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Abstract In this paper, we study a complete submanifold Mm in a sphere Sm+l . We
obtain that there is no nontrivial L2β p-harmonic 1-forms on Mm if the total curvature
is bounded from above by a constant depending only on m, and we also obtain that
Mm has only one p-nonparabolic end.
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1 Introduction

The topological properties and vanishing theorems of submanifolds in various ambient
spaces have been studied extensively during the past few years. In [4], Cao, Shen and
Zhu showed that a complete connected stable minimal hypersurface in Euclidean
space must have exactly one end. Its strategy was to utilize a result of Schoen–Yau
asserting that a complete stableminimal hypersurface in Euclidean space cannot admit
a non-constant harmonic function with finite integral [22]. Later, Ni [17] proved that
if n-dimensional complete minimal submanifold M in Euclidean space has sufficient
small total scalar curvature (i.e.

∫
M |A|n < C1), then M has only one end. In [21], Seo

improved the upper bound C1. In [8], Fu and Xu proved that a complete submanifold
Mm with finite total curvature and some conditions on mean curvaute in an (n + p)-
dimensional simply connected space form Mm+p(c) must have finitely many ends. In
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[5], Cavalcante,Mirandola,Vitório proved that a complete submanifoldMm with finite
total curvature and some conditions on the first eigenvalue of the Laplace–Beltrami
operator of M in an Hadamard manifold must have finitely many ends. In [14], Lin
proved some vanishing theorems for L2 harmonic forms under the assumptions on
the second fundamental forms. In [15], Lin proved some vanishing and finiteness
theorems for L2 harmonic forms under the assumptions on Schrödinger operators
involving the squared norm of the traceless second fundamental form. In [16], Lin
obtained some vanishing theorems for L2 forms on hypersurfaces in sphere. In [25,26],
Zhu and Fang obtained some vanishing and finiteness theorems for L2 harmonic 1-
forms on submanifold in sphere. In [9], the author investigates complete noncompact
submanifolds in sphere; we obtained some vanishing and finiteness theorems for L2

harmonic forms.
For p-harmonic 1-forms, Zhang [24] obtained vanishing results for p-harmonic

1-form. Chang [6] obtained the compactness for any bounded set of p-harmonic 1-
forms. In [11], the author and Pan investigated L p p-harmonic 1-forms on complete
noncompact submanifolds in Hadamard manifolds, and obtained some vanishing and
finiteness theorems under finite total curvature and the first eigenvalues of Laplace-
Beltrami operator. In [12], the author, Zhang and Liang obtained some vanishing and
finiteness theorems under the conditions of the scalar curvature and Ricci curvature.
In [10], the author obtained some vanishing and finiteness theorems for p-harmonic
forms on complete submanifolds in spheres. In [18], Dung and Seo obtained some
vanishing results for p-harmonic forms. In [19] Dung obtained some vanishing results
for p-harmonic l-forms, for 2 ≤ l ≤ n− 2 on Riemannian manifolds with a weighted
Poincaré inequality.

Let (Mm, g) be a Riemannian manifold and let u be a real C∞ function on Mm .
Fix p ∈ R, p ≥ 2 and consider a compact domain � ⊂ Mm . The p-energy of u on �

is defined to be

Ep(�, u) = 1

p

∫

�

|∇u|p.

The function u is said to be p-harmonic on Mm if u is a critical point of Ep(�, ∗)

for every compact domain � ⊂ Mm . Equivalently, u satisfies the Euler–Lagrange
equation.

div(|∇u|p−2∇u) = 0.

Thus, the concept of p-harmonic function is a natural generalizationof that of harmonic
function, that is, of a critical point of the 2-energy functional.

Definition 1.1 A p-harmonic 1-form is a differentiable 1-form on Mm satisfying the
following properties:

{
dω = 0,
δ(|ω|p−2ω) = 0,
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where δ is the codifferential operator. It is easy to see that the differential of a p-
harmonic function is a p-harmonic 1-form.

In this paper, we investigate the properties of p-harmonic 1-forms on noncompact
submanifoldswith finite total curvature.We assume thatMm is a complete noncompact
manifold and define the space of the L p p-harmonic 1-forms on M by

H1,p(L2β(M)) =
{

ω|
∫

M
|ω|2βdv < ∞, dω = 0 and δ(|ω|p−2ω) = 0

}

where p ≥ 2 and β > 0.
In this paper, we obtain the following results.

Theorem 1.2 Let x : Mm → Sm+l , m ≥ 3 be an isometric immersion of a complete
noncompact manifold Mm in unit sphere Sm+l . There exists a positive constant �

depending only on m, such that if ||�||Lm(M) < m−2
2C(m)

√
2m(m−1)(m−1)

, then there

admit no nontrivial L2β p-harmonic 1-forms on M, i.e. H1,p(L2β(M)) = {0}, where
p ≥ 2 and β satisfies the following inequality:

m

[

2 −
√

2

m(m − 1)

[
(p − 1)2 + (2m − 1)(m − 1)

]
]

< β < m

[

2 +
√

2

m(m − 1)

[
(p − 1)2 + (2m − 1)(m − 1)

]
]

.

In particular, from β = p
2 and H1,p(L p(M)) = {0}, we know that M has only one

p-nonparabolic end.

Remark 1.3 When β = 1 and p = 2, our result becomes the Theorem 1.2 in [25], so
our result is a generalization of the result of Zhu and Fang [25].

2 Preliminaries

LetMm be a complete submanifold immersed in a sphere Sm+l . Fix a point x ∈ M and
a local orthonormmal frame {e1, . . . , em+l} of Sm+l such that {e1, . . . , em} are tangent
fields of M . For each α, m + 1 ≤ α ≤ m + l, define a line map Aα : TxM → TxM
by 〈AαX,Y 〉 = 〈∇XY, eα〉, where X,Y are tangent fields and ∇ is the Riemannian
connection of Sm+n . Denote by hα

i j = 〈Aαei , e j 〉. The squared norm |A|2 of the second
fundamental form and the mean curvature vector H are defined by

|A|2 =
∑

i jα

(hα
i j )

2 H =
∑

α

Hαeα = 1

m

∑

iα

hα
i i eα.

The traceless second fundamental form � is defined by

�(X,Y ) = A(X,Y ) − 〈X,Y 〉H,
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for all vector fields X,Y on M . A simple computation shows that

|�|2 = |A|2 − m|H |2,

which measures how much the immersion deviates from being totally umbilical.
To prove our main result, we also need the following results. In [11], the author and

H. Pan obtained the following Kato type inequality for p-harmonic 1-form.

Lemma 2.1 ([11])Letω be a p-harmonic 1-form onRiemannianmanifold Mm. Then,
we have the following inequality:

|∇(|ω|p−2ω)|2 ≥
(

1 + 1

(m − 1)(p − 1)2

)

|∇|ω|p−1|2,

where p ≥ 2.

In the following, we will refine the above inequality and obtain the following Kato
type inequality for p-harmonic 1-form.

Lemma 2.2 Let ω be a p-harmonic 1-form on Riemannian manifold Mm. Then, we
have the following inequality:

|∇(|ω|p−2ω)|2 ≥
(

1 + 1

m − 1

)

|∇|ω|p−1|2, (1)

where p ≥ 2.

Proof When p = 2,ω is a 2-harmonic 1-form, i.e. harmonic 1-form, (1) is true. So we
only need to the case for p > 2. We can choose a local orthonormal basis e1, . . . , em
with the dual basis θ1, . . . , θm ofMm near a fixed point q ∈ M such that∇ei e j (q) = 0,
ω1(q) = ω(e1)(q) = |ω|(q) and ω(ei ) = ωi = 0 for i ≥ 2. Writing

ω =
m∑

i=1

ωiθi .

We have

dω =
m∑

i, j=1

ωi jθ j ∧ θi

and

δ(|ω|p−2ω) = −|ω|p−2
m∑

i=1

[(p − 2)∇i (ln |ω|)ωi + ωi i ]

Since ω is a p-harmonic 1-form, that is, dω = 0 and δ(|ω|p−2ω) = 0, therefore

ωi j = ω j i
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for i, j = 1, · · · ,m and

m∑

i=1

[(p − 2)∇i (ln |ω|)ωi + ωi i ] = 0

and

∇ei |ω| = ∇i |ω| = ∇i

⎛

⎝

√√
√
√

m∑

j=1

ω2
j

⎞

⎠ =
∑

ω jωi j

|ω| = ω1i .

At the point q, we compute

|∇(|ω|p−2ω)|2 − |∇|ω|p−1|2

=
m∑

i, j=1

|ω|2(p−2)[(p − 2)∇i (ln |ω|)ω j + ωi j ]2

−
m∑

i=1

|ω|2(p−2)[(p − 2)∇i (ln |ω|)ω1 + ω1i ]2

≥
∑

i �=1

|ω|2(p−2)[(p − 2)∇i (ln |ω|)ω1 + ω1i ]2

+
∑

i �=1

|ω|2(p−2)[(p − 2)∇i (ln |ω|)ωi + ωi i ]2

=
∑

i �=1

|ω|2(p−2)[(p − 1)ω1i ]2 +
∑

i �=1

|ω|2(p−2)[(p − 2)∇i (ln |ω|)ωi + ωi i ]2

≥ (p − 1)2
∑

i �=1

|ω|2(p−2)[ω1i ]2

+ 1

m − 1
|ω|2(p−2)[

∑

i �=1

((p − 2)∇i (ln |ω|)ωi + ωi i )]2

= (p − 1)2
∑

i �=1

|ω|2(p−2)[ω1i ]2

+ 1

m − 1
|ω|2(p−2)[−(p − 2)∇1(ln |ω|)ω1 − ω11]2

= (p − 1)2
∑

i �=1

|ω|2(p−2)[ω1i ]2 + (p − 1)2
1

m − 1
|ω|2(p−2)ω2

11

≥ (p − 1)2

m − 1

∑

i �=1

|ω|2(p−2)[ω1i ]2 + (p − 1)2

m − 1
|ω|2(p−2)ω2

11

≥ (p − 1)2

m − 1
|ω|2(p−2)

m∑

i=1

ω2
1i = 1

(m − 1)
|∇|ω|p−1|2.
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This proves the Lemma. ��
Using Bochner’s formula [2], we have the following results.

Lemma 2.3 Let ω be a p-harmonic 1-form on Riemannian manifold Mm. Then, we
have

1

2
�|ω|2(p−1) = |∇(|ω|p−2)ω|2 − 〈δd(|ω|p−2ω), |ω|p−2ω〉

+ |ω|2(p−2)RicM (ω, ω). (2)

From (1) and (2), we have

|ω|p−1�|ω|p−1 ≥ 1

(m − 1)
|∇|ω|p−1|2 − 〈δd(|ω|p−2ω), |ω|p−2ω〉,

+ |ω|2(p−2)RicM (ω, ω), (3)

where ω is a p-harmonic 1-form on Riemannian manifold Mm .

Lemma 2.4 ([23]) Let Mm be an m-dimensional complete immersed submanifold in
a Hadamard manifold N with the sectional curvature satisfying 0 < δ ≤ KN for some
constant δ. Then, the Ricci curvature of M satisfies

RicM ≥ (m − 1)(|H |2 + δ) − m − 1

m
|�|2 − (m − 2)

√
m(m − 1)

m
|H ||�|. (4)

Lemma 2.5 [13,25] Let Mm be a complete noncompact oriented manifold isometri-
cally immersed in a sphere Sm+n. Then, we have

(∫

M
| f | 2m

m−2

)m−2
m ≤ C0

(∫

M
|∇ f |2 + m2

∫

M
(1 + |H |2) f 2

)

(5)

for all f ∈ C1
0(M), where H is the mean curvature vector of M in Sm+l and C0 is a

constant given by the following

C0 = C(m)2
8(m − 1)2

(m − 2)2
,

where C(m) is Sobolev constant only depending on m.

In [11], the author and Pan proved the following result.

Lemma 2.6 ([11]) Let f : Mm → R be a smooth function on Riemannian manifold
M, and ω be a closed 1-form on M. Then, we have |d( f ω)| ≤ |d f ||ω|.
In the following, we recall the definition of the ends of Riemannian manifolds
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Definition 2.7 Let D ⊂ M be a compact subset of M . An end E of M with respect
to D is a connected unbounded component of M\D. When we say E is an end, it is
implicitly assumed that E is an end with respect to some compact subset D ⊂ M .

As in usual harmonic function theory, we define the p-parabolicity and p-
nonparabolicity of an end E as follows ([1,3,20]):

Definition 2.8 An end E of the Riemannian manifold M is called p-parabolic if for
every compact subset K ⊂ E

capp(K , E) = inf
∫

E
|∇u|p = 0,

where the infimum is taken among all u ∈ C∞
c (E) such that u ≥ 1 on K . Otherwise,

the end E is called p-nonparabolic.

Lemma 2.9 ([7,20]) Let M be a Riemannian manifold with at least two p-
nonparabolic ends. Then, there exists a nonconstant, bounded p-harmonic function
u ∈ C1,α(M) for some α such that |∇u| ∈ L p(M).

3 Proof of the Main Results

In this section, we give the proof of our main result.

Proof of Theorem 1.2 Assume that ω is a p-harmonic 1-form on Mm . From (3) and
(4), we have

|ω|p−1�|ω|p−1 ≥ 1

m − 1
|∇|ω|p−1|2 − 〈δd(|ω|p−2ω), |ω|p−2ω〉

+ (m − 1)(|H |2 + 1)|ω|2(p−1) − m − 1

m
|�|2|ω|2(p−1)

− (m − 2)
√
m(m − 1)

m
|H ||�||ω|2(p−1)

≥ 1

m − 1
|∇|ω|p−1|2 − 〈δd(|ω|p−2ω), |ω|p−2ω〉

+ (m − 1)(|H |2 + 1)|ω|2(p−1) − m − 1

m
|�|2|ω|2(p−1)

− m − 2

2
|H |2|ω|2(p−1) − (m − 1)(m − 2)

2m
|�|2|ω|2(p−1)

= 1

m − 1
|∇|ω|p−1|2 − 〈δd(|ω|p−2ω), |ω|p−2ω〉

+ m

2
|H |2|ω|2(p−1) + (m − 1)|ω|2(p−1) − m − 1

2
|�|2|ω|2(p−1),

(6)

where we have used the Cauchy–Schwarz inequality in the second inequality.
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For any α > 0, we compute

|ω|α�|ω|α = |ω|α�
[
|ω|(p−1) α

p−1

]

= |ω|α
[

α

p − 1
|ω|α−(p−1)�|ω|p−1

+ α

p − 1

(
α

p − 1
− 1

)

|ω|α−2(p−1)|∇|ω|p−1|2
]

= α

p − 1
|ω|2α−2(p−1)|ω|p−1�|ω|p−1

+ α

p − 1

(
α

p − 1
− 1

)

|ω|2α−2(p−1)|∇|ω|p−1|2. (7)

From (6) and (7), we have

|ω|α�|ω|α ≥ α

p − 1
|ω|2α−2(p−1)

[
1

m − 1
|∇|ω|p−1|2 − 〈δd(|ω|p−2ω), |ω|p−2ω〉

+ m

2
|H |2|ω|2(p−1) + (m − 1)|ω|2(p−1) − m − 1

2
|�|2|ω|2(p−1)

]

+ α

p − 1

(
α

p − 1
− 1

)

|ω|2α−2(p−1)|∇|ω|p−1|2

= p − 1

α

(
1

m − 1
+ α

p − 1
− 1

)

|∇|ω|α|2

− α

p − 1
〈δd

(
|ω|p−2ω

)
, |ω|2α−pω〉

+ α

p − 1

m

2
|H |2|ω|2α+ α

p − 1
(m − 1)|ω|2α− α

p − 1

m − 1

2
|�|2|ω|2α.

(8)

Let φ ∈ C∞
0 (M). Multiplying both sides of (8) by |φ|2|ω|2qα , q > 0, and integrating

over M , we have

p − 1

α

(
1

m − 1
+ α

p − 1
− 1

) ∫

M
φ2|ω|2qα|∇|ω|α|2

+ α

p − 1

m

2

∫

M
φ2|H |2|ω|2(q+1)α

+ α

p − 1
(m − 1)

∫

M
φ2|ω|2(q+1)α ≤

∫

M
φ2|ω|(2q+1)α�|ω|α

+ α

p − 1

∫

M
〈δd

(
|ω|p−2ω

)
, φ2|ω|2(q+1)α−pω〉

+ α

p − 1

m − 1

2

∫

M
|�|2|φ|2|ω|2(q+1)α
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= −2
∫

M
φ|ω|(2q+1)α〈∇φ,∇|ω|α〉 − (2q + 1)

∫

M
φ2|ω|2qα|∇|ω|α|2

+ α

p − 1

m − 1

2

∫

M
|�|2|φ|2|ω|2(q+1)α

+ α

p − 1

∫

M
〈δd

(
|ω|p−2ω

)
, φ2|ω|2(q+1)α−pω〉

≤ 2
∫

M
φ|ω|(2q+1)α|∇φ||∇|ω|α| − (2q + 1)

∫

M
φ2|ω|2qα|∇|ω|α|2

+ α

p − 1

m − 1

2

∫

M
|�|2|φ|2|ω|2(q+1)α

+ α

p − 1

∫

M
〈δd

(
|ω|p−2ω

)
, φ2|ω|2(q+1)α−pω〉. (9)

From Lemma 2.6, we have

∣
∣
∣
∣

∫

M
〈δd

(
|ω|p−2ω

)
, φ2|ω|2(q+1)α−pω〉

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

M

〈
d

(
|ω|p−2ω

)
, d

(
φ2|ω|2(q+1)α−pω

)〉∣∣
∣
∣

≤
∫

M

∣
∣
∣ω|2|∇|ω|p−2

∣
∣
∣
∣
∣
∣∇(φ2|ω|2(q+1)α−p)

∣
∣
∣

≤
∫

M
|ω|2|∇|ω|p−2||2φ|ω|2(q+1)α−p∇φ + φ2∇|ω|2(q+1)α−p|

≤
∫

M

[
2φ|ω|2(q+1)α−p+2|∇|ω|p−2||∇φ| + φ2|ω|2|∇|ω|p−2||∇|ω|2(q+1)α−p|

]

=
∫

M

[
2(p − 2)

α
φ|ω|(2q+1)α|∇|ω|α||∇φ|

+ (p − 2)(2(q + 1)α − p)

α2 φ2|ω|2qα|∇|ω|α|2
]

. (10)

From (9) and (10),

C1

∫

M
φ2|ω|2qα|∇|ω|α|2 + α

p − 1

m

2

∫

M
φ2|H |2|ω|2(q+1)α

+ α

p − 1
(m − 1)

∫

M
φ2|ω|2(q+1)α

≤ α

p − 1

m − 1

2

∫

M
|�|2|φ|2|ω|2(q+1)α

+2(2p − 3)

p − 1

∫

M
φ|ω|(2q+1)α|∇|ω|α||∇φ|, (11)
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where C1 is a positive constant defined as follows.

C1 = p − 1

α

(
1

m − 1
+ α

p − 1
− 1

)

+ 2q + 1 − p − 2

p − 1

2(q + 1)α − p

α
.

For any ε1 > 0, by applying the Cauchy–Schwarz inequality, we have

C2

∫

M
φ2|ω|2qα|∇|ω|α|2 + α

p − 1

m

2

∫

M
φ2|H |2|ω|2(q+1)α

+ α

p − 1
(m − 1)

∫

M
φ2|ω|2(q+1)α

≤ α

p − 1

m − 1

2

∫

M
|�|2|φ|2|ω|2(q+1)α

+ (2p − 3)

p − 1

1

ε1

∫

M
|ω|(2q+2)α|∇φ|2, (12)

where C2 is a positive constant defined as follows.

C2 = p − 1

α

(
1

m − 1
+ α

p − 1
− 1

)

+ 2q + 1

− p − 2

p − 1

2(q + 1)α − p

α
− (2p − 3)

p − 1
ε1.

On the other hand, since m ≥ 3, we use Hölder inequality, Sobolev inequality (5) and
Cauchy–Schwarz inequality to obtain

∫

M
|�|2|φ|2|ω|2(q+1)α ≤

(∫

supp(φ)

|�|m
) 2

m
(∫

M

(
φ|ω|(q+1)α

) 2m
m−2

)m−2
m

≤ C0

(∫

supp(φ)

|�|m
) 2

m
∫

M

(
|∇(φ|ω|(q+1)α)|2 + m2(|H |2 + 1)φ2|ω|2(q+1)α

)

≤ C0||�||2Lm(M)

∫

M

[

(1 + 1

ε2
)|ω|2(q+1)α|∇φ|2

+(1 + ε2)(q + 1)2|ω|2qα|∇|ω|α|2φ2

+m2(|H |2 + 1)φ2|ω|2(q+1)α
]

, (13)

where ε2 > 0 is a positive constant. From (12) and (13), we have

C3

∫

M
φ2|ω|2qα|∇|ω|α|2 + C4

∫

M
φ2|H |2|ω|2(q+1)α

+C5

∫

M
φ2|ω|2(q+1)α ≤ C6

∫

M
|ω|(2q+2)α|∇φ|2, (14)
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where C3, C4, C5 and C6 are positive constants defined as follows.

C3 = C2 − α

p − 1

m − 1

2
C0||�||2Lm(M)(1 + ε2)(q + 1)2,

C4 = α

p − 1

m

2
− α

p − 1

m − 1

2
m2C0||�||2Lm(M),

C5 = α

p − 1
(m − 1) − α

p − 1

m − 1

2
m2C0||�||2Lm(M),

C6 = 2p − 3

p − 1

1

ε1
+ α

p − 1

m − 1

2
C0||�||2Lm(M)

(

1 + 1

ε2

)

> 0.

Since ||�||Lm(M) < m−2
2C(m)

√
2m(m−1)(m−1)

, it is easy to know that C4 > 0 and C5 > 0.

Now taking β = (1 + q)α > 0, we consider the following constant:

C̃3 = p − 1

α

(
1

m − 1
+ α

p − 1
− 1

)

+ 2q + 1 − p − 2

p − 1

2(q + 1)α − p

α

− α

p − 1

m − 1

2
C0||�||2Lm(M)(q + 1)2

>
p − 1

α

(
1

m − 1
+ α

p − 1
− 1

)

+ 2q + 1 − p − 2

p − 1

2(q + 1)α − p

α

− α

p − 1

m − 1

2

1

m(m − 1)
(q + 1)2

= − 1

(p − 1)α

[
1

2m
β2 − 2β − p2 − 2p − m + 2

m − 1

]

. (15)

By the assumption on β, we can obtain C̃3 > 0. Choosing ε1 and ε2 small enough,
we have C3 > 0 and

∫

M
φ2|ω|2qα|∇|ω|α|2 + C4

C3

∫

M
φ2|H |2|ω|2β + C5

C3

∫

M
φ2|ω|2β

≤ C6

C3

∫

M
|ω|2β |∇φ|2. (16)

Fix a point x0 ∈ M . Let us choose a nonnegative smooth φ ∈ C∞
0 (M) satisfying

φ =
{
1 x ∈ Bx0(R),

0 x ∈ M\Bx0(2R)
(17)

123



670 Bull. Iran. Math. Soc. (2018) 44:659–671

and |∇φ| ≤ 2
R . From the definition of φ and (16), we have

∫

Bx0 (R)

|ω|2qα|∇|ω|α|2 + C4

C3

∫

Bx0 (R)

|H |2|ω|2β + C5

C3

∫

Bx0 (R)

|ω|2β

≤ C6

C3R2

∫

M
|ω|2β.

Since |ω| ∈ L2β(M), letting R → ∞, we have ω = 0. By Lemma 2.9, Mm has only
one p-parabolic end. This completes the proof of Theorem 1.2.
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