
Bull. Iran. Math. Soc. (2018) 44:269–275
https://doi.org/10.1007/s41980-018-0018-9

ORIGINAL PAPER

Finite Symmetric Graphs with 2-Arc-Transitive
Quotients: General Affine Case

M. R. Salarian1

Received: 7 November 2016 / Accepted: 16 October 2017 / Published online: 26 February 2018
© Iranian Mathematical Society 2018

Abstract Let G be a finite group and � a G-symmetric graph. Suppose that G is
imprimitive on V (�) with B a block of imprimitivity and B := {Bg : g ∈ G} is a
system of imprimitivity of G on V (�). Define �B to be the graph with vertex set B,
such that two blocks B,C ∈ B are adjacent if and only if there exists at least one edge
of � joining a vertex in B and a vertex in C . Set v = |B| and k := |�(C) ∩ B| where
C is adjacent to B in �B and �(C) denotes the set of vertices of � adjacent to at least
one vertex in C . Assume that k = v − p ≥ 1, where p is an odd prime, and �B is
(G, 2)-arc-transitive. In this paper , we show that if the group induced on each block
is an affine group then v = 6.
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1 Introduction

Let G be a finite group. A graph � is called G-symmetric if � admits G as a group of
automorphisms acting transitively on the set of vertices and the set of arcs of �, where
an arc is an ordered pair of adjacent vertices. Suppose that G is imprimitive on V (�)

with B a block of imprimitivity
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B := {Bg : g ∈ G}

is a system of imprimitivity of G on V (�). Define �B to be the graph with vertex set
B, such that two blocks B,C ∈ B are adjacent if and only if there exists at least one
edge of � joining a vertex in B and a vertex in C . We call �B the quotient graph of �

with respect to B. A graph � is called (G, 2)-arc-transitive if it admits G as a group
of automorphisms acting transitively on the set of vertices and the set of 2-arcs of �,
where a 2-arc is an oriented path of length two. Denote by GB the setwise stabilizer
of B in G, and define H := G�B(B)

B to be the quotient group of GB relative to the
kernel of the induced action of GB on the set of blocks of B adjacent to B in �B. We
keep these notation in this paper. In [3], the following question was asked:

Question 1.1 Under the assumption above, when is�B a (G, 2)-arc-transitive graph?

This question is studied in [3–8] and [9]. In this paper, we investigate the question
above when H is an affine group, see [2] for definition of an affine group and other
background in permutation groups. To state ourmain results, we need some definitions
and notation.

Throughout this paper, �B is a connected (G, 2)-arc-transitive graph with valency
b. Let B and C be two vertices in �B such that C is adjacent to B. Set v = |B| and
k := |�(C) ∩ B|, where �(C) denotes the set of vertices of � adjacent to at least
one vertex in C . In this paper, we assume that k = v − p ≥ 1, for some odd prime
p, and H is the affine group AGLn(q). In [7], we have shown that if q = 2, then
v = 6. In this paper, we consider the general case and shall prove theorem below
which improves our results in [7]. In fact, in this paper, we show that H cannot be a
2-transitive subgroup of AGLn(q) for odd prime q.

Theorem 1.2 Assume that k = v − p ≥ 1, for some odd prime p, and H is an affine
group. Then, q = 2 and v = 6.

Theorem 1.2 shows that the graph which appears in [9, Theorem 3(e)] is the only
graph satisfying the conditions of Theorem 1.2.

2 Proof of the Main Theorem

In this section, we prove Theorem 1.2. Therefore, we keep the assumptions in 1.2.
We fix B ∈ B. Let U := �B(B) be the set of blocks of B adjacent to B in �B. For
α ∈ B, let �B(α) be the set of blocks in U containing at least one neighbour of α in
�, and let r := |�B(α)|. Since � is G-symmetric and B is G-invariant, r, v and k are
independent of the choice of α, B, and C , respectively, for each C ∈ U . Denote by
GB the setwise stabilizer of B in G, and define H := G�B(B)

B to be the quotient group
of GB relative to the kernel of the induced action of GB on U .

Our strategy to prove Theorem 1.2 is to show that the minimal normal subgroup
of H is 2-group. Then, Theorem 1.2 will follow from the main results in [7]. By
our assumption, H is a 2-transitive affine group on U . Therefore, we can control the
structure of the minimal normal subgroup of H and the parameter b. This has been
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done in [9]. In fact, in [9] necessary conditions for �B to be (G, 2)-arc-transitive were
obtained in the case when k = v − p ≥ 1, where p is an odd prime. In fact, �, �B,
and H satisfy the conditions in the seventh row of Table 1 in [9]. Therefore, with our
assumptions, the following theorem follows from the seventh row of Table 1 in [9].

Theorem 2.1 We have sp + 1 = b = qn ≥ 2, where s ≥ 2, p, and q are primes and
v = qm p, where n − 1 ≥ m ≥ 1.

By Theorem 2.1, we get that |U | = sp+1 = qn for some prime q and the minimal
normal subgroup of H is an elementary abelian group of order qn .We keep the notation
in Theorem 2.1.

Now, set

U := {C,C1, . . . ,Csp}, W := �(C) ∩ B,Wi = �(Ci ) ∩ B, for i = 1, . . . , sp.

Since in this paper, we investigate [9, Theorem 1.1(f)], our parameters are as in the
last row [case (f)] of Table 1 in [9]. In fact, a = qm , v = ap, b = |U | = sp+ 1 = qn ,
r = qn(a−1)/a and λ = |W ∩Wi | = p(a−2)+(b−a)/as, for i = 1, 2, . . . , sp. We
have also that 2 ≤ s ≤ a − 1 ≤ p − 2. We have that |B\W | = p, by our assumption.
Let HC be the stabilizer of C in H . Then, HC leaves W and B\W invariant. Since
�B is (G, 2)-arc-transitive, H is 2-transitive on U , and therefore, HC is transitive on
U\{C}. In fact,�,�B, and H satisfy the conditions in the seventh row of Table 1 in [9].
Therefore, we have that H = N � HC is an affine group (isomorphic to a subgroup of
AGL(n, q)), where N ∼= Z

n
q is an elementary abelian group of order sp+ 1 = qn and

is the minimal normal subgroup of H acting regularly on U with CH (N ) = N , and
HC is isomorphic to a subgroup of GLn(q) and acts transitively on subgroups of order
q in N . We note that since the case q = 2 is considered in [7], so we may assume that
q is an odd prime. Since sp = qn − 1, we get that HC is of even order. Let P(N ) be
the set of subgroups of order q in N .

Since U\{C} has exactly sp element and HC is transitive on it, sp divides the order
of HC . Since p is a prime, HC contains an element of order p, say, x and an involution
say, z. Define

M := 〈x, z〉 ≤ HC , P := 〈N , x, z〉 = N � M ≤ H, X := 〈x〉.

Lemma 2.2 The following hold:

(i) CN (x) = 1 and X has s orbit on U\{C}.
(ii) X fixes W and B\W setwise and is fixed-point-free on each of them.
(iii) X is regular on B\W.

Proof (i) By coprime action (see [1, Sect. 24]), we have N = CN (X) ⊕ [N , x]. Let
I be the set of elements in U fixed by X . Then, for y ∈ CN (x), we have Cy ∈ I .
If Ci ∈ I , then there is y ∈ N , such that Ci = Cy which implies that y ∈ CN (x).
Hence, |I | = |CN (x)|.
Assume that |I | 
= 1. We note that for each {Ci ,C j } ⊂ I , i 
= j , we have B\Wi

and B\Wj are sets with p element and x acts on each of them. This gives us
that x acts trivially on B\(Wi ∩ Wj ). In fact, x acts trivially on B\(⋂Ci∈I Wi ).
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Let α ∈ ⋂
Ci∈I Wi and l be the number of orbits of X on U\I . Then, we have

r = |�B(α)| = |I | + l. On the other hand, we have |I | + lp = |U | = qn . These
give us that r − l = qn − lp which implies that qn − qn−m − l = qn − lp. Now,
we have l(p− 1) = qn−m which implies that q = 2 is even, a contradiction to our
assumption. This contradiction shows that

⋂
Ci∈I Wi = ∅, and then, x is trivial on

B, a contradiction. Therefore, |I | = 1 = |CN (x)| and X has s orbits on U\{C}.
Now i) holds.

(ii) Since X ≤ HC , it fixes W and B\W setwise. If a vertex α ∈ B\W is fixed
by a non-identity element of X , then it is fixed by every non-identity element
of X . Since by (a), X has s orbits on U\{C}, we get that p divides r . However,
r = qn −qn−m , and p does not divide r . Therefore, X is fixed-point-free on B\W .
A similar argument shows that X is fixed-point-free on W .

(iii) Since |X | = |B\W | = p is a prime and X acts fixed-point-freely on B\W , X
must be regular on B\W and the Lemma holds. �

Lemma 2.3 No nonempty subset of W is N invariant.

Proof Suppose to the contrary that∅ 
= Y ⊆ W is N invariant. Since N is regular onU ,
for each Ci , there exists a unique element gi ∈ N such that Cgi = Ci . Hence, Wgi =
�(Ci ) ∩ B. Since Y is N invariant, we have Y = Y gi ⊆ Wgi for i = 1, 2, . . . , sp,
which implies that qn − 1 = sp = r − 1, a contradiction. �
Lemma 2.4 N X is transitive on B.

Proof Let αN be an N orbit on B, where α ∈ B, and set A = ∪g∈N X (αN )g . Since
N � N X ≤ H , A ⊆ B and N X is transitive on A; thus, both A and B\A are N X
invariant. In particular, both A and B\A are N invariant and X invariant. Since A 
= ∅,
by Lemma 2.3, we have A ∩ (B\W ) 
= ∅. On the other hand, by Lemma 2.2, X is
transitive on B\W . Since A is X invariant and A ∩ (B\W ) 
= ∅, it follows that
B\W ⊆ A. Now that B\A ⊆ W and B\A is N invariant, by Lemma 2.3, B\A = ∅,
and hence, N X is transitive on B = A. �

Let α ∈ B, and set

F := {(αN )g : g ∈ X}.

Since N is normal in P , F is a system of imprimitivity for P . Then, |αN | = qm = a,
|F | = p, and F is the set of all N orbits on B.

Lemma 2.5 We have |αN ∩ (B\W )| = 1. In fact, each element of B\W is in a unique
element of F and each element of F contains a unique element of B\W.

Proof Let h ∈ B\W . SinceF is a system of imprimitivity for P , there exists (αN )g ∈
F , g ∈ X , such that (αN )g ∩ (B\W ) 
= ∅ and we may assume that h ∈ αN . Since
X fixes B\W setwise and is transitive on B\W , we have hX = B\W . By this and
the fact |F | = p = |B\W |, we get that αN ∩ (B\W ) = {h}. This shows that each
element of B\W is in a unique element ofF and each element ofF contains a unique
element of B\W . �
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For each 1 
= g ∈ H , we define Bg to be the set of all elements in B fixed by g.

Lemma 2.6 For 1 
= y ∈ N, we have |By | = a(qn−m − 1)/s. Furthermore, |By ∩
(B\W )| = (qn−m − 1)/s

Proof Since N has p orbits on B, by Burnside’s Counting Theorem, we have p =
(ap+ sp|By |)/qn and then |By | = a(qn−m −1)/s. Since N acts on By and each orbit
of N on By has a elements, by Lemma 2.4, we get that |By ∩ (B\W )| = (qn−m −1)/s
and the lemma is proved. �
Lemma 2.7 [z, x] 
= 1.

Proof Assume [z, x] = 1. Since B\W is of order p and M invariant, we get that z acts
trivially on B\W . Since [z, N ] 
= 1, we get that there is y ∈ N , such that yz = y−1.
Since N is regular on U , we may assume that Cy = C1, and then, zy acts trivially on
B\W1. This gives us that 〈z, zy〉 acts trivially on B\(W ∪W1). We note that yz = y−1

which implies that zy = y−2z. This implies that y acts trivially on B\(W ∪ W1).
Therefore, |By | ≥ |B\(W ∪ W1)|. We have |B\(W ∪ W1)| = 2p + λ − sp. Now, by
this and Lemma 2.6, we get that sp ≥ ap, which is a contradiction and the Lemma
holds. �
Lemma 2.8 If 〈z, x〉 ∼= D2p, then s = q − 1.

Proof Assume s 
= q − 1. Since sp = qn − 1, we get that s = (q − 1) f where f 
= 1
and f divides (qn − 1)/(q − 1). Set N1 = CN (z) and let |N1| = qn1 . By Lemma
2.7, we get that N1 
= 1. Since all p involutions in 〈z, x〉 ∼= D2p are conjugate and

by Lemma 2.2(i) CN (X) = 1, we get that N = N1 ⊕ (N1)
x ⊕ · · · ⊕ (N1)

x p−1
. This

implies that pn1 = n.
Let O be an orbit of X on B. Then |Bz ∩ O| = 1. This tells us that |Bz| = a = qm

and |Bz∩(B\W )| = 1. Now, by Lemma 2.5, we get that Bz is an N orbit. Furthermore,
since z inverts each element in [N , z], we get that [z, N ] is trivial on Bz . This shows
that n1 = m, and then, pm = n.

Let R be an orbit of X on P(N ). Then, |R ∩ P(N1)| = 1. By this and Lemma
2.2(i), we get that (qm − 1)/(q − 1) = |P(N1)| ≤ s/(q − 1). We note that by Lemma
2.2(i), we conclude that X has s/(q − 1) orbits on P(N ) and by our assumption
s ≤ a − 1 = qm − 1. Hence, s = a − 1, and then, m ≥ 2. Now, we have that
p = (q pm − 1)/(qm − 1) = q(p−1)m + · · · + q + 1 which implies that q2(p−1) ≤
q(p−1)m < p. However, since p is odd, we have p < 2(p − 1), a contradiction. Now,
the Lemma is proved. �

Let y be an element of order q in N and R1 = C 〈y〉 be the orbit of 〈y〉 containing
C . If s = q − 1, then N is transitive on U and X is transitive on P(N ). Therefore,
⋃

l∈X Rl
1 = U and Rxi

1 ∩ Rx j

1 = ∅.
Lemma 2.9 〈z, x〉 ∼= Sp.

Proof Assume that 〈z, x〉 ∼= D2p. Then, by Lemma 2.8, we have s = q − 1 and
xz = x−1. By Lemma 2.7, we get that there is y ∈ N of order q, such that [z, y] = 1.
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Let R1 = C 〈y〉 be the orbit of 〈y〉 contacting C . Then, z acts trivially on R1. By
coprime action, there is subgroup Y1 ≤ N of order q, such that Y z

1 = Y1 and y /∈ Y1.
We may assume that R2 = Rx

1 is the orbit of Y1 on U containing C . We note that

(Rx−1

1 ) ∩ R2 = ∅. However, z acts on R2, and since xz = x−1, we should have

Rz
2 = Rx−1

1 = R2, a contradiction. This and Lemma 2.7 show that 〈z, x〉 ∼= Sp and
the Lemma holds. �
Lemma 2.10 We have |By | = a, |By ∩ (B\W )| = 1 and m = n − 1.

Proof Set D = 〈z, x〉. By Lemma 2.9, we have D ∼= Sp. Therefore, the stabilizer of
any element of P(N ) in D is isomorphic to Sp−1. We note that D ≤ HC . Now, let
Y = 〈y〉 ∈ P(N ) and D1 be its stabilizer in D. Then, D1 acts on By∩(B\W ). We note
that D1 acts also onW and B\W . Since D1 ≤ D ∼= Sp, we get that |By ∩(B\W )| = 1
or p− 1. This gives us that |By | = (p− 1)a or a. By this and Lemma 2.6, we get that
|By | = a, and then, n − 1 = m. Therefore, the lemma holds. �

Let R1 = {C,C1, . . . ,Cq−1} andWi = �(Ci )∩B, i = 1, 2, . . . , q−1. By Lemma
2.10, we may assume that {α} = (B\W ) ∩ By . Then, we have the following lemma.

Lemma 2.11 U\R1 = �B(α) .

Proof Since α ∈ By and α /∈ W , we get that R1∩�B(α) = ∅. We note that by Lemma
2.10, we havem = n−1 which implies that a = qn−1. Now, for i = 1, . . . , q −1, we
have |W\(W ∩Wi )| = k−λ = ap− p−(p(a−2)+(qn −a)/as) = p−(q−1)/s =
p − 1. By this and since α /∈ Wi , we get that B\(W ∪ {α}) ⊂ Wi . This gives us that
U\R1 = �B(α) and the lemma holds. �

Now, we can proof Theorem 1.2.

Proof By Lemma 2.11, we have r = q(p − 1) = qn − qn−m which is impossible.
Therefore, q = 2 and Theorem 1.2 follows from the main result in [7]. �
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