +

∫ b

0
G−1Pμ(b − τ)σ (τ, x(τ ))dBH (τ )

+
∫ b

0
G−1Pμ(t − τ)

∫

Z
h(τ, x(τ ), z)Ñ (dτ, dz)}(s)dθds

= μS(εμκ)

�(ν(1 − μ))

∫ t−ε

0

∫ ∞

κ

G−1θ(t − s)ν(1−μ)−1sμ−1�μ(θ)S(sμθ − εμκ)Gx0dθds

+ μS(εμκ)

∫ t−ε

0

∫ ∞

κ

G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ − εμκ)F(s, x(s))dθds

+ μS(εμκ)

∫ t−ε

0

∫ ∞

κ

G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ − εμκ)σ (s, x(s))dθdBH (s)

+ μS(εμκ)

∫ t−ε

0

∫ ∞

κ

∫

Z
G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ − εμκ)h(s, x(s), z)dθ Ñ (ds, dz)

−μS(εμκ)

∫ t−ε

0

∫ ∞

κ

G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ − εμκ)B(L0)
−1{G−1Sν,μ(b)Gx0

+
∫ b

0
G−1Pμ(b − τ)F(τ, x(τ ))dτ +

∫ b

0
G−1Pμ(b − τ)σ (τ, x(τ ))dBH (τ )

+
∫ b

0
G−1Pμ(t − τ)

∫

Z
h(τ, x(τ ), z)Ñ (dτ, dz)}(s)dθds.

Since S(εμκ), εμκ > 0 is a compact operator, the setV ε,κ (t) = {(�ε,κ x)(t) : x ∈ Bq}
is a precompact set in X for every ε, 0 < ε < t, and for all κ > 0. Moreover, for
x ∈ Bq , we have

‖(�x)(t) − (�ε,κ x)(t)‖2
C̄

= sup
t∈J

t2(1−ν)(1−μ)E‖(�x)(t) − (�ε,κ x)(t)‖2

≤ 5μ2

�2(ν(1 − μ))
sup
t∈J

t2(1−ν)(1−μ)E

∥
∥
∥
∥

∫ t

0

∫ κ

0
G−1θ(t − s)ν(1−μ)−1

× sμ−1�μ(θ)S(sμθ)Gx0dθds

∥
∥
∥
∥

2

+ 5μ2

�2(ν(1 − μ))
sup
t∈J

t2(1−ν)(1−μ)

× E

∥
∥
∥
∥

∫ t

t−ε

∫ ∞

κ

G−1θ(t − s)ν(1−μ)−1sμ−1�μ(θ)S(sμθ)Gx0dθds

∥
∥
∥
∥

2

+ 5μ2 sup
t∈J

t2(1−ν)(1−μ)E

∥
∥
∥
∥

∫ t

0

∫ κ

0
G−1θ(t − s)μ−1�μ(θ)

× S((t − s)μθ)F(s, x(s))dθds

∥
∥
∥
∥

2

+ 5μ2 sup
t∈J

t2(1−ν)(1−μ)

× E

∥
∥
∥
∥

∫ t

t−ε

∫ ∞

κ

G−1θ(t − s)μ−1�μ(θ)

×S((t − s)μθ)F(s, x(s))dθds

∥
∥
∥
∥

2

+ 5μ2 sup
t∈J

t2(1−ν)(1−μ)
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× E

∥
∥
∥
∥

∫ t

0

∫ κ

0
G−1θ(t − s)μ−1�μ(θ)

× S((t − s)μθ)σ (s, x(s))dθdBH (s)

∥
∥
∥
∥

2

+ 5μ2 sup
t∈J

t2(1−ν)(1−μ)

×E

∥
∥
∥
∥

∫ t

t−ε

∫ ∞

κ

G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ)σ (s, x(s))dθdBH (s)

∥
∥
∥
∥

2

+ 5μ2 sup
t∈J

t2(1−ν)(1−μ)E

∥
∥
∥
∥

∫ t

0

∫ κ

0

∫

Z
G−1θ(t − s)μ−1�μ(θ)

× S((t − s)μθ)h(s, x(s), z)dθ Ñ (ds, dz)

∥
∥
∥
∥

2

+ 5μ2 sup
t∈J

t2(1−ν)(1−μ)

×E

∥
∥
∥
∥

∫ t

t−ε

∫ ∞

κ

∫

Z
G−1θ(t − s)μ−1�μ(θ)

×S((t − s)μθ)h(s, x(s), z)dθ Ñ (ds, dz)

∥
∥
∥
∥

2

+ 5‖B‖2‖(L0)
−1‖2μ2 sup

t∈J
t2(1−ν)(1−μ)

×E

∥
∥
∥
∥

∫ t

0

∫ κ

0
G−1θ(t − s)μ−1�μ(θ)S((t − s)μθ){G−1Sν,μ(b)Gx0

+
∫ b

0
G−1Pμ(b − τ)F(τ, x(τ ))dτ +

∫ b

0
G−1Pμ(b − τ)σ (τ, x(τ ))dBH (τ )

+
∫ b

0
G−1Pμ(t − τ)

∫

Z
h(τ, x(τ ), z)Ñ (dτ, dz)}(s)dθds

∥
∥
∥
∥

2

+5‖B‖2‖(L0)
−1‖2μ2 sup

t∈J
t2(1−ν)(1−μ)E

∥
∥
∥
∥

∫ t

t−ε

∫ ∞

κ

G−1θ(t − s)μ−1�μ(θ)

×S((t − s)μθ){G−1Sν,μ(b)Gx0 +
∫ b

0
G−1Pμ(b − τ)F(τ, x(τ ))dτ

+
∫ b

0
G−1Pμ(b − τ)σ (τ, x(τ ))dBH (τ )

+
∫ b

0
G−1Pμ(t − τ)

∫

Z
h(τ, x(τ ), z)Ñ (dτ, dz)}(s)dθds

∥
∥
∥
∥

2

≤ 5M2μ2‖G‖2‖G−1‖2E‖x0‖2
�2(ν(1 − μ))

sup
t∈J

t2(1−ν)(1−μ)

×
∫ t

0

(

(t − s)ν(1−μ)−1sμ−1
∫ κ

0
θ�μ(θ)dθ

)2

ds

+5M2μ2‖G‖2‖G−1‖2E‖x0‖2
�2(ν(1 − μ))

sup
t∈J

t2(1−ν)(1−μ)

×
∫ t

t−ε

(

(t − s)ν(1−μ)−1sμ−1
∫ ∞

κ

θ�μ(θ)dθ

)2

ds
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+ 5μ2M2‖G−1‖2 sup
t∈J

t2(1−ν)(1−μ)

×
∫ t

0
(t − s)μ−1

(∫ κ

0
θ�μ(θ)dθ

)2 ∫ t

0
(t − s)μ−1 fq(s)ds

+ 5μ2M2‖G−1‖2 sup
t∈J

t2(1−ν)(1−μ)

×
∫ t

t−ε

(t − s)μ−1
(∫ ∞

κ

θ�μ(θ)dθ

)2 ∫ t

t−ε

(t − s)μ−1 fq(s)ds

+ 10Hb2H−1μ2M2‖G−1‖2 sup
t∈J

t2(1−ν)(1−μ)

×
∫ t

0
(t − s)μ−1

(∫ κ

0
θ�μ(θ)dθ

)2 ∫ t

0
(t − s)μ−1gq(s)ds

+ 10Hb2H−1μ2M2‖G−1‖2 sup
t∈J

t2(1−ν)(1−μ)

∫ t

t−ε

(t − s)μ−1
(∫ ∞

κ

θ�μ(θ)dθ

)2

×
∫ t

t−ε

(t − s)μ−1gq(s)ds + 5μ2M2‖G−1‖2 sup
t∈J

t2(1−ν)(1−μ)

×
∫ t

0
(t − s)μ−1

(∫ κ

0
θ�μ(θ)dθ

)2 ∫ t

0
(t − s)μ−1χq(s)ds

+ 5μ2M2‖G−1‖2 sup
t∈J

t2(1−ν)(1−μ)

∫ t

t−ε

(t − s)μ−1

×
(∫ ∞

κ

θ�μ(θ)dθ

)2 ∫ t

t−ε

(t − s)μ−1χq(s)ds

+ 5M2‖G−1‖2‖B‖2‖(L0)
−1‖2μ2

∫ t

0
(t − s)2μ−2

×
(∫ κ

0
θ�μ(θ)dθ

)2 {‖G−1‖2M2‖G‖2E‖x0‖2
�2(ν(1 − μ) + μ)

+ b(1−μ)(1−2ν)+1M2‖G−1‖2
μ�2(μ)

∫ b

0
(b − τ)μ−1 fq(τ )dτ

+ 2Hb(1−μ)(1−2ν)+2HM2‖G−1‖2
μ�2(μ)

∫ b

0
(b − τ)μ−1gq(τ )dτ

+b(1−μ)(1−2ν)+1M2‖G−1‖2
μ�2(μ)

∫ b

0
(b − τ)μ−1χq(τ )dτ }ds

+ 5M2‖G−1‖2‖B‖2‖(L0)
−1‖2μ2

∫ t

t−ε

(t − s)2μ−2
(∫ ∞

κ

θ�μ(θ)

)2

×
{‖G−1‖2M2‖G‖2E‖x0‖2

�2(ν(1 − μ) + μ)

+ b(1−μ)(1−2ν)+1M2‖G−1‖2
μ�2(μ)

∫ b

0
(b − τ)μ−1 fq(τ )dτ
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+ 2Hb(1−μ)(1−2ν)+2HM2‖G−1‖2
μ�2(μ)

∫ b

0
(b − τ)μ−1gq(τ )dτ

+b(1−μ)(1−2ν)+1M2‖G−1‖2
μ�2(μ)

∫ b

0
(b − τ)μ−1χq(τ )dτ }ds.

We see that for each x ∈ Bq , ‖(�x)(t) − (�ε,κ x)(t)‖2
C̄

→ 0 as ε → 0+, κ → 0+.
Therefore, there are precompact sets arbitrarily close to the set Vq(t) and so Vq(t) is
precompact in X .

Next, we prove that the family {�x : x ∈ Bq} is an equicontinuous family of
functions. Let x ∈ Bq and t1, t2 ∈ J such that 0 < t1 < t2, then

‖(�x)(t2) − (�x)(t1)‖2C̄
≤ 5‖G−1Sν,μ(t2)Gx0 − G−1Sν,μ(t1)Gx0‖2C̄
+5

∥
∥
∥
∥

∫ t1

0
G−1Pμ[(t2 − s) − (t1 − s)]F(s, x(s))ds

∥
∥
∥
∥

2

C̄

+5

∥
∥
∥
∥

∫ t2

t1
G−1Pμ(t2 − s)F(s, x(s))ds

∥
∥
∥
∥

2

C̄

+5

∥
∥
∥
∥

∫ t1

0
G−1Pμ[(t2 − s) − (t1 − s)]σ(s, x(s))dBH (s)

∥
∥
∥
∥

2

C̄

ds

+5

∥
∥
∥
∥

∫ t2

t1
G−1Pμ(t2 − s)σ (s, x(s))dBH (s)

∥
∥
∥
∥

2

C̄

+5

∥
∥
∥
∥

∫ t1

0
G−1Pμ[(t2 − s) − (t1 − s)]Bu(s)ds

∥
∥
∥
∥

2

C̄

+5

∥
∥
∥
∥

∫ t2

t1
G−1Pμ(t2 − s)Bu(s)ds

∥
∥
∥
∥

2

C̄

+5

∥
∥
∥
∥

∫ t1

0
G−1Pμ[(t2 − s) − (t1 − s)]

∫

Z
h(s, x(s), z)Ñ (ds, dz)

∥
∥
∥
∥

2

C̄

+5

∥
∥
∥
∥

∫ t2

t1
G−1Pμ(t2 − s)

∫

Z
h(s, x(s), z)Ñ (ds, dz)

∥
∥
∥
∥

2

C̄

.

From the above fact, we see that ‖(�x)(t2)− (�x)(t1)‖2C̄ tends to zero independently
of x ∈ Bq as t2 → t1. The compactness of S(t) for t > 0 implies the continuity
in the uniform operator topology. Thus, �(Bq) is both equicontinuous and bounded.
By the Arzela–Ascoli theorem, �(Bq) is precompact in X . Hence, � is a completely
continuous operator on X . From the Schauder fixed point theorem,� has a fixed point
in Bq . Any fixed point of � is a mild solution of (1) on J. Therefore, the system (1)
is exact null controllable on J . ��
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4 An Example

In this section, we present an example to illustrate our main result. Let us consider the
Sobolev-type Hilfer fractional stochastic partial differential equation with fractional
Brownian motion and Poisson jump in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
ν, 35
0+ [(1 − ∂2

∂ξ2
)x(t, ξ)] = ∂2

∂ξ2
x(t, ξ) + u(t, ξ) + F(t, x(t, ξ)) + σ(t, x(t, ξ))

dBH (t)
dt

+ ∫

Z h(t, x(t, ξ), z)Ñ (dt, dz), t ∈ J, 0 < ξ < 1,

x(t, 0) = x(t, 1) = 0, t ∈ J,

I
2
5 (1−ν)

0+ x(0, ξ) = x0(ξ), 0 ≤ ξ ≤ 1,

(14)

where D
ν, 35
0+ is theHilfer fractional derivative, 0 ≤ ν ≤ 1, μ = 3

5 and B
H is a fractional

Brownian motion. The functions x(t)(ξ) = x(t, ξ), F(t, x(t))(ξ) = F(t, x(t, ξ)),
σ(t, x(t))(ξ) = σ(t, x(t, ξ)) and h(t, x(t), z)(ξ) = h(t, x(t, ξ), z).

The bounded linear operator B is defined by Bu = u(t, ξ), 0 ≤ ξ ≤ 1, u ∈ U .
To study this system, let X = Y = U = L2([0, 1]), and the operators A : D(A) ⊂

X → X and G : D(A) ⊂ X → X, t ≥ 0 be given by A = ∂2

∂ξ2
and G = 1 − A with

D(A) = D(G) = {x ∈ X; x, ∂x
∂ξ

be absolutely continuous, ∂2x
∂ξ2

∈ X, x(0) = x(1) =
0}. Then, A and G can be written as

Ax =
∞∑

n=1

n2(x, xn)xn, x ∈ D(A), Gx =
∞∑

n=1

(1 + n2)(x, xn)xn, x ∈ D(G).

Furthermore, for x ∈ X we have

G−1x =
∞∑

n=1

1

1 + n2
(x, xn)xn, AG−1x =

∞∑

n=1

n2

1 + n2
(x, xn)xn .

It is known that AG−1 is self-adjoint and has the eigenvalues λn = −n2π2, n ∈ N ,
with the corresponding normalized eigenvectors en(ξ) = √

2 sin(nπξ). Furthermore,
AG−1 generates a uniformly strongly continuous semigroup of bounded linear oper-
ators S(t), t > 0, on a separable Hilbert space X which is given by

S(t)y =
∞∑

n=1

(yn, en)en =
∞∑

n=1

2e−n2π2t sin(nπξ)

∫ 1

0
sin(nπτ)y(τ )dτ, y ∈ X.

If u ∈ L2(J,U ), then B = I, B∗ = I . We consider the fractional linear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
ν, 35
0+ [(1 − ∂2

∂ξ2
)y(t, ξ)] = ∂2

∂ξ2
y(t, ξ) + u(t, ξ) + F(t, ξ) + σ(t, ξ)dω(t), t ∈ J, 0 < ξ < 1,

y(t, 0) = y(t, 1) = 0, t ∈ J,

I
2
5 (1−ν)

0+ (y(0, ξ)) = y0(ξ), 0 ≤ ξ ≤ 1,

(15)
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The system (15) is exact null controllable if there is a γ > 0, such that

∫ b

0
‖G−1B∗P∗

μ(b − s)y‖2ds ≥ γ

[

‖G−1S∗
μ,ν(b)Gy‖2 +

∫ b

0
‖G−1P∗

μ(b − s)y‖2ds
]

or equivalently

∫ b

0
‖G−1Pμ(b − s)y‖2ds ≥ γ

[

‖G−1Sμ,ν(b)Gy‖2 +
∫ b

0
‖G−1Pμ(b − s)y‖2ds

]

.

If F = 0 andσ = 0 in (15), then the fractional linear system is exactly null controllable
if

∫ b

0
‖G−1Pμ(b − s)y‖2ds ≥ b[‖G−1Sμ,ν(b)Gy‖2.

Therefore,

∫ b

0
‖G−1Pμ(b − s)y‖2ds ≥ b

1 + b

[

‖G−1Sμ,ν(b)Gy‖2

+
∫ b

0
‖G−1Pμ(b − s)y‖2ds

]

.

Hence, the linear fractional system (15) is exactly null controllable on J . So the
hypothesis (H1) is satisfied. Hence, all the hypotheses of Theorem 3.3 are satisfied
and

[
10δb(1−μ)(1−2ν)M2‖G−1‖2

μ�2(μ)
+ 10δM4‖(L0)

−1‖2‖B‖2‖G−1‖4b2ν(μ−1)+μ

μ(2μ − 1)�2(μ)

]

[b + b2H ] < 1,

so the Sobolev-type Hilfer fractional stochastic partial differential equation with
fractional Brownian motion and Poisson jump (14) is exact null controllable on J .

5 Conclusion

This paper dealt with a class of Sobolev-type Hilfer fractional stochastic differential
equations with fractional Brownian motion and Poisson jumps in Hilbert spaces. By
using fractional calculus, compact semigroup, fixed point theorem and stochastic anal-
ysis, we established sufficient conditions for exact null controllability of Sobolev-type
stochastic differential equations with fractional Brownian motion and Poisson jumps
in Hilbert spaces, where the time fractional derivative is the Hilfer derivative. Finally,
an example is given to illustrate our results.

Our future work will be focused on investigating the approximate and null con-
trollability for Sobolev-type nonlinear Hilfer fractional stochastic delay differential
equations with impulsive condition in Hilbert space.
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