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Abstract
To date, most studies of fire severity, which is the ecological damage produced by a fire across all vegetation layers in an 
ecosystem, using remote sensing have focused on wildfires and forests, with less attention given to prescribed burns and 
treeless vegetation. Our research analyses a multi-decadal satellite record of fire severity in wildfires and prescribed burns, 
across forested and treeless vegetation, in western Tasmania, a wet region of frequent clouds. We used Landsat satellite 
images, fire history mapping and environmental predictor variables to understand what drives fire severity. Remotely-sensed 
fire severity was estimated by the Delta Normalised Burn Ratio (ΔNBR) for 57 wildfires and 70 prescribed burns spanning 
25 years. Then, we used Random Forests to identify important predictors of fire severity, followed by generalised additive 
mixed models to test the statistical association between the predictors and fire severity. In the Random Forests analyses, mean 
summer precipitation, mean minimum monthly soil moisture and time since previous fire were important predictors in both 
forested and treeless vegetation, whereas mean annual precipitation was important in forests and temperature seasonality was 
important in treeless vegetation. Modelled ΔNBR (predicted ΔNBRs from the best-performing generalised additive mixed 
model) of wildfire forests was higher than modelled ΔNBR of prescribed burns. This study confirms that western Tasmania 
is a valuable pyrogeographical model for studying fire severity of wet ecosystems under climate change, and provides a 
framework to better understand the interactions between climate, fire severity and prescribed burning.
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1  Introduction

Fire severity represents the magnitude of the ecological 
changes produced by a fire across all vegetation layers in 
an ecosystem, as opposed to fire intensity, which measures 
the energy released by a fire (sensu [73]). Conventionally, 
fire severity has been estimated from direct observations 
on the burnt ground by assessing canopy and stem scorch, 
plant mortality and soil loss [75]. However, in the last few 
decades, there has been increased access to remotely-sensed 
data (multispectral satellite images) suitable for assessing 
fire severity [38, 144, 166]. Multispectral images show 
changes in the reflectance of burnt areas, and these can be 

used to understand environmental drivers that influence fire 
severity [90, 164].

Fire severity is influenced by local and regional envi-
ronmental drivers that interact at various spatio-temporal 
scales. For example, rainforests produce abundant above-
ground biomass but, because they mostly remain wet, they 
only undergo high-severity fires after protracted drought [11, 
27]. In contrast, ecosystems such as dry forests and savannas 
have enough aboveground biomass and recurrent dry peri-
ods to burn at varying fire severities [17, 117]. In addition, 
weather influences fire severity from a seasonal to an hourly 
scale through changes in humidity, precipitation, tempera-
ture and wind [18, 83]. For instance, in south-east Australia, 
vegetation begins to dry throughout late spring and early 
summer, while hot days with strong, north-westerly gusts 
are frequent, which, in the presence of ignitions, can lead 
to high-severity fires that spread rapidly [28]. Furthermore, 
fire severity is affected by environmental drivers that are 
temporally stable, such as topography [45].
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Most studies of drivers of fire severity that have used 
satellite images have been limited in scale and centred on a 
single fire [82, 154, 164], a small set of fires occurring over 
a short timespan [6, 106, 155] or a fixed vegetation type, 
usually forests [35, 155]. The few studies that have focused 
on multiple fires have tended to consider the influence of 
a small number of environmental drivers on fire severity, 

commonly climate, topography, vegetation and weather 
[100, 106, 111, 114]. Moreover, few studies have investi-
gated the drivers of fire severity in prescribed burns across 
forested and non-forested vegetation [6, 30, 154, 162].

The temperate Australian island of Tasmania, and espe-
cially western Tasmania, is an important study system for the 
response of vegetation to fire (Fig. 1a–c) [68, 171]. Fire is the 

Fig. 1   The study area in western Tasmania. (a) All 127 fires classified by aggregated vegetation (forested or treeless) in the Tarkine and the Tas-
manian Wilderness World Heritage Area (TWWHA). The two fires shown in panels (d) and (e) are highlighted. (b) Major vegetation types. (c) 
Mean annual precipitation (mm) and elevation (m above mean sea level). (d, e) Examples of ΔNBR computed using Landsat images (left), and 
the redigitised fire boundaries by aggregated vegetation (right). (d) Mount Castor wildfire and (e) Dempster Plains North prescribed burn
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only significant source of disturbance across western Tasmania 
and creates landscapes consisting of complex, small-scale mosa-
ics of fire-adapted and fire-sensitive plant communities [49, 97]. 
Such spatial variation of post-fire landscapes, also influenced by 
different lengths of fire intervals, is known as pyrodiversity [99]. 
In western Tasmania, this pyrodiversity is partly driven by light-
ning fires, which have become the primary source of ignitions 
since the 2000s [142]. Although it is uncertain whether lightning 
has increased in western Tasmania in the last few decades, there 
remains evidence that lightning-ignited fires and total area burnt 
are increasing [16, 142]. Another feature of the pyrodiversity of 
western Tasmania is anthropogenic fires, including accidental 
ignitions and prescribed burning, which creates barriers to or 
reduces the spread and severity of wildfires [51, 78]. Indeed, 
Tasmania is a unique ecological system for pyrogeographical 
studies because of its multi-dimensional fire regimes and com-
plex landscapes with various vegetation types.

This study aimed at identifying the main environmental 
drivers (predictor variables) of fire severity of wildfires and 
prescribed burns, in forested and treeless vegetation, in west-
ern Tasmania. We used multispectral Landsat (Land Satellite, 
United States Earth Observation program; [85]) images to 
estimate, through a spectral index (Delta Normalised Burn 
Ratio; [75]), the severity of a 25-year sample of fires. We then 
used these data to answer the questions: (1) what are the most 
important environmental drivers that affect fire severity?, and 
(2) can we validate with remote sensing that forest wildfires 
are generally more severe than prescribed burns? To date, it 
has been challenging to answer these questions in western 
Tasmania using satellite images because of the high frequency 
of clouds [138]. Our study is novel in that we determined 
the relative importance of a range of potential environmental 
drivers of fire severity across forested and treeless vegetation, 
for a sample containing wildfires and prescribed burns, in a 
region where clear satellite images are scarce.

2 � Methods

2.1 � Environmental Context of the Study Area, 
and Predictor Variables

The study area includes the Tasmanian Wilderness World 
Heritage Area in western Tasmania, plus the adjacent Tarkine 
region in north-west Tasmania (Fig. 1a) [8, 9]. This area con-
tains one of the largest undeveloped temperate landscapes 
in the Southern Hemisphere [172] and is predominantly 
reserved, although it also contains significant areas of com-
mercial forestry [7]. The region is mountainous and has a cool 
and wet climate, with approximately 80% more precipitation 
in winter (June–August) than in summer (December–Feb-
ruary) [12, 13]. The contemporary climate of the region is 
strongly shaped by the interaction of westerly cyclonic winds 

and the rugged terrain of the island [49], leading to pro-
nounced climate gradients, with mean annual precipitation 
ranging from slightly over 1000 mm in north-west Tasmania 
to over 3500 mm in montane areas of the central west (Fig. 1c; 
Figure S1) [13]. Short heatwaves during the summer and dry 
lightning can create conditions favourable for fire [50].

The combination of varied climate, geology and topogra-
phy, and the practice of prescribed burning, is reflected in a 
complex mosaic of plant communities, including fire-adapted 
eucalypt forests and sedgelands, and pyrophobic cool-temper-
ate rainforests and wetlands (Fig. 1b) [128]. Another impor-
tant feature of western Tasmania is the abundance of organic 
soils, epitomised by moorlands dominated by tussock-form-
ing sedges, especially the highly pyrogenic Gymnoschoenus 
sphaerocephalus, or buttongrass [69]. Sphagnum bogs are 
present but uncommon [165]. Buttongrass moorlands remain 
a priority in prescribed burning in western Tasmania due to 
their high flammability and rapid growth after rain [98]. Fire 
management is a prominent issue in the region, especially 
since the 2016 fire season, where lightning fires propagated 
quickly and damaged permanently fire-sensitive plant com-
munities and Aboriginal heritage sites [124].

Considering the environmental characteristics and pyro-
diversity of western Tasmania, and our knowledge of fire 
ecology, we identified a priori 42 ecologically relevant 
predictor variables that could influence fire severity in the 
study area. Our predictor variables were classified into four 
groups: six fire-related attribute variables, 19 bioclimatic 
variables, six fire-weather variables and 11 environmental 
and topographic variables (Table 1; Table S2).

The bioclimatic raster variables, from the WorldClim 
Global Climate dataset, are the variable averages for 
1970–2000 [47], while the fire-weather raster variables, 
from the Bureau of Meteorology Atmospheric high-reso-
lution Regional Reanalysis for Australia [143], are for the 
years 1990–2019. For the fire-weather variables, for each 
month from 1990 to 2016 and each pixel, we calculated the 
mean, mean maximum and mean minimum Forest Fire Dan-
ger Index (FFDI) and soil moisture [95]. Most rasters from 
all groups of variables had a small number of pixels with 
missing data, either inherited from the original raster data 
sources, or created during the rasterisation of vector layers to 
help increase processing speed later in the sampling process. 
Hence, we applied a three-by-three neighbourhood focal to 
all rasters to impute missing values using the focal function 
(mean) from the raster R package (version 3.3.13; [64]).

2.2 � Fire History and Fire Selection

We used the Tasmanian fire history dataset [37] to select the 
boundaries of all prescribed burns and wildfires (ignition 
cause different than prescribed) in the study area. This data-
set was limited because it did not provide fire end dates and 
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did not contain fire isochrones (lines that show the growth 
of the fires throughout time).  Fire perimeters in the fire 
history dataset were collected by a variety of means, includ-
ing aerial photographic interpretation, and active aerial and 

on-ground surveys, and may be of varying accuracy, so 
efforts were made to refine these perimeters to actual burnt 
area as detected by satellite (see below). The study area is 
remote, with few roads, so suppression effort is low and most 

Table 1   Predictor variables used in the Random Forests analyses. 
“Round” indicates whether the predictor was selected as important 
in the three rounds of Random Forests: F is forested and T is tree-
less. The predictors selected in the third round of Random Forests are 
highlighted in bold. Acronyms and abbreviations: The LIST is The 
Land Information System Tasmania; BARRA​ is the Bureau of Mete-

orology Atmospheric high-resolution Regional Reanalysis for Aus-
tralia [143]; DEM is the 25-m Digital Elevation Model of Tasmania 
[149]; DPIPWE is the Tasmanian Department of Primary Industries, 
Water and Environment; FFDI is Forest Fire Danger Index; World-
Clim 2 is WorldClim Global Climate Data version 2 [47]

Predictor variable Description Round

1 2 3

Fire-related attributes
Distance to the closest road (30-m pixel resolution) Tasmanian transport segments dataset [150]. Two classes: near 

(< 1 km) and distant (≥ 1 km)
Fire type Fire history dataset [37]. Two classes: wildfire and prescribed 

burn
Fire type of previous fire Fire history dataset [37]. Three classes: wildfire, prescribed burn 

and unknown
Land tenure Land tenure dataset [151, 153]. Three classes: non-protected, 

forestry and protected
F&T F&T

Non-aggregated vegetation Vegetation map of Tasmania [152]. Five classes: dry eucalypt 
forest; rainforest; wet eucalypt forest; buttongrass, wetland and 
peatland; and scrub, heathland and coastal

Time since previous fire (years) Fire history dataset [37]. Range: 0.1–116.3 F&T F&T F&T

Bioclimatic variables (WorldClim 2; pixel resolution: 695 m by 925 m)
Annual mean diurnal range (°C) Range: 6.2–10.2 F&T T
Maximum temperature of warmest month (°C) Range: 14.9–22.2 (F); 14.9–21.9 (T) F&T
Mean annual precipitation (mm) Range: 797.3–3,021.1 (F); 831.1–3,021.1 (T) F&T F F
Mean temperature of warmest quarter (°C) Range: 8.6–16.4 (F&T)
Precipitation of driest quarter (mm) Range: 131.2–508.4 (F); 136.1–508.4 (T) F&T F&T F&T
Temperature seasonality (standard deviation; °C) Range: 2.2–3.3 (F&T) F&T F&T T

Fire-weather variables (calculated from BARRA; pixel resolution: 1.1 km by 1.5 km)
Mean maximum monthly FFDI Range: 0.4–15.4 (F); 0.4–14.6 (T) F&T
Mean minimum monthly soil moisture (%) Range: 3.6–39.5 (F&T) F&T F&T F&T
Mean monthly FFDI Range: 0.1–4.1 (F&T) F&T
Mean monthly soil moisture (%) Range: 6.4–41.7 (F&T) F&T

Environmental and topographic variables
Distance to the closest river/lake (30-m pixel resolution) Tasmanian hydrographic area dataset [147]. Two classes: near 

(< 1 km) and distant (≥ 1 km)
Eastness Calculated from DEM

Range: −1 (West)–1 (East)
Northness Calculated from DEM

Range: −1 (South)–1 (North)
Slope (°) Calculated from DEM

Range: 0–71.2 (F); 0–70.1 (T)
Soil type Tasmanian dominant soil orders [148]. Four classes: dermosol, 

kandosol, organosol and tenosol
Topographic position index (m) Calculated from DEM

Range: −30.2–27.4 (F); −17.2–21.8 (T)
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boundaries represent natural meteorological and topographi-
cal boundaries, rather than firefighting control lines. In the 
Tasmanian Wilderness World Heritage Area, we selected 
fires ≥ 100 ha from 2000 to 2016 because, due to the una-
vailability of more frequent overpasses afforded by Landsat 
7, the quality of available satellite images before the 2000s 
was poor, with frequent clouds, cloud shadows and haze. 
Conversely, for the Tarkine, due to the larger number of fires, 
we selected fires ≥ 1000 ha from 1990 to 2016. We excluded 
fires in the Tarkine from before the 1990s due to the scarcity 
of Landsat images before this time. 

Next, we used the EarthExplorer online database (EROS 
2017–2020) to search and download multispectral Landsat 
images (30-m pixel resolution) of the selected fires. For each 
fire, we endeavoured to find the best available pre- and post-
fire image, as close as possible in time to the ignition date, but 
ensuring that, at the time when the post-fire image was taken, 
the fire had finished burning (fire scar in the image matched or 
partially matched the fire boundary). It was important to select 
post-fire images soon after the fire to capture the fire scar with 
the maximum accuracy before vegetation regrowth or recovery 
begins (initial assessment sensu [75]), although it was often 
only possible to select post-fire images after or during the next 
growing season (extended assessment sensu [75]). Besides, to  
minimise seasonal (e.g. albedo) and phenological (e.g. tree 
flowering, leaf shedding) effects, pre- and post-fire images 
from the same time of year (e.g.  summer) were preferred, 
although not necessarily from the same time of year as the fire 
ignition date (Table S1) [25]. This meant that, sometimes, we 
selected a pre- or post-fire image further back or later in time, 
respectively, from the fire ignition date, so both images were 
cloud-free and from the same season. Also, we verified that no 
other fires occurred within the fire boundary between the fire 
ignition date and the post-fire image date.

After excluding fires with unsuitable Landsat images (e.g. 
images with clouds, haze and detector failures; [158]), the sam-
ple consisted of 127 fires, comprising 112 different Landsat 
images from four Landsat scenes (path-row: 91–89, 91–90, 
92–88 and 92–89) [2] and spanning three Landsat satellite mis-
sions: Landsat 5 Thematic Mapper (1984–2013), Landsat 7 
Enhanced Thematic Mapper Plus (1999–ongoing), and Land-
sat 8 Operational Land Imager and Thermal Infrared Sensor 
(2013–ongoing) [159]. These 127 fires covered a burnt area 
of approximately 474,000 ha (Fig. 1a; Table S1). Most of the 
vegetation burnt was treeless (308,000 ha), followed by forests 
(150,000 ha) and other minor vegetation types (16,000 ha), 
such as agricultural, highland and saltmarsh. Overall, 45% 
of the fires were wildfires (392,000 ha) and 55% were pre-
scribed burns (82,000 ha) (Fig. 1d; Table S1). About 54% of 
the fires occurred in the dry season (October–March), while 
46% occurred in the cool season (April–September). Of the 
fires in the dry season, 45% were wildfires. In contrast, of the 
fires in the cool season, 97% were prescribed burns (Table S1).

The mean times between the pre-fire images and 
fire ignitions dates, pre- and post-fire images dates and 
fire ignitions and post-fire images dates were, respec-
tively, 19.5 months ± 15.6 months (standard deviation), 
27.9 months ± 17.4 months, and 8.4 months ± 5.4 months. 
About 20% and 80% of the post-fire images occurred, 
respectively, within 3 and 12 months of the fire (Figure S2), 
and about 40% and 60% of the fires were, respectively, ini-
tial and extended assessments. The extended assessment 
is approximate because the post-fire images could be from 
either any time during the next growing season (early, mid-
dle or late) or past the next growing season, so it is not pos-
sible to know with certainty whether initial recovery and 
delayed mortality was already present in the case of early or 
middle growing season (see discussion in [75]). 

All Landsat images downloaded from EarthExplorer had 
been corrected geometrically (pixel coordinates matched the 
correct place on Earth according to the specific projection) 
and radiometrically (brightness intensity calibrated across the 
scene) [174]. The two types of radiometric correction applied 
to the Landsat images were Terrain Precision Correction, 
and Systematic Terrain Correction (only one image) [157]. 
To minimise residual bias in the images, we applied a topo-
graphic correction via the topocorr function from the landsat 
R package (version 1.1.0; [58]). The topographic arguments 
of this function (aspect and slope) were calculated from a 
25-m Digital Elevation Model of Tasmania [149] using the 
terrain function from the raster R package (version 3.3.13), 
and the radiometric arguments (sun azimuth and sun eleva-
tion) were in the metadata file of each Landsat image. Due 
to the lack of local wind or progressive fire isochrons for our 
fires, we could not discriminate down-slope and up-slope 
spread based on the direction of fire spread; rather, slope was 
treated as a general topographic control variable.

After correcting all images topographically, we assessed 
the quality of pixels using the quality assessment raster band 
provided with each Landsat image [160]. First, we applied 
a filter in each quality assessment band to select pixels with 
a quality > 0, that is, pixels of lower quality as a result of 
clouds, cloud shadows, haze and stripes of missing data (only 
in Landsat 7 images due to a failure of the Scan Line Correc-
tor; [158]). Second, we applied a five-by-five neighbourhood 
focal to the lower-quality pixels, using the focal function 
(mean) from the raster R package (version 3.3.13), to aggre-
gate the pixels within the specified neighbourhood. Last, we 
polygonised the aggregated lower-quality pixels and created 
a layer of polygons for each quality assessment raster band.

2.3 � Delta Normalised Burn Ratio

For each fire, we computed fire severity using a dimen-
sionless spectral index known as the Delta Normalised 
Burn Ratio (ΔNBR), which is the difference between the 
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pre- and post-fire Normalised Burn Ratio (NBR) [53]. NBR 
is calculated using the near-infrared (NIR: 760–900 nm) and 
shortwave-infrared 2 (SWIR2: 2000–2400 nm) bands of the 
electromagnetic spectrum, applying the following raster oper-
ation: NBR = (NIR − SWIR2) / (NRI + SWIR2) [67]. Com-
monly, ΔNBR is preferred to NBR because it provides greater 
contrast between burnt and unburnt vegetation [38, 75]. Other 
advantages of ΔNBR, compared with other spectral indices 
of fire severity (e.g. Delta Normalised Difference Vegetation 
Index), are its stronger correlation with fire severity measured 
in the field [39, 67], and its higher discriminatory power to dif-
ferentiate between burnt and unburnt areas [41, 57], although 
this discriminatory power is normally greater in forests than 
in treeless vegetation [4, 163, 178]. Other studies have esti-
mated remotely-sensed fire severity using a relativised form 
of ΔNBR, which estimates the amount of vegetation killed by 
the fire in relation to the total pre-fire vegetation [105, 115]. In 
contrast to this relativised ΔNBR, ΔNBR measures the abso-
lute change in green, healthy vegetation caused by the fire, 
which we think is a better indicator of the ecological damage, 
across all vegetation layers, produced by a fire [67, 73].

2.4 � New Fire Boundaries, and Random Sampling 
Points

We manually corrected the boundary of each fire in QGIS 
(version 3.10.6; [125]) using the post-fire images because 
it was mostly possible to visually distinguish burnt from 
unburnt vegetation in these images, although this was more 
evident in treeless than in forested vegetation. Forested 
vegetation where fire severity might have been extremely 
low (e.g. burnt patches on the ground layer) was unlikely to 
have been observed in the post-fire images; thus, we would 
have considered it unburnt and, therefore, excluded it from 
the corrected fire boundaries. Also, we removed areas from 
the fire boundaries that corresponded with waterbodies and 
watercourses, according to the Tasmanian hydrographic area 
dataset [152], because they may have a spectral signature 
similar to that of burnt areas [109]. Finally, we removed 
from the fire boundaries the polygons created from the qual-
ity assessment raster bands, and clipped all fire boundaries 
to the Tasmanian coastline [55]. This refinement of the fire 
boundaries reduced the total burnt area by 10% (Table S1).

Next, we used random sampling to evaluate ΔNBR within 
the corrected fire boundaries. First, to minimise the effects 
of spatial autocorrelation, the number of sampling points to 
sample per fire was calculated as: number of sampling points 
(rounded up to the nearest integer) = area of corrected fire 
boundary (m2) / pixel area (900 m2). Then, using the st_sam-
ple function (type = “random”) from the sf R package (version 
0.9.5; [119]), we randomly generated this number of sampling 
points per fire and extracted the corresponding ΔNBRs of 
the sampling points via the extract function from the raster 

R package (version 3.3.13). We produced two variograms 
per fire, one with an exponential family and another with a 
spherical family [101], using the variogram function from the 
gstat R package (version 2.0.6; [118]). For each variogram, 
we calculated the range (the distance at which the variogram 
levels off) and the residual sum of squares. Last, for each fire, 
we chose the range of the variogram with the lowest residual 
sum of squares, as recommended by Burrough (1995) [22].

To further curtail the effects of spatial autocorrelation, 
and both over- and under-sampling, the process of randomly 
generating sampling points within each corrected fire bound-
ary, extracting their ΔNBRs, producing two variograms per 
fire (exponential and spherical families) and choosing, for 
each fire, the range of the variogram with the lowest residual 
sum of squares, was repeated 100 times, resulting in 100 
ranges per fire. Finally, we averaged the 100 ranges of each 
fire and recalculated the new number of sampling points to 
sample per fire as: new number of sampling points (rounded 
up to the nearest integer) = area of corrected fire boundary 
(m2) / square of the averaged range (m2). This produced 
42,092 sampling points to sample within the 127 corrected 
fire boundaries.

2.5 � Sampling of Predictor Variables and ΔNBR

We randomly generated the number of sampling points per fire 
within the corrected fire boundaries and extracted the corre-
sponding values of ΔNBR and the 42 predictor variables. How-
ever, fire type, fire type of previous fire, and time since previous 
fire were obtained directly from the fire history dataset [37]. In 
addition, as the fire history dataset did not have fire isochrones 
showing the progression of the fires across space and time, each 
sampling point was assigned the mean, mean maximum and 
mean minimum FFDI and soil moisture of the month of the 
year of the fire ignition date, reflecting prevailing conditions of 
the month of the year when the fire began, rather than hour-to-
hour weather of fire progression [111]. Regarding land tenure, 
because the boundary of the Tasmanian Wilderness World Her-
itage Area was extended in June 2013, sampling points from 
fires with an ignition date prior to the boundary extension were 
assigned the land tenure from the latest tenure dataset available 
before the extension, whereas sampling points after June 2013 
received the land tenure from the 2015 dataset [151, 153]. In all, 
this sampling process produced a dataset with 42,092 records 
and 44 columns (fire id, ΔNBR and the 42 predictors).

To account for variability in our data, and following the 
process described in the previous paragraph, we generated 100 
datasets with 42,092 records and 44 columns each. In all data-
sets, we only kept records with the following five vegetation 
types: buttongrass, wetland and peatland; dry eucalypt forest; 
rainforest; scrub, heathland and coastal; and wet eucalypt for-
est [152]. We eliminated records with soil types of vertosol or 
unknown because we could not reclassify them into one of the 
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four major groups of soil types, namely dermosol, kandosol, 
organosol and tenosol (Table 1) [148]. The elimination of these 
records that did not meet our vegetation and soil type crite-
ria accounted for, approximately, 3.5% of records per dataset. 
Due to the limited length of the fire history dataset, there were 
records without a fire type of previous fire and time since pre-
vious fire. For these records, the fire type of previous fire was 
set to unknown, and the date of previous fire to 1900-01-01.

2.6 � Selecting Predictor Variables Through Random 
Forests 

Given the large number of predictor variables selected a 
priori, we undertook a two-step process to identify a smaller 
subset of predictors. First, we randomly chose four datasets 
and produced correlation matrices between predictors. In 
each of the four datasets, we calculated the Pearson’s cor-
relation coefficient between all pairs of quantitative, continu-
ous predictors via the rcorr function from the Hmisc R pack-
age (version 4.4.1; [62]) (Table S4). Similarly, we calculated 
the Cramér’s V coefficient for all pairs of categorical predic-
tors via the cramersV function from the lsr R package (ver-
sion 0.5; [110]) (Table S5). Correlation matrices across the 
four datasets showed similar correlation coefficients between 
pairs of predictors. Hence, we selected 22 predictors for the 
first round of Random Forests (Fig. 2), supported by our 
knowledge of the ecological significance of these predictors 
in fire ecology, as follows: six fire-related attribute variables, 
six bioclimatic variables, four fire-weather variables, and six 
environmental and topographic variables (Table 1).

The second step to reduce the number of predictor vari-
ables was to use Random Forests, a machine-learning clas-
sifier [19, 32]. Random Forests is a strong classifier because 
it minimises overfitting, accepts quantitative and categorical 
predictors and allows for non-linear relationships between 
the predictors and the response variable [20]. In the Random 

Forests ensembles, consisting of many regression trees, it is 
possible to rank predictors by importance, reflecting their 
contribution to predicting the response variable. We used 
two measures of variable importance to rank the predictors: 
impurity corrected and permutation. Higher values of both 
measures indicate a higher contribution of the predictor to 
predicting the response variable [14]. In all regression trees, 
the number of predictors to split at each node was kept at the 
default value (square root of the number of predictors rounded 
down) because this value typically provides optimal perfor-
mance [34]. The number of trees to grow per ensemble was 
2000 because larger ensembles yielded negligible changes in 
the out of bag error and R2. Regression trees were constructed 
with sampling without replacement and through recursive par-
titioning [135]. All Random Forests analyses were undertaken 
with the ranger R package (version 0.12.1; [173]).

To better understand the relationships between the 22 
predictor variables and the response variable (ΔNBR), we 
produced, for three of the datasets, one-way and two-way 
partial dependence plots of Random Forests models con-
taining these 22 predictors, using the partial function from 
the pdp R package (version 0.7.0; [60]). One-way partial 
dependence plots indicated overfitting of a few predictors, 
such as distance to roads, distance to rivers/lakes, and mean 
FFDI. To curtail overfitting in subsequent Random Forests 
analyses, the two numerical predictors, distance to roads and 
distance to rivers/lakes, were converted into two categorical 
predictors: distances < 1 km were classified as near, while 
distances ≥ 1 km were classified as distant (Table 1). In the 
two-way partial dependence plots, there was no evidence of 
interactions between the bioclimatic and fire-weather predic-
tors. Finally, we partitioned each dataset into two aggregated 
vegetation types (forested and treeless) because ΔNBR typi-
cally performs better in forests [163, 178]. Forested vegeta-
tion included dry and wet eucalypt forests and rainforests, 

Fig. 2   Variable selection through three successive rounds of Random 
Forests (RF). In each round, the RF models were constructed using 
the number of predictor variables indicated inside the arrows (aster-
isk), and the most important predictors were selected (number sign). 
Predictors were ranked according to aggregated vegetation (F for for-
ested and T for treeless), and two measures of variable importance: 

impurity corrected (IC) and permutation (P). Prediction accuracy of 
the RF ensembles was assessed in each round based on the root mean 
square error and mean absolute error, averaged across 50 pairs of test-
ing and training datasets. The four highest-ranked predictors from 
the third round of RF were used to conduct the generalised additive 
mixed models (GAMMs)
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whereas treeless vegetation comprised buttongrass, wetland 
and peatland, and scrub, heathland and coastal [152].

From an average of 40,601 records per dataset (± 32 stand-
ard deviation), 25% were forested and 75% treeless (Table S3). 
For forested records, 49% were wet eucalypt forest, 33% were 
dry eucalypt forest, and 18% were rainforest. For treeless 
records, 79% were buttongrass, wetland and peatland, and 
21% were scrub, heathland and coastal. Considering the type 
of fire, 93% of forested records were wildfires and 7% were 
prescribed burns, while 65% of treeless records were wildfires 
and 35% were prescribed burns. In all five vegetation types, 
across wildfires and prescribed burns, except prescribed burns 
in rainforests, the protected tenure contained the most records, 
followed by forestry and non-protected. When considering 
tenure by aggregated vegetation, 59% and 78% of records 
were protected, respectively, in forested and treeless vegeta-
tion; 39% (forested) and 19% (treeless) were forestry; and 2% 
(forested) and 3% (treeless) were non-protected (Table S3).

The Random Forests analyses consisted of three succes-
sive rounds of Random Forests (Fig. 2) [34]. In each round, 
we input the 100 datasets, with each dataset partitioned by 
aggregated vegetation, but with fewer predictor variables 
than in the preceding round, except for the first round, which 
contained all 22 predictors. In each round and for each data-
set, we ranked the predictors according to the two measures 
of variable importance. We then averaged the importance 
values of each predictor across the 100 datasets. In the first 
round of Random Forests, we chose the 11 most important 
predictors out of the 22 and used them as the predictors in 
the second round. In the second round of Random Forests, 
we chose the six most important predictors, which were the 
predictors in the third round. Finally, we selected the four 
highest-ranked predictors from the third round of Random 
Forests for the statistical analysis (Fig. 2). Residuals of the 
Random Forests models, containing these four predictors, 
computed via the predict function of the ranger R pack-
age (version 0.12.1), were normally distributed, showing no 
indication of spatial clustering (Figure S3).

To appraise the most suitable number of predictor vari-
ables of  ΔNBR, we implemented cross-validation [20, 
29]. The 100 datasets were randomly split into 50 pairs of 
training and testing datasets (Fig. 2). Within each pair, we 
used one of the datasets (training dataset), split by aggre-
gated vegetation, to fit Random Forests models (impurity 
corrected and permutation) containing the 22, 11, six, four 
and three most important predictors. We used the second 
dataset (testing dataset) within each pair to test the Random 
Forests models fitted with the training dataset. In each pair, 
the prediction accuracy of the Random Forests models fitted 
with the training dataset and tested with the testing dataset 
was evaluated by the root mean square error (RMSE) and 
the mean absolute error (MAE). RMSE and MAE measure 
the agreement between paired observations consisted of the 

predicted and observed values, and are expressed in the units 
of the response variable [24, 167]. Last, we averaged the 
values of RMSE and MAE across the 50 pairs according to 
the number of predictors (22, 11, six, four and three), the two 
measures of variable importance (impurity corrected and 
permutation), and aggregated vegetation (forested and tree-
less). We selected four predictors for the statistical analysis 
because there were small changes in RMSE and MAE when 
using Random Forests with 22, 11, six and four predictors, 
but a larger loss in prediction accuracy when using three 
predictors (Table S6).

2.7 � Statistical Analysis Using Generalised Additive 
Mixed Models

We used generalised additive mixed models (GAMMs) to 
statistically test the relationship between ΔNBR and the four 
highest-ranked predictor variables from the third round of 
Random Forests (Fig. 2). The benefit of generalised additive 
models over generalised linear models is that generalised 
additive models can model non-linear relationships between 
a response variable and a set of predictors [63, 175]. We used 
GAMMs rather than standard generalised additive models to 
account for the effect of individual fires [120]. We applied a 
thin-plate regression spline as the wiggliness penalty func-
tion for the smoothing terms [121]. The basis dimension of 
each smoothing term was 100, except for time since previous 
fire, which was 10, because increasing the basis dimensions 
beyond these values yielded small changes in the effective 
degrees of freedom, indicating little effect on the shape of the 
smooth [170]. All models were fitted using the bam function 
from the mgcv R package (version 1.8.31; [169]).

We used model selection to find the best-performing 
model, in each dataset, in a five-model candidate set. We 
preserved all datasets partitioned by aggregated vegetation, 
so the statistical analysis was consistent with the Random 
Forests analyses. The null model was the intercept-only 
model, while the base model contained a smoothing term 
for each of the four highest-ranked predictor variables from 
the third round of Random Forests, and both models had 
“fire id” as a random smoothing term [120]. Other models 
included extra predictors: spatial contained a smoothing term 
for spatial variation (easting and northing coordinates of the 
sampling point to further control for spatial autocorrela-
tion), and categorical included three categorical predictors, 
as follows: fire type (wildfire or prescribed burn), land tenure 
(forestry, non-protected or protected) and the non-aggregated 
vegetation. The global model was the base + spatial + cat-
egorical + topography, with topography consisting of three 
predictors: northness and slope as linear regressions, and 
topographic position index as a thin-plate regression spline.

In each dataset, the five models were ranked by the 
Akaike’s Information Criterion (AIC), calculated with 
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the AIC function from the stats R package (version 4.0.2; 
[126]). The best-performing model in the candidate set 
was the model with the lowest AIC. We calculated the 
delta AIC (ΔAIC), which represents the difference in 
AIC between the model and the best-performing model 
(accorded ΔAIC = 0). As the results of model selection 
were similar across all datasets, we averaged the AICs, 
explained deviances and ΔAICs of each model across 
the 100 candidate sets. Following Burnham and Ander-
son (2002) [21], we considered models with an averaged 
ΔAIC < 2 as statistically supported.

We produced partial dependency plots, by aggregated 
vegetation, for each of the predictor variables of the global 
model. First, we fitted the global model in each dataset, 
using the ggpredict function from the ggeffects R pack-
age (version 0.15.1; [96]), to generate ΔNBR predictions 
(modelled ΔNBR hereafter) for each of the predictors 
included in the model. Next, for each quantitative, con-
tinuous predictor, we averaged the modelled ΔNBRs across 
the predictions of the 100 global models and applied a 
cubic smoothing spline to the averaged modelled ΔNBRs 
via the smooth.spline function from the stats R package 
(version 4.0.2). For categorical predictors, we computed 
the mean of the modelled ΔNBRs for each category of the 
predictor across the predictions of the 100 global models. 
Here, we tested for statistical differences (P-value < 0.05) 
among the categories of the predictor via the non-paramet-
ric Kruskal–Wallis test by ranks (kruskal.test function from 
the stats R package; version 4.0.2), followed by post hoc 
means comparisons through the Bonferroni method (pairw.
kw function from the asbio R package; version 1.6–7; [3]). 
For all predictors, we calculated the 95% confidence inter-
vals from the global model predictions, and averaged the 
lower and upper limits of the 95% confidence intervals 
across the 100 models.

3 � Results

3.1 � Selecting Predictor Variables Through Random 
Forests

In both forested and treeless vegetation, precipitation of the 
driest quarter, mean minimum monthly soil moisture, and 
time since previous fire were among the four most important 
predictor variables selected in the third round of Random 
Forests (Fig. 2; Table 1). Mean annual precipitation was an 
important predictor in forests, whereas temperature seasonal-
ity (standard deviation) was important in treeless vegetation. 
Cross-validation indicated little loss of prediction accuracy of 
the Random Forests models containing the four most impor-
tant predictors (forested: 0.155 RMSE and 0.113 MAE; tree-
less: 0.119 RMSE and 0.085 MAE), compared to models 
with the 22 predictors (forested: 0.147 RMSE and 0.110 
MAE; treeless: 0.117 RMSE and 0.085 MAE) (Table S6).

3.2 � Statistical Analysis Using Generalised Additive 
Mixed Models

The global model had the best support across all datasets 
in treeless vegetation (mean ΔAIC = 0), and in all but four 
of the 100 candidate sets of GAMMs in forested vegetation 
(mean ΔAIC = 0.8, range: 0–37) (Table 2). In each of the 
four exceptions, the base + spatial + categorical model was 
the best-fitting model, but the improved fit over the global 
model was small (mean ΔAIC < 2). Therefore, we selected 
the global model as the best-performing model for both for-
ested and treeless vegetation.

Overall, we achieved a good sampling coverage of 
the four most important predictor variables of the global 
GAMM (Figure S4b–f; Figure S5a–h) across the 100 data-
sets, with time since previous fire presenting the highest 
difference in interquartile ranges between forested and 

Table 2   Means of ΔAICs (range in parentheses) and deviance 
explained for the candidate sets of GAMMs, according to aggregated 
vegetation, across the 100 datasets. The preferred model is shown in 
bold. The null model is the intercept-only model. The base model con-
tains a smoothing term for each of the most important predictor vari-
ables from the third round of Random Forests. Other models include 
extra predictors: spatial contains a smoothing term for spatial varia-

tion, and categorical includes three categorical predictors (fire type, 
land tenure and non-aggregated vegetation). The global model consists 
of the base + spatial + categorical model plus three topographic pre-
dictors (northness, slope and topographic position index). All models 
include a random effect for “fire id”. Note that the base + spatial + cat-
egorical model outperformed the global model in forested vegetation 
in four datasets, but the mean ΔAIC was less than 2

Model ΔAIC Deviance

Forested Treeless Forested Treeless

Global 0.8 (0.0–37.3) 0.0 (0.0–0.0) 0.54 0.68
Base + spatial + categorical 78.9 (0.0–187.8) 251.1 (92.12–411.8) 0.54 0.68
Base + spatial 326.7 (179.7–459.3) 408.9 (227.0–539.6) 0.53 0.67
Base 956.1 (793.1–1,157.9) 1,301.8 (1,026.6–1,558.4) 0.49 0.66
Null 1,625.4 (1,395.7–1,841.2) 33,660.9 (32,697.0–34,545.8) 0.45 0.45
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treeless vegetation (Figure S4f) due to lack of ΔNBR values 
between 40 and 90 years (Figure S5g–h). Modelled ΔNBR 
(predicted ΔNBRs from the global GAMM) was negatively 
associated with mean annual precipitation in forested veg-
etation, with modelled ΔNBR < 0.44 above 2000 mm per 
annum, and > 1.1 below 1000  mm (Fig.  3a). Modelled 
ΔNBR increased with precipitation of the driest quarter in 
forested and treeless vegetation up to approximately 400 mm 
(Fig. 3c–d). There was a slight upward trend in modelled 
ΔNBR as time since previous fire increased up to 35 years 
(Fig. 3g–h). Modelled ΔNBR showed  flat trends in tem-
perature seasonality in treeless vegetation (Fig. 3b), and 
mean minimum monthly soil moisture in both forested and 
treeless vegetation (Fig. 3e–f). These predictors (tempera-
ture seasonality and mean minimum monthly soil moisture) 
were important in the Random Forests analyses because they 
explained a proportion of the variance not captured by other 
predictors, so removing them reduced model fit. Low sam-
pling coverage affected the predictions for some regions of 
most predictors, notably for high values of precipitation-
related variables (Fig. 3a, c–d; Figure S5a, c–d).

Sampled values of the topographic predictor variables across 
the 100 datasets showed a large range of variability (large inter-
quartile range) in northness for forested and treeless vegetation, 
while the topographic position index had a low range of varia-
bility, and slope had some more variability, but was left-skewed 
(Figure S4g–i; Figure S5i–n). Regarding modelled ΔNBR, 
northness had a flat trend in forested and treeless vegetation 
(Figure S6a–b). However, modelled ΔNBR was predicted to 
slightly decrease as slope increased in forested vegetation, and 
to increase as slope increased in treeless vegetation (Figure S6 
c–d). Topographic position index influenced modelled ΔNBR 
in flat areas (0 m) in forested and treeless vegetation, but the 
response was unstable for topographic position indices < −5 m 
or  > 5 m (Figure S6e–f).

For non-aggregated vegetation, sampled ΔNBRs across 
the 100 datasets showed similar ranges of variability, with dry 
eucalypt forests having the smallest interquartile range of all 
five vegetation types (Figure S4j). Dry and wet eucalypt forests 
presented the highest modelled ΔNBRs (0.61 ± 0.14 standard 
error of the mean and 0.58 ± 0.14, respectively) of all five veg-
etation types, and there was no statistical difference between 
these two vegetation types (Fig. 3k). In contrast, modelled 
ΔNBR of rainforests (0.53 ± 0.14) was statistically different 
from the other two forest types. In treeless vegetation, mod-
elled ΔNBR of scrub, heathland and coastal (0.56 ± 0.08) was 
not statistically different to modelled ΔNBR of buttongrass, 
wetland and peatland (0.53 ± 0.08). Furthermore, there were no 
statistical differences in modelled ΔNBR between wet eucalypt 
forests and scrub, heathland and coastal, and among rainforest 
and the two treeless vegetation types (Fig. 3k).

In fire type, sampled ΔNBRs had similar interquartile 
ranges in forested and treeless vegetation across the 100 

datasets regardless of the type of fire, although there was 
higher variability in treeless prescribed burns than in the 
other three groups (Figure S4k). For wildfires, modelled 
ΔNBR and prediction uncertainty (95% confidence inter-
val) was higher in forests (0.61 ± 0.14) than in treeless 
vegetation (0.53 ± 0.08), with this difference being statis-
tically different (Fig. 3i). In contrast, prescribed burns in 
treeless vegetation had higher modelled ΔNBR, but lower 
uncertainty (0.45 ± 0.09), than prescribed burns in forests 
(0.42 ± 0.15), and this difference was statistically different. 
Modelled ΔNBR was statistically different between wildfires 
and prescribed burns in forests, but not between wildfires 
and prescribed burns in treeless vegetation (Fig. 3i).

Land tenure was the categorical predictor variable that 
showed, across all its groups, the largest variability in the 
interquartile ranges of sampled ΔNBRs for all 100 datasets. 
This variability was small for forestry in both forested and 
treeless vegetation, and in non-protected forests, but larger 
in the other three groups (non-protected treeless, protected 
forested and protected treeless) (Figure S4l). Within both 
forested and treeless vegetation, modelled ΔNBR was statis-
tically different between the forestry (forested: 0.61 ± 0.14; 
treeless: 0.53 ± 0.08) and protected (forested: 0.66 ± 0.14; 
treeless: 0.57 ± 0.07) tenures, but not between the forestry and 
non-protected (forested: 0.62 ± 0.14; treeless: 0.56 ± 0.07) 
tenures, and the non-protected and protected tenures.

4 � Discussion

In this study, we have developed a methodological approach 
to rigorously select, and statistically test, predictor variables 
with ecological meaning in predicting fire severity esti-
mated from remotely-sensed data. This approach provides 
predictions in a complex pyrogeographical system, cover-
ing 25 years of fire records, across forested and treeless 
landscapes.

4.1 � Methodological Approach

Our methodological approach was developed to account for 
several of the major challenges of using remotely-sensed fire 
severity data, including spatial autocorrelation and multi-
dimensional environmental drivers that interact at various 
spatio-temporal scales [29, 30]. We implemented Random 
Forests to select a smaller set of predictor variables, and fitted 
these models 100 times in each round of Random Forests to 
account for spatial autocorrelation and control the complex 
interactions between predictors (Fig. 2) [81]. Our Random 
Forests models appear to have been effective, given that vari-
able importance rankings were similar across the 100 data-
sets, and the small loss of prediction accuracy when down-
sizing the number of predictors from 22 to four (Table S6).
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Fig. 3   Partial dependence plots for important predictor variables of 
modelled ΔNBR in forested and treeless vegetation, based on the 
global GAMM. The solid black lines in plots (a–h) represent cubic 
smoothing splines on the mean of the ΔNBR predictions, while the 
grey-shaded areas show mean 95% confidence intervals. Plots (i–k) 
show mean modelled ΔNBR with 95% confidence intervals. Plots 
on the left (a, c, e, g) correspond to forests, while plots on the right 
(b, d, f, h) are for treeless vegetation. Plots (i–k) refer to both forests 

(black circles) and treeless vegetation (open squares). Different letters 
on the top right of the error bars (i–k) indicate significant differences 
between groups (P-value < 0.05) using a post hoc Bonferroni method 
applied after the Kruskal–Wallis test by ranks. See Figure S4 in the 
supplementary material for the partial dependence plots of the three 
topographic variables. Acronyms: DEF is dry eucalypt forest; WEF is 
wet eucalypt forest; R is rainforest; BWP is buttongrass, wetland and 
peatland; and SHC is scrub, heathland and coastal
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To allow for the loss of a few important predictor variables 
in the Random Forests analyses (Fig. 2), we created a base 
GAMM using the four highest-ranked predictors from the 
third round of Random Forests, and added other likely predic-
tors. The substantial fit improvement of the global GAMM 
validates this approach (Table 2). In particular, the strong 
effects of incorporating “fire id” as a random effect to control 
for inter-fire differences and local-scale effects supports the 
value of GAMMs over Random Forests [120]. Nonetheless, 
our GAMM models have not been designed for prediction in 
other ecosystems because it may not be possible to provide a 
comparable random effect for individual fires. In this study, 
we were interested in the ecological conclusions of the statisti-
cal analysis using GAMMs, rather than generating predictive 
models to apply across all ecosystems, because each ecosys-
tem has specific ecological features that need to be considered 
when implementing and interpreting statistical models.

The strengths of our methodological approach are two-
fold. First, by using Random Forests, it is possible to obtain 
insights into the relative importance of interacting predictor 
variables [29], instead of selecting a priori a set of predic-
tors for statistical analysis or implementing stepwise selec-
tion. Second, by using GAMMs and model selection, we 
can test the statistical relationships among predictors and 
improve model fit [81]. In addition, as the approach is semi-
automatic, we can use existing knowledge of fire ecology to 
ensure that the outputs at each step of the approach are eco-
logically meaningful [127], and repeat any steps by modi-
fying input variables in the Random Forests analyses and/
or increasing model complexity in the candidate sets of 
GAMMs (Fig. 2; Table 2).

Future studies in fire severity that may follow our 
methodological approach would benefit from field valida-
tion. Here, we did not undertake field validation because 
of the sample size (127 fires), the remoteness of the study 
region, and the long time elapsed since most fires hap-
pened. Given this lack of field data, we chose a spectral 
index highly correlated with fire severity in the field and 
with a greater discriminatory power between burnt and 
unburnt vegetation than other spectral indices [39, 57]. 
Importantly, by partitioning our datasets into forested 
and treeless vegetation, we increased the accuracy of 
our analyses, since ΔNBR normally performs better in 
forested than in treeless vegetation [178]. Nevertheless, 
future studies could select a few distinguished fires (e.g. 
recent large wildfires and prescribed burns) to assess fire 
severity in the field (e.g. through the Composite Burn 
Index; [75]), and then calibrate the field fire severities 
with the remotely-sensed fire severity [111]. The ben-
efits of determining ΔNBR ranges that correlate to field 
severity classes are that the results could be relevant to 
ecosystems with similar pyrogeographical features to 
western Tasmania.

4.2 � Climate Variables and Time Since Previous Fire

The stronger relationships among predictor variables in tree-
less vegetation (deviance explained = 0.68) than in forests 
(0.54) in the global GAMM contrasts with previous studies 
that reported lower performance of ΔNBR in non-forested 
vegetation (Table 2) [4, 137, 140]. To ensure maximum 
accuracy of ΔNBR, especially in treeless areas, we searched 
multispectral pre- and post-fire satellite images as close as 
possible in time to the fire event and spanning the same 
season of the year [25]. These considerations are important 
when studying treeless communities, such as the Tasmanian 
buttongrass moorlands, where regrowth happens rapidly 
after fire if there is a wet period shortly thereafter [69].

Our results showed that precipitation-related variables 
were important drivers of fire severity in forested and tree-
less vegetation  (Fig. 3a, c–d). In forests, higher levels of 
mean annual precipitation had a negative effect on modelled 
ΔNBR (Fig. 3a), which may be related to the role of annual 
precipitation in controlling ecosystem productivity [117]. 
Therefore, biomass connectivity and density may have been 
important in driving fire severity in our study area [134, 
136]. Although previous research found that increases in 
annual precipitation led to high-severity surface and canopy 
fires through higher rates of horizontal and vertical biomass 
build-up [28, 84], annual precipitation may also have a nega-
tive relationship with fire danger indices in regions that lack 
regular dry periods that permit fire [122]. Another reason for 
the negative relationship between mean annual precipita-
tion and modelled ΔNBR may be the positive association 
between annual precipitation and soil moisture, since wet-
ter areas require more extreme weather conditions for fire 
ignition [5, 17]. For instance, Dimitrakopoulos et al. (2011) 
[36] showed that a year with normal annual precipitation in 
Mediterranean coniferous forests had > 48% low fire-danger 
days and < 88% extreme fire-danger days than a dry year 
(< 70% precipitation). The 25-year fire record in this study 
might have had few catastrophic fire days that could have 
originated fires of high intensity and severity [16, 71].

The negative relationship between modelled ΔNBR and 
mean annual precipitation in forests of western Tasmania 
(Fig. 3a) may reflect a dichotomy between the region’s mild 
and wet climate, but relatively frequent extreme weather 
conditions, such as dry lightning and short heatwaves 
[142]. Increased mean annual precipitation in the study 
region could be associated possibly with a trend towards 
denser, closed-canopy forests that require rare and extreme 
weather or severe drought to achieve fire intensities that 
would result in high-severity fires [131]. Future climate 
scenarios predict an increase in extreme weather con-
ditions in Tasmania [50], so there will be a higher risk 
of large-scale and severe fires that may compromise the 
survival of fire-sensitive communities. For example, the 
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palaeoendemic, slow-growing conifer Athrotaxis cupres-
soides, which persists in cool and wet refugia in western 
Tasmania, underwent a severe interval squeeze (68% adult 
mortality) as a result of fires from dry lightning in 2016 
[15]. Other global climate modelling for the twenty-first 
century has shown that fluctuations in total annual precipi-
tation in ecosystems of intermediate productivity, such as 
those found in western Tasmania, will be the main driver 
of ecosystem flammability and fire regimes [10, 116, 141].

The positive relationship between precipitation of the 
driest quarter, representing mean summer precipitation in 
this system, and modelled ΔNBR in both forested and tree-
less vegetation (Fig. 3c–d) may reflect greater plant pro-
ductivity due to wet summers. Wetter summers can lead to 
horizontal and vertical biomass build-up, which may burn 
in hot days later in the summer [59, 88]. However, areas 
with high-average summer precipitation may still undergo 
episodic drought with high-severity fires [123, 156], a true 
case for western Tasmania [49, 171]. It is possible that, in 
ecosystems of intermediate productivity, a preceding wet 
summer may translate into higher fire risk in successive 
summers due to biomass build-up [56, 161]. Other studies 
worldwide have reported that such ecosystems are more 
affected by precipitation variability during the dry season 
than during the cool season [108, 113, 177] because cool 
seasons are not normally water-limited, contrarily to dry 
seasons, where precipitation increases lead to higher plant 
productivity and, therefore, more biomass available for 
burning [59, 89, 139].

A potential interaction between precipitation and temper-
ature may explain why temperature seasonality was impor-
tant in treeless vegetation (Fig. 3b). Treeless communities 
in our study region were mostly located in near-coastal areas 
(Fig. 1a–b), which are less affected by temperature fluctua-
tion due to the modulating effect of the ocean. Consequently, 
lower fluctuations between minimum and maximum temper-
atures throughout the year may render plants longer growing 
periods, in opposition to areas with less thermally equable 
climates, where the lower temperatures of the cool season 
inhibit bud break and plant growth [80, 168].

Time since previous fire influenced fire severity in forested 
and treeless vegetation, with modelled ΔNBR continuing to 
increase to approximately 35 years after fire (Fig. 3g–h). This 
increase may be linked to the accumulation of finer biomass 
during fire-free periods, which becomes available for burn-
ing under adverse weather conditions, such as drought, high 
temperature, lightning, low humidity and wind [17]. These 
results align with previous studies that suggested that time 
since previous fire could be more important in the first years 
after a fire, while biomass is thinner and the understorey is 
regenerating [65, 92, 146]. Similar findings that highlighted 
the positive relationship between time since previous fire 
and fire severity have been reported in chaparral-dominated 

shrublands, fynbos, Australian heathlands, and Mediterra-
nean forests of maritime pines [42, 74, 86, 176].

4.3 � Relevance to Fire Management and Climate 
Change

Our research demonstrates that a multi-decadal satellite record 
can be successfully used to study fire severity in complex 
landscapes with a rich fire history. However, a caveat of this 
study was the coarse temporal resolution of the FFDI and soil 
moisture variables. Because we did not have fire isochrones, 
we did not know the day and time that each sampling point 
within the fire burnt, so we assigned to all sampling points 
within a fire the averaged FFDI and soil moisture of the month 
of the year of the fire ignition date. These averaged values of 
FFDI and soil moisture reflected the prevailing weather condi-
tions of the month of the year when the fire began, rather than 
the specific weather conditions of the time of the day when the 
sampling point burnt. Specific weather conditions are impor-
tant because most fires have outbursts that burn most of the 
area [31, 70, 91]. Given the importance of fire isochrones to 
better match fire severity to the local conditions when the fire 
burnt [45, 111], fire agencies would need to digitise fire isoch-
rones to allow for better predictive modelling of fire severity. 
Furthermore, records on firefighting activities, including the 
timing and location of control lines and aerial waterbombing 
drops, are useful in fire severity analyses because the burnt 
area, fire intensity and fire severity may have been influenced 
by the firefighting efforts [43, 164].

The lower modelled ΔNBR in prescribed burns than in 
forest wildfires (Fig. 3i) was expected because prescribed 
burning uses low-intensity burns, which are attained by 
avoiding dry and hot weather conditions, to reduce biomass 
build-up, hence reducing fire hazards [46]. Nevertheless, the 
higher modelled ΔNBR of prescribed burns in treeless veg-
etation than in forests may be an artefact of the limited capac-
ity of satellite images to capture reflectance changes of the 
understorey layer in forests. This layer is typically the part of 
the forest that burns during prescribed burning, but it is hin-
dered by the tree canopies [93, 107]. In addition, the similar 
modelled ΔNBR of wildfires and prescribed burns in treeless 
vegetation may relate to the fewer layers available for burning 
in treeless communities, thus limiting fire severity [88, 117].

Modelled ΔNBR was higher in protected forests than in 
commercial forests, but not statistically different from mod-
elled ΔNBR in non-protected forests (Fig. 3j), reflecting the 
greater continuity and density of aboveground biomass in 
forests [117]. By contrast, the similar modelled ΔNBR of 
protected and non-protected treeless areas was anticipated 
(Fig. 3j), because treeless vegetation burns more homoge-
neously due to biomass connectivity [72, 103]. Prescribed 
burning of treeless areas within protected forests can be 
an efficient management tool to reduce the occurrence and 
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spread of future high-severity fires [77, 104, 162]. As an 
example, strict fire suppression policies led to large-scale, 
destructive wildfires in the Yellowstone National Park in 
1988 [133]. This recommendation of burning treeless areas 
within forests to create mosaics of fuel structures is sup-
ported by previous experimental research [51, 66, 132] and 
simulation modelling [52, 77, 78]. Specifically, King et al. 
(2013) [79] underlined the effectiveness of prescribed burn-
ing in reducing unplanned fires and area burnt by large fires 
in south-west Tasmania, given the role of prescribed burns 
in fragmenting biomass connectivity.

Climate modelling for the twenty-first century projects a 
decrease in summer precipitation and an increase in winter 
precipitation in south-east Australia [33, 44], coupled with 
changes in frontal cyclones [129]. This modelling suggests a 
69% increase in the number of days of dangerous fire weather 
in western Tasmania by the end of the twenty-first century [48, 
50], possibly leading to more large-scale, high-severity wild-
fires [1, 94, 112].  Furthermore, climate modelling shows that 
the canonical driver of precipitation variability in Australia, El 
Niño–Southern Oscillation [112, 130], is predicted to become 
more severe than other climate systems, such as the Indian 
Ocean Dipole and the Southern Annular Mode, with extreme 
dry events associated with El Niño followed by greater favour-
able conditions for extreme wet weather associated with La Niña 
[23, 61, 76]. The increase in drought and fire days means that the 
weather window to apply prescribed burning will shorten in the 
future [26, 87]. Consequently, fire severity data collected during 
prescribed burning operations is important because it can help 
identify areas where prescribed burning would be more efficient.

5 � Conclusions

Western Tasmania represents an interesting pyrogeographical 
model for studies in fire ecology due to its pyrodiversity and 
the potential impacts of climate change on wet ecosystems. The 
methodological approach developed here can be reproduced 
in other ecosystems to understand the drivers of fire severity. 
Our results showed that precipitation-related variables were the 
main drivers of fire severity in forested and treeless vegetation 
in western Tasmania. Importantly, our findings confirm previ-
ous base knowledge of the drivers of fire severity [28, 54, 102, 
145]. However, additional studies would benefit from field vali-
dation, fine-scale fire weather, and fire progression data. Pre-
scribed burns had lower remotely-sensed fire severity than for-
est wildfires, which supports that prescribed burning is suitable 
for reducing the connectivity and density of available biomass. 
In this study, we establish links between fire severity and both 
climate and weather, across a topographically and ecologically 
diverse ecosystem, over an extended time series of fires, and pro-
vide a framework to better understand the interactions between 
fire severity and prescribed burning under climate change.
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