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Abstract It is conjectured by Berge and Fulkerson that every bridgeless cubic graph
has six perfect matchings such that each edge is contained in exactly two of them.
Hägglund constructed Blowup(K4,C) and Blowup(Prism, C4). Based on these two
graphs, Chen constructed infinite families of bridgeless cubic graphs M0,1,2,...,k−2,k−1
which are obtained from cyclically 4-edge-connected and admitting Fulkerson-cover
cubic graphs G0,G1, . . . ,Gk−1 by recursive process. He obtained that every graph in
M0,1,2,3 has a Fulkerson-cover and gave the open problem that whether every graph
in M0,1,2,...,k−2,k−1 has a Fulkerson-cover. In this paper, we solve this problem and
prove that every graph in M0,1,2,...,k−2,k−1 has a Fulkerson-cover.
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1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). A circuit of G is
a 2-regular connected subgraph. An even graph is a graph with even degree at every
vertex. A perfect matching of G is a 1-regular spanning subgraph of G. The excessive
index of G, denoted by χ ′

e(G), is the least integer k, such that G can be covered by k
perfect matchings. A cubic graph is a snark if it is bridgeless and not 3-edge-colorable.

The following is a famous open problem called Berge–Fulkerson conjecture:

Conjecture 1.1 (Berge–Fulkerson Conjecture [6], or see [11])Every bridgeless cubic
graph has six perfect matchings such that each edge belongs to exactly two of them.

We call such six perfect matchings in the conjecture as the Fulkerson-cover. Let
G be a cubic graph. The graph 2G is obtained from G by duplicating every edge
to become a pair of parallel edges. A graph G is Berge–Fulkerson colorable if the
graph 2G is 6-edge-colorable. It means that there exists a mapping from E(2G) to
{1, 2, . . . , 6} such that every vertex of 2G is incident with edges colored with all six
colors. Clearly, the six perfect matchings in the conjecture correspond to the 6-edge-
coloring of the graph 2G. Thus Berge–Fulkerson colorable is an equivalent description
of the Fulkerson-cover.

Although there are some results related with this conjecture, as examples,
see [3,5,7,8,10,12], Berge–Fulkerson conjecture is still open for many bridgeless
cubic graphs even for some simple snarks. Fan and Raspaud [5] in 1994 made a
weaker conjecture that every bridgeless cubic graph contains three perfect matchings
with empty intersection. There are some known partial results such as the verifica-
tion [9] of Fan–Raspaud conjecture for oddness two graphs. However, this weaker
conjecture remains also unsolved.

Hägglund [7] constructed Blowup(K4,C) and Blowup(Prism, C4). Based on
Blowup(K4,C), Esperet et al. [4] constructed infinite families of cyclically 4-edge-
connected snarkswith excessive index at least five.Basedon these twographs,Chen [2]
constructed infinite families of cyclically 4-edge-connected snarks E0,1,2,...,(k−1)
obtained from cyclically 4-edge-connected snarksG0,G1, . . . ,Gk−1, in which E0,1,2
is Esperet et al.’s construction. If only assume that each graph in {G0,G1, . . . ,Gk−1}
has a Fulkerson-cover, then these infinite families of bridgeless cubic graphs are
denoted by M0,1,2,...,k−2,k−1. Chen [2] obtained that every graph in M0,1 or in M0,1,2,3
has a Fulkerson-cover and gave the following problem:

Problem 1.2 [2] If H = {G;G0,G1, . . . ,Gk−2,Gk−1} ∈ M0,1,2,...,k−2,k−1, does H
have a Fulkerson-cover?

In this paper, we solve Problem 1.2. The main result is Theorem 1.3.

Theorem 1.3 Each graph in M0,1,2,...,k−2,k−1 for k > 2 has a Fulkerson-cover.

2 Preliminaries

In this section, some necessary definitions, constructions and the lemma are given.
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Fig. 1 {G;G0,G1}

Let X ⊆ V (G) and Y ⊆ E(G). We use G\X to denote the subgraph of G obtained
from G by deleting all the vertices of X and all the edges incident with X . While
G\Y to denote the subgraph of G obtained from G by deleting all the edges of Y .
The edge-cut of G associated with X , denoted by ∂G(X), is the set of edges of G with
exactly one end in X . The edge set C = ∂G(X) is called a k-edge-cut if |∂G(X)| = k.
A cycle of G is a subgraph of G with each vertex of even degree. A circuit of G is a
minimal 2-regular cycle of G. A graph G is called cyclically k-edge-connected if at
least k edges must be removed to disconnect it into two components, each of which
contains a circuit.

Let Gi be a cyclically 4-edge-connected snark with excessive index at least 5, for
i = 0, 1. Let xi yi be an edge of Gi and x0i , x

1
i (y

0
i , y

1
i ) be the neighbors of xi (yi ). Let

Hi be the graph obtained from Gi by deleting the vertices xi and yi . Let {G;G0,G1}
be the graph obtained from the disjoint union of H0, H1 by adding six vertices
a0, b0, c0, a1, b1, c1 and 13 edges a0y00 , a0x

0
1 , a0c0, c0b0, b0y

1
0 , b0x

1
1 , b1x

1
0 , b1y

1
1 , b1

c1, c1a1, a1x00 , a1y
0
1 , c0c1. The graphs of this type are denoted as E0,1 (see Fig. 1).

The families of graphs E0,1,...,(k−1) (k ≥ 2) and M0,1,...,(k−1) (k ≥ 2) are con-
structed by Chen as follows:

1. {G;G0,G1} ∈ E0,1 with A j = {a j , b j , c j } for j = 0, 1.
2. For 3 ≤ i ≤ k, {G;G0,G1, . . . ,Gi−1} is obtained from {G;G0,G1, . . . ,Gi−2} ∈

E0,1,...,(i−2) by adding Hi−1 and Ai−1 = {ai−1, bi−1, ci−1} and by inserting a ver-
tex vi−3 into e0, where e0 is the edge incident with c0 different from a0c0 and b0c0,
such that the following conditions (i), (ii) and (iii) hold.

(i) Gi−1 is a cyclically 4-edge-connected snark with excessive index at least 5 (note
that xi−1yi−1 is an edge of Gi−1 and x0i−1, x

1
i−1 (resp. y

0
i−1, y

1
i−1) are the neigh-

bors of xi−1 (resp. yi−1));
(ii) Hi−1 = Gi−1\{xi−1, yi−1};
(iii) ai−1 is adjacent to x00 and y0i−1, bi−1 is adjacent to x10 and y1i−1, ai−2 is adjacent

to x0i−1 and y0i−2, bi−2 is adjacent to x1i−1 and y1i−2, ci−1 is adjacent to ai−1, bi−1
and vi−3, and the other edges of {G;G0,G1, . . . ,Gi−2} remain the same:

3. {G;G0,G1, . . . ,Gi−1} ∈ E0,1,...,(i−1).

For example, {G;G0,G1,G2} and {G;G0,G1,G2,G3} are shown in Fig. 2.
The class of graphs constructed by Esperet et al. is a special case for k = 3
of E0,1,...,(k−1). If the excessive index and non 3-edge-colorability of Gi (i =
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Fig. 2 {G;G0,G1,G2} and {G;G0,G1,G2,G3}

0, 1, 2, . . . , (k − 1)) are ignored and only assume that Gi has a Fulkerson-cover,
then we obtain infinite families of bridgeless cubic graphs. We denote graphs of this
type as M0,1,2,...,(k−1) for k ≥ 2.

The following Lemma is very import in our main proofs;

Lemma 2.1 (Hao et al. [8]) A bridgeless cubic graph G has a Fulkerson-cover if and
only if there are two disjoint matchings M1 and M2, such that M1 ∪ M2 is a cycle and
G\Mi is 3-edge colorable, for each i = 1, 2, where G\Mi is the graph obtained from
G\Mi by suppressing all degree-2-vertices.

3 Each Graph in M0,1,2,...,k−2,k−1 Has a Fulkerson Cover

We give the results according to the parity of k.

Theorem 3.1 Let k be an even integer and k ≥ 4. If � ∈ M0,1,2,...,k−2,k−1, then �

has a Fulkerson-cover.

Proof Since � ∈ M0,1,2,...,k−2,k−1, assume � = {G;G0,G1, . . . ,Gk−2,Gk−1}.
Since Gi has a Fulkerson-cover, for each i = 0, 1, . . . , k − 1, suppose that

{M1
i , M2

i , M3
i , M4

i , M5
i , M6

i } is the Fulkerson-cover of Gi . Let B2
i be the set of

edges in Gi covered twice by {M1
i , M2

i , M3
i } and B0

i be the set of edges in Gi which

are not covered by {M1
i , M2

i , M3
i }. Note that B2

i ∪ B0
i is an even cycle, and Gi\B2

i

and Gi\B0
i can be colored by three colors. Then B2

i and B0
i are the desired disjoint

matchings of Gi as in Lemma 2.1. By choosing three perfect matchings of Gi , for
each i = 0, 1, . . . , k − 1, we can obtain two desired disjoint matchings B2

i and B0
i

such that xi yi ∈ B2
i ∪ B0

i or xi , yi /∈ V (B2
i ∪ B0

i ).
Three perfect matchings {M1

i , M2
i , M3

i } ofGi are chosen such that xi , yi /∈ V (B2
i ∪

B0
i ) if i is even; And three perfect matchings {M1

i , M2
i , M3

i } of Gi are chosen such
that xi yi ∈ B2

i ∪ B0
i if i is odd. Without loss of generality, assume that xi yi ∈ B2

i and
x0i xi , y

0
i yi ∈ B0

i for odd i .
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Fig. 3 {G;G0,G1, . . . ,Gk−1} for even k

Let B0 =
(
B2
0 − x0y0

)
∪

(
B0
1 −

{
x01 x1, y

0
1 y1

})
∪

k−1⋃
i=2

(
B2
i − xi yi

)
∪

k−1⋃
i=2

ai ci

∪
k−4
2⋃

j=1

v2 j−1v2 j ∪
{
c0vk−3, c1v0, y

0
1a1, x

0
1a0

}
, and

B2 =
(
B0
0 −

{
x0x

0
0 , y0y

0
0

})
∪

(
B2
1 − x1y1

)
∪

k−1⋃
i=2

(
B0
i −

{
xi x

0
i , yi y

0
i

})

∪
k−2
2⋃

j=1

{
y02 j+1a2 j+1, x

0
2 j+1a2 j

}
∪

k−1⋃
i=2

vi−2ci ∪ {a0c0, a1c1}.
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Fig. 5 Gi\B2
i with xi yi ∈ B2
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Fig. 6 Gi\B2
i with xi , yi /∈ V (B2

i )

Clearly, B0 ∪ B2 is an even cycle C . See Fig. 3.
If i is odd, by xi yi ∈ B2

i , there exists a maximal path containing only 2-degree
vertices as inter vertices in the graph Gi\B0

i , say u
0
i · · · yi xi · · · u1i , which corresponds

to an edge u0i u
1
i in the graph Gi\B0

i (see Fig. 4). From x0i xi , y
0
i yi ∈ B0

i , there exist
two maximal paths containing only 2-degree vertices as inter vertices in the graph
Gi\B2

i , say u2i · · · x0i xi x1i · · · u3i and u5i · · · y0i yi y1i · · · u4i , which correspond to u2i u
3
i

and u4i u
5
i , respectively, in the graph Gi\B2

i (see Fig. 5).
If i is even, by xi , yi /∈ V (B2

i ), there exist four maximal paths containing only 2-
degree vertices as inter vertices in the graph Gi\B2

i , say u
0
i · · · x1i xi (maybe u0i = x1i ),

u1i · · · x0i xi (maybe u1i = x0i ), u
2
i · · · y1i yi (maybe u2i = y1i ) and u3i · · · y0i yi , which

correspond to four edges u0i xi , u
1
i xi , u

2
i yi and u

3
i yi , respectively, in the graph Gi\B2

i
(see Fig. 6).

Similarly, by xi , yi /∈ V (B0
i ), there exist four maximal paths containing only 2-

degree vertices as inter vertices in the graph Gi\B0
i , say u

4
i · · · x1i xi (maybe u4i = x1i ),

u5i · · · x0i xi (maybe u5i = x0i ), u
6
i · · · y1i yi (maybe u6i = y1i ) and u7i · · · y0i yi (maybe
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Fig. 7 Gi\B0
i with xi , yi /∈ V (B2

i )

u7i = y0i ), which correspond to four edges u4i xi , u
5
i xi , u

6
i yi and u7i yi , respectively, in

Gi\B0
i (see Fig. 7).

From the construction of �, we know that �\B0 (see Fig. 8) is

(
G1\B0

1 − u01u
1
1

)
∪

k−2
2⋃

j=0

(
G2 j\B2

2 j − {x2 j , y2 j }
)

∪
k−2
2⋃

j=1

(
G2 j+1\B2

2 j+1

−
{
u22 j+1u

3
2 j+1, u

4
2 j+1u

5
2 j+1

})
∪ {

u01b1, u
1
1b0, b1u

0
2, b1u

1
2, u

2
0b0, u

3
0b0

}

∪
k−2
2⋃

j=1

{
u32 j u

2
2 j+1, u

2
2 j b2 j , u

3
2 j+1b2 j , u

5
2 j+1u

1
2 j+2, u

4
2 j+1b2 j+1, u

0
2 j+2b2 j+1, b2 j b2 j+1

}
.

And �\B2 (see Fig. 8) is

(
G1\B2

1 −
{
u21u

3
1, u

4
1u

5
1

})
∪

k−2
2⋃

j=0

(
G2 j\B0

2 j − {x2 j , y2 j }
)

∪
k−2
2⋃

j=1

(
G2 j+1\B0

2 j+1 − u02 j+1u
1
2 j+1

)
∪

{
u41b1, u

5
1u

5
2, b1u

4
2, u

3
1b0, u

7
0u

2
1, u

6
0b0, b0b1

}

∪
k−2
2⋃

j=1

{
u62 j b2 j , u

7
2 j b2 j , b2 j u

1
2 j+1, u

0
2 j+1b2 j+1, b2 j+1u

4
2 j+2, b2 j+1u

5
2 j+2

}
.

If i is odd, because B2
i and B0

i are the desired disjoint matchings ofGi as in Lemma

2.1, Gi\B0
i is 3-edge colorable. Thus there exists a 2-factor, say C0

i , such that each
component is an even circuit and u0i u

1
i is not in the 2-factor C0

i . Similarly, because

Gi\B2
i is 3-edge colorable, there exists a 2-factor C2

i such that each component is an
even circuit and {u2i u3i , u4i u5i } is in the 2-factor C2

i .

If i is even, because Gi\B2
i is 3-edge colorable, there exists a 2-factor C2

i such
that each component is an even circuit and u0i xi u

1
i and u2i yi u

3
i are in the 2-factor
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Fig. 8 �\B0 and �\B2 for even k

C2
i . Because Gi\B0

i is 3-edge colorable, there exists a 2-factor C0
i such that each

component is an even circuit and {u4i xi u5i , u6i yi u7i } is in the 2-factor C0
i .

Then �\B0 has a 2-factor:

C0
1 ∪

k−2
2⋃

j=1

(
C2
2 j+1 −

{
u22 j+1u

3
2 j+1, u

4
2 j+1u

5
2 j+1

})
∪

k−2
2⋃

j=0

(
C2
2 j − {x2 j , y2 j }

)

∪
k−2
2⋃

j=1

{
b2 j u

3
2 j+1, b2 j u

2
2 j , u

3
2 j u

2
2 j+1, b2 j+1u

4
2 j+1, b2 j+1u

0
2 j+2, u

5
2 j+1u

1
2 j+2

}

∪
{
b0u

3
0, b0u

2
0, b1u

0
2, b1u

1
2

}
.

And each component is an even circuit.
Similarly �\B2 has a 2-factor:

k−2
2⋃

j=1

C0
2 j+1 ∪

(
C2
1 −

{
u21u

3
1, u

4
1u

5
1

})
∪

k−2
2⋃

j=0

(
C0
2 j − {x2 j , y2 j }

)
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∪
{
b0u

6
0, b0u

3
1, u

7
0u

2
1, b1u

4
1, u

5
1u

5
2, b1u

4
2

}

∪
k−2
2⋃

j=1

{
u62 j b2 j , u

7
2 j b2 j , u

4
2 j+2b2 j+1, u

5
2 j+2b2 j+1

}
.

And each component is an even circuit.
So �\B0 and �\B2 are 3-edge colorable. Therefore, B0 and B2 are the desired

matchings in� ofLemma2.1. So� = {G;G0,G1, . . . ,Gk−2,Gk−1}has aFulkerson-
cover. �	
Theorem 3.2 Let k be an odd integer. If H ∈ M0,1,2,...,k−2,k−1, then H has a
Fulkerson-cover.

Proof By H ∈ M0,1,2,...,k−2,k−1, assume H = {G;G0,G1, . . . ,Gk−2,Gk−1}.
Since Gi has a Fulkerson-cover, for each i = 0, 1, . . . , k − 1, suppose that
{M1

i , M2
i , M3

i , M4
i , M5

i , M6
i } is the Fulkerson-cover of Gi . Let B2

i be the set of edges
covered twice by {M1

i , M2
i , M3

i } and B0
i be the set of edges which are not covered

by {M1
i , M2

i , M3
i }. Now B2

i ∪ B0
i is an even cycle, and Gi\B2

i and Gi\B0
i can be

colored by three colors. Then B2
i and B0

i are the desired disjoint matchings of Gi as in
Lemma 2.1. By choosing three perfect matchings of Gi , for each i = 0, 1, . . . , k − 1,
we can obtain two desired disjoint matchings B2

i and B0
i such that xi yi ∈ B2

i ∪ B0
i or

xi , yi /∈ V (B2
i ∪ B0

i ). If i is even and i 
= 0, three perfect matchings of Gi are chosen
such that xi , yi /∈ V (B2

i ∪ B0
i ). If i is odd or i = 0, three perfect matchings of Gi are

chosen such that xi yi ∈ B2
i ∪ B0

i . Without loss of generality, assume that xi yi ∈ B2
i

and x0i xi , y
0
i yi ∈ B0

i if i = 0 or i is odd.
Let

B0 =
(
B2
0 − x0y0

)
∪

(
B0
1 −

{
x01 x1, y

0
1 y1

})
∪

k−1⋃
i=2

(
B2
i − xi yi

)

∪
{
y01a1, x

0
1a0, c1v0

}
∪

k−1⋃
i=2

ai ci ∪
k−5
2⋃

j=0

v2 j+1v2 j+2,

If i is odd or i = 0, by xi yi ∈ B2
i , there exists a maximal path containing only

2-degree vertices as inter vertices in the graph Gi\B0
i , say u0i · · · yi xi · · · u1i , which

corresponds to an edge u0i u
1
i in the graphGi\B0

i (see Fig. 4); by x
0
i xi , y

0
i yi ∈ B0

i , there
exist two distinct maximal path containing only 2-degree vertices as inter vertices in
the graph Gi\B2

i , say u2i · · · x0i xi x1i · · · u3i and u5i · · · y0i yi y1i · · · u4i which correspond

to edges u2i u
3
i and u4i u

5
i , respectively, in the graph Gi\B2

i (see Fig. 5).

B2 =
(
B2
1 − x1y1

)
∪

k−1⋃
i=2

(
B0
i −

{
xi x

0
i , yi y

0
i

})
∪

(
B0
0 −

{
x0x

0
0 , y0y

0
0

})
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Fig. 9 {G;G0,G1, . . . ,Gk−2,Gk−1} for odd k

∪ {a1c1} ∪
k−1
2⋃

i=1

{
a2i x

0
2i+1, a2i+1y

0
2i+1

}
∪

k−1⋃
i=2

{vi−2ci }.

See Fig. 9. Clearly, B0 ∪ B2 is an even cycle C .
If i is even and i 
= 0, since xi , yi /∈ V (B2

i ), there exist four maximal paths
containing only 2-degree vertices as inter vertices in the graph Gi\B2

i , say u
0
i · · · x1i xi

(maybe u0i = x1i ), u
1
i · · · x0i xi (maybe u1i = x0i ), u

2
i · · · y1i yi (maybe u2i = y1i ) and

u3i · · · y0i yi (maybe u3i = y0i ), which correspond to edges u0i xi , u
1
i xi , u

2
i yi and u3i yi ,
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respectively, in the graphGi\B2
i (See Fig. 6). Similarly, by xi , yi /∈ V (B0

i ), there exist
four maximal paths containing only 2-degree vertices as inter vertices in the graph
Gi\B0

i , say u4i · · · x1i xi (maybe u4i = x1i ), u
5
i · · · x0i xi (maybe u5i = x0i ), u

6
i · · · y1i yi

(maybe u6i = y1i ) and u7i · · · y0i yi which correspond to edges u4i xi , u
5
i xi , u

6
i yi and

u7i yi ,respectively, in the graph Gi\B0
i (see Fig. 7).

If k = 1, then H = G0 which has a Fulkerson-cover.
If k ≥ 2, we will prove H\B0 and H\B2 are 3-edge colorable in the following.
From the construction of H , one has that H\B0 (see Fig. 10) is

(
G0\B2

0 −
{
u20u

3
0, u

4
0u

5
0

})
∪

(
G1\B0

1 − u01u
1
1

)

∪
k−1
2⋃

j=1

{
u22 j b2 j , u

3
2 j+1b2 j , u

2
2 j+1u

3
2 j

}

∪
k−3
2⋃

j=1

{
u42 j+1b2 j+1, u

5
2 j+1u

1
2 j+2, u

0
2 j+2b2 j+1, b2 j b2 j+1

}

∪
{
u50c0, u

4
0b0, b0c0, bk−1c0, u

1
1b0, u

0
1b1, u

0
2b1, u

1
2b1

}
∪ Q0 ∪ Q1,

where Q1 = ⋃ k−3
2
j=1(G2 j+1\B2

2 j+1 − {u22 j+1u
3
2 j+1, u

4
2 j+1u

5
2 j+1}) and Q0 =

⋃ k−1
2
j=1(G2 j\B2

2 j − {x2 j , y2 j }). And H\B2 (see Fig. 10) is

(
G1\B2

1 −
{
u21u

3
1, u

4
1u

5
1

})
∪

(
G0\B0

0 − u00u
1
0

)

∪
{
u51u

5
2, u

4
1b1, u

4
2b1, u

2
1c0, u

3
1b0, b0c0, u

0
0b0, c0b1

}

∪
k−1
2⋃

j=1

(
(G2 j\B0

2 j − {x2 j , y2 j })

∪
{
u62 j b2 j , u

1
2 j+1b2 j , u

7
2 j b2 j

})

∪
k−3
2⋃

j=1

((
G2 j+1\B0

2 j+1 −
{
u02 j+1u

1
2 j+1

})

∪
{
u02 j+1b2 j+1, u

4
2 j+2b2 j+1, u

5
2 j+2b2 j+1

})
.

If i is odd or i = 0, because Gi\B0
i is 3-edge colorable, there exists a 2-factor

C0
i such that each component is an even circuit and u0i u

1
i is not in the 2-factor C0

i .

Because Gi\B2
i is 3-edge colorable, there exists a 2-factor C2

i such each component
is an even circuit and u2i u

3
i , u

4
i u

5
i are in the 2-factor C

2
i .
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Fig. 10 H\B0 and H\B2 with odd k

If i is even and i 
= 0, because Gi\B2
i is 3-edge colorable, there exists a 2-factor

C2
i such each component is an even circuit and two paths with length two u0i xi u

1
i and

u2i yi u
3
i are in the 2-factor C2

i . Similarly, because Gi\B0
i is 3-edge colorable, there

exists a 2-factor C0
i such each component is an even circuit and u4i xi u

5
i , u

6
i yi u

7
i are in

the 2-factor C0
i .

Then H\B0 (see Fig. 10) has a 2-factor:

(
C2
0 −

{
u40u

5
0, u

2
0u

3
0

})
∪ C0

1 ∪
k−3
2⋃

j=1

(
C2
2 j+1 −

{
u22 j+1u

3
2 j+1, u

4
2 j+1u

5
2 j+1

})
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∪
k−1
2⋃

j=1

(
C2
2 j − {x2 j , y2 j }

)
∪

k−1
2⋃

j=1

{
b2 j u

3
2 j+1, b2 j u

2
2 j , u

3
2 j u

2
2 j+1

}

∪
k−3
2⋃

j=1

{
b2 j+1u

4
2 j+1, b2 j+1u

0
2 j+2, u

5
2 j+1u

1
2 j+2

}
∪

{
b0u

4
0, b1u

0
2, b1u

1
2, b0c0, u

5
0c0

}
.

and each component is an even circuit. H\B2 has a 2-factor:

C0
0 ∪

(
C2
1 −

{
u21u

3
1, u

4
1u

5
1

})
∪

k−1
2⋃

j=1

(
(C0

2 j − {x2 j , y2 j }) ∪
{
u62 j b2 j , u

7
2 j b2 j

})

∪
k−3
2⋃

j=1

C0
2 j+1 ∪

k−3
2⋃

j=1

{
u42 j+2b2 j+1, u

5
2 j+2b2 j+1

}

∪
{
c0u

2
1, b0c0, b0u

3
1, u

5
1u

5
2, u

4
1b1, u

4
2b1

}

And each component is an even circuit.
So H\B0 and H\B2 are 3-edge colorable. Therefore, B0 and B2 are the desired

matchings of Lemma 2.1 and H = {G;G0,G1, . . . ,Gk−2, Gk−1} has a Fulkerson-
cover. �	

From Theorems 3.1 and 3.2, we get the Theorem 1.3 that every graph in
M0,1,2,...,(k−1) has a Fulkerson-cover.

4 Remark on Treelike Snarks

The families of graphs E0,1,...,(k−1) and M0,1,...,(k−1) for k ≥ 2, which are constructed
by Chen [2], are set of graphs having all vertices not in H0, H1, . . . , Hk−1 and not in
ai , bi , ci on a path. Abreu et al. [1] proposed Treelike snarks which generalize this
idea by considering an arbitrary tree instead of a path, but the graphs Hi are all copies
of the Petersen graph minus an edge. They proved that all such Treelike snarks have
excessive index at least five.

In this paper, we prove that every graph in M0,1,2,...,k−2,k−1 has a Fulkerson-cover.
Since the Petersen graph has a Fulkerson cover, as a directive corollary of this result,
each graph in the subclass of treelike snarks obtained by considering a path instead of
an arbitrary tree has a Fulkerson cover. So we give a conjecture as follows:

Conjecture 4.1 (Conjecture) Every Treelike snarks proposed in [1] has a Fulkerson
cover.
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