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Abstract
The emergence of remote sensing technologies and availability of satellite data over three decades have facilitated to monitor and
understand the agricultural systems in many intensive agricultural regions. Here, we performed a comprehensive study on
utilization of multi-temporal satellite data (i.e., Landsat-8 and MODIS) for wheat acreage and yield estimation during winter
season (2016–2017) over the Sahibganj District in Jharkhand (India). Phenological variables were derived using the time-series
normalized difference vegetation index (NDVI), which helps to understand the phenological transitions of wheat. The NDVI
profile was used to derive rules for decision tree classifier to map the acerage of wheat. The key findings indicate that the acerage
of wheat was estimated as ~3870 ha. Further, the long-term wheat statistics data were used to derive a yield model. Based on this
model, wheat production was predicted as ~4523 t for the winter season 2016–2017, while, the meanwas 3482 t. Predicted wheat
yield was as ~1.17 t/ha, which was underestimated by 0.07 t/ha. Thus, it can be concluded that the accuracy of yield prediction
depends on the precision of wheat acerage map derived from remote sensing data. A significant challenge for accurate acerage
mapping could be the coarser spatial resolution of satellite data as the average plot sizes of Indian farmers can be far smaller than
pixel sizes of the satellite data. Nevertheless, this comprehensive case study inferred that satellite-derived wheat acerage can be
preferred to predict yield instead of traditional-based survey estimates.
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1 Introduction

Agriculture plays a key role in India’s economy by contributing
17.3% of India’s gross domestic product (GDP) in 2016–2017
and over 55% of the population is engaged in agricultural ac-
tivity. Given the importance of agricultural sector, India be-
comes a leading producer of rice and wheat over the years.
India is the second biggest producer of wheat in the world with
~30 million hectares of cultivation land. As per the Directorate
of Economics & Statistics, DAC&FW [6], Ministry of
Agriculture, Government of India, wheat production was
~96.50 million tons in 2016–2017. There are two key agricul-
tural seasons, namely, Kharif (monsoon season) and Rabi (win-
ter season). Wheat is the Rabi season’s main crop that sown in
November and harvested in March. During Rabi season

(winter), wheat is grown in several states of India, namely,
Jammu and Kashmir, Himachal Pradesh, Uttarakhand,
Punjab, Chandigarh-Haryana-Delhi, Uttar Pradesh, Bihar,
Jharkhand, and Rajasthan. These aforementioned states contrib-
uted ~99.5% of total wheat production in the country.
Remaining states such as Karnataka, Assam, Chhattisgarh,
and other North Eastern states have contributed only ~0.5%
of the total wheat production in the country (DES 2017). In
the state of Jharkhand (JH), wheat crop plays an imperative role
for livelihood of farming communities that supports food secu-
rity for ~80% of total population of the state [17].

The information on crop acreage and yield is very essential
for planning and sustainable development of agriculture sys-
tem. Reliable and timely detailed information on crop acreage
provides valuable information to the planner and policy
makers for making decision with respect to procurement, stor-
age, public distribution, export-import, and finally the food
security of nation [28]. Many developing countries including
India have been used the traditional method (i.e., survey-
based) of data collection for crop monitoring and yield esti-
mation, wherein Crop Cutting Experiment (CCE) typically
conducted under a complex sampling design (i.e., stratified
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multi-stage random sampling). So, the traditional methods are
subjective, cumbersome, and expensive as it needs large num-
ber of manpower to collect the field data (Singh et al. 2002).
By contrast, space-based technologies and crop growth
models were used widely in the recent decades for crop mon-
itoring and yield predictions at various scales.

Crop yield can be estimated using multiple approaches such
as (i) semiphysical RS-based model, (ii) satellite index-based
crop yield models, (iii) correlation-weighted agro-
meteorological-based model, (iv) crop simulation model, and
(v) data obtained from CCE. Number of previous studies have
used crop growth models, namely, WTGROWS, DSSAT, and
InfoCrop, for crop monitoring and yield prediction at various
scale [2, 19, 23, 41, 44]. In particular, remote sensing (RS) sat-
ellite data have revolutionized the agriculture system by provid-
ingwide range of data tomonitor crop growth and to predict crop
yields. These RS data were mainly used to enhance the accuracy
of crop yield estimation and forecasting yield [3, 5, 38]. So the
RS data are very important for the benefit of the society. Besides
wide range of RS application in agriculture, RS data provide a
way to quantify accurate crop acreage and corresponding yield
[1, 32–34]. Satellite-derived normalized difference vegetation
index (NDVI) has been extensively used for crop yield estima-
tion, wherein it utilizes the red (R) and near-infrared (NIR) bands
of electromagnetic spectrum. Many previous studies have
showed a well correlation between satellite-derived NDVI and
yield [4, 16, 47], which further helps to extrapolate yield at re-
gional level and national level. Crop phenology provides the
first-hand information on timing and stages of the crop growth
cycles and was very crucial for acreage estimation [4, 40]. The
similarity in the spectral reflectance curve of various crops may
pose various challenges to identify different crops using phenol-
ogy metrics [9, 31, 48]. Hence, reliability of RS data for estimat-
ing acreages of crops was important to achieve accurate yield as
well as to know the state of food security of nation [36].

Despite large volume of RS satellite data, there was no func-
tional acerage estimation methods developed in India including
many other Asian countries. On the contrary, a large volume of
RS-based approaches has produced, which are important steps
forward in the field of RS and agriculture. Notably, there were
literature gaps on the status of wheat cropmapping using satellite
data and its acerage for the Sahibganj District of Jharkhand. So,
the overarching objectives of this comprehensive study were (i)
to derive the phenology of wheat crop based on multi-temporal
MODIS and Landsat-8-based NDVI data during Rabi (winter)
season and (ii) to estimate the wheat acreage and yield using
Landsat-8 data over the Sahibganj District of Jharkhand.

2 Study Area

The Sahibganj District of Jharkhand state in India lies between
24° 42′ 30″ to 25° 21′ 27^N latitude and 87° 25′ 10″ to 87° 54′

35″E longitude (Fig. 1). Based on satellite imagery, the total
geographical area of the district is ~2201 km2. In the Sahibganj
District, there are three distinct seasons such as (i) summer sea-
son (March toMay), (ii) rainy Season (June to October), and (iii)
winter season (November to February). The average air temper-
ature is ~15 °C during winter season, while it can increases to 30
to 40 °C during summer season. The district receives an annual
rainfall of ~1500 mm and > 75% of annual rainfall typically
occurred during rainy season [26]. The district covers
~1030 km2 of cultivable land, wherein only ~84 km2 (~5%) of
cultivable area has been covered under irrigation. The prime
source of irrigation is ground water harvest, deep well, canals,
and rivers. The dominant soil orders were alfisol, inceptisol, and
entisol [14]. The predominant Rabi (winter) crops were wheat,
rai, maize, gram, khesari, pea, etc. These crops are usually sown
in last week of November and harvested in the month of March.

The district comprises a series of Rajmahal Hills in the mid-
dle portion of the district. The Rajmahal Hills alone comprise
~70% of forest area of the district and were marked by dark red
tone in the false color composite (FCC) map (Fig. 1). The FCC
map was created using Landsat-8 OLI (Operational Land
Imager) sensor data (bands used: 543). The low-lying areas
along the Rajmahal Hills were covered with cultivable land.
The rivers such as Ganga, Gumani, and Bansloi flow through
some blocks of the district (north-east to south-east and some of
the part of south-west). These rivers have developed fertile al-
luvium soils over the cultivable land, and therefore, it helps for
crop production. The cultivable lands were marked by light red
tone in the FCC map, and they were scattered over the north,
north-east, south-east, and south-west of the study area (Fig. 1).

3 Materials and Methods

Satellite data used for this study were Landsat-8 (OLI sensor),
MODIS-based land use and land cover (LU/LC) product
(MCD12Q1), and NDVI product (i.e., MOD13Q1). These
data were obtained at bimonthly to monthly time scale for
the period 2016 to 2017, which corresponds to Rabi (winter)
season crops. The wheat statistics (area, production, yield) of
the district over the period 2002–2016 has been obtained from
DES, DAC&FW (2017). The detail descriptions of data us-
ages were provided in Table 1.

3.1 MODIS-Based MCD12Q1 and MOD13Q1

The MODIS-based MCD12Q1 provides LU/LC data at 500-
m spatial resolution at annual interval. We have used the
International Geosphere-Biosphere Programme (IGBP) clas-
sification scheme to show the different LU/LC of the district
in the year 2013. The MOD13Q1 product provides 16-day
composite NDVI data with 250 m of spatial resolution.
These data were originally having sinusoidal projection, and
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tile number used for this study was h25v07 (h as horizontal
and v as vertical). These data were reprojected to geographical
latitude and longitude projection and the datum was assigned
as WGS 1984. The MODIS-based time-series NDVI data
(December 2016–April 2017) were used to capture the phe-
nology of wheat crop in the district of Sahibganj, Jharkhand.
These MODIS products were downloaded from United States
Geological Survey (USGS) (https://earthexplorer.usgs.gov/).

The LU/LC map of the Sahibganj has been obtained
from the MODIS data and the product used was
MCD12Q1 (Fig. 2). The dominant land use classes in
the district were croplands followed by woody savannas
and forest. The croplands account for ~50% area, while
forest covers including savannas account for ~25%, and
croplands/natural vegetation covers account for ~22% of
total area. The spatial extent of individual features was

Fig. 1 Location map of Sahibganj District in the state of Jharkhand,
India. The demarcated boundary on the FCC map (Landsat-8 acquired
on 15 January 2017) showed the Rajmahal Hills that comprises forests

area. The GPS points (green symbols) represent locations of wheat crops
collected during field data collection

Table 1 Satellite and ancillary data used for this study and their characteristics

Data Acquisition date Spatial resolution Temporal resolution Purpose Source

MODIS (MCD12Q1) 2013 500 m Yearly LU/LC USGS
MODIS (MOD13Q1) 2 December 2016 to 7 April 2017 250 m 16-day composite Wheat phenology USGS
Landsat-8 (OLI) 15 January 2017

16 February 2017
20 March 2017

30 m 16 days Wheat acreage USGS

Wheat APY statistics 2002–2016 – – Statistical wheat yield model DES

APY area, production, and yield
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tabulated with their corresponding percentage of cover-
age of total area (Table 2). The MODIS-based LU/LC
has been included to display various LU/LC classes of
the study area.

3.2 Landsat-8 OLI Sensor Data

The Landsat-8 OLI sensor (level-1, terrain corrected) data
have been acquired from USGS site, and data were obtained
for the month of January, February, andMarch during the year
2017. The bands of OLI sensor have 30-m spatial resolution,
and the spectral range varies from visible to infrared bands.
For this study, we used NIR (band 5) and R (band 4) bands to
derive NDVI.

Fig. 2 MODIS-based LU/LC
map of Sahibganj District for the
year 2013. The LU/LC map was
prepared based on International
Geosphere Biosphere Programme
(IGBP) classification scheme

Table 2 MODIS-based major LU/LC classes and the corresponding
areal proportion (%) in Sahibganj District

LU/LC classes Area (km2) Area (%)

Croplands 1096 49.7

Forests 181.6 8.2

Savannas 361.1 16.4

Grassland 17.6 0.8

Croplands/natural vegetation 482.11 21.9

Urban 8.5 0.4

Water body 27.64 1.3

Permanent wetlands 13.17 0.7

Barren or sparsely vegetated 13.3 0.6

Total 2201 100
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3.3 Historical Wheat Statistics

Historical wheat statistics comprising area, production, and yield
(APY) for Sahibganj District have been obtained from the DES,
DAC&FW (2017). As per the availability of data, we acquired
APY data from the year 2002 to 2016. It can be noted that there
was one missing data during the year 2012–2013 in the database
of DES (2017). Further, this data were used to develop a simple
regression model to predict wheat yield for the district.

3.4 Field Data Collection Using GPS

In the first week of March 2017, a field visit was accomplished
to collect geographic location (latitude and longitude) of wheat
plots across the district. The location information was collected
by handheld Global Positioning System (GPS), manufactured
by Garmin (Etrex-30 model). In total, 15 GPS locations were
collected (Table 3) and the spatial distribution of locations of
wheat plots has been shown in Fig. 1. At the time of field visit,
the wheat reached at maturing/ripening stage. These GPS points
were further used for accuracy assessment of classified LU/LC
map obtained from Landsat-8 (OLI) data using the decision tree
(DT) classification technique.

3.5 Methods

The methods include satellite data processing, DT classification,
and statistical wheat yield model. The self-explanatory flowchart
of methodology has been provided in Fig. 3. The broad catego-
ries of data used were satellite, field observations, and historical
wheat APY statistics. The satellite data processing involves im-
age pre-processing and conversion of digital number (DN) to
surface reflectance. The DN of band 4 (red) and band 5 (NIR)
of Landsat-8 OLI was converted to top-of-atmosphere (TOA)
reflectance using reflectance rescaling coefficient, which were
provided in the product metadata file (MTL file). The equations
used to convert the DN values to TOA reflectance and Sun angle
correction can be referred to USGS [46]. In image pre-process-
ing, both Landsat-8 OLI and MODIS data were reprojected to a
common coordinate system called geographical latitude and lon-
gitude with datum of WGS84. The district shapefile has been
obtained from DIVA-GIS to demarcate the Sahibganj District of

Jharkhand. Using the Landsat-8 OLI sensor data, the NDVI has
been derived. The NDVI index is an indicator to assess the
greenness of the vegetation. Its value varies from − 1 to + 1,
where positive value shows the vegetation greenness and zero
to negative value indicates water bodies.

3.5.1 Phenological Metrics and Interpretation

The phenology has been obtained from the time-series data of
NDVI (i.e.,MCD13Q1), wherein we have used in total of nine
satellite NDVI images covering the period December 2016 to
April 2017 (Rabi season). Using the NDVI values, three im-
portant phenological indicators such as Bmaximum growing
rate,^ Bmaximum peak value,^ and Bmaximum fading date^
were investigated based on the phenological cycle of Rabi
(winter) season wheat. The maximum growing rate represents
the maximum NDVI during the active growth cycle of Rabi
season. The maximum peak value is the date when the deriv-
ative of the NDVI composite reaches its maximum value. The
maximum fading date corresponds to the maximum NDVI
value during the maturing stage of wheat.

3.5.2 DT Classification

The DTclassifier offers an effective application for crop map-
ping based on hierarchical classification concept and non-
parametric assumptions. Due to conceptual simplicity and
computational ability, the DT classifier has become more im-
portant in crop mapping. The DTclassifiers can automatically
execute the feature selection, which can reduce the complex-
ity. Its tree structure provides easily understandable and inter-
pretable information regarding the logical or generalization
ability of the classification [10]. As compared to artificial neu-
ral networks (ANNs), DT algorithms have no black box,
wherein many hidden layers were concealed. A DT takes as
input an object/satellite data described by a set of properties,
and outputs were in the form of yes/no decision. DTalgorithm
therefore represents Boolean functions. In DT algorithms, de-
cisions are introduced by a set of rules in multi-temporal LU/
LC classification: if a condition exists, then inference is ap-
plied, which is very suitable in distinguishing crop types [22].

Table 3 Wheat plots and
corresponding GPS points
collected in March 2017 in
Sahibganj District

Plot no. Latitude (N) Longitude (E) Plot no. Latitude (N) Longitude (E)

1 24° 47′ 10.70^ 87° 48′ 0.36^ 9 24° 50′ 4.56^ 87° 47′ 30.12^
2 24° 48′ 7.46^ 87° 43′ 10.40’ 10 24° 48′ 41.04^ 87° 47′ 39.12^
3 24° 48′ 36.78^ 87° 44′ 57.34^ 11 24° 50′ 54.24″ 87° 48′ 21.6″
4 24° 48′ 50.85^ 87° 46′ 9.34^ 12 25° 0′ 10.8″ 87° 49′ 17.04^
5 24° 49′ 27.48^ 87° 47′ 44.88^ 13 24° 53′ 46.32″ 87° 36′ 11.16″
6 24° 49′ 26.76^ 87° 47′ 45.24^ 14 24° 50′ 57.48″ 87° 42′ 0″
7 24° 49′ 36.12^ 87° 47′ 18.96^ 15 24° 53′ 2.04″ 87° 46′ 46.2^
8 24° 50′ 4.92^ 87° 47′ 28.32^
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Several previous studies have employed the DTalgorithm for
LU/LC classification and mapping crop types [15, 20, 35]. The
illustration of DT classifier has been provided in Fig. 4. In this
study, NDVI images of January, February, and March months
obtained from Landsat-8 (OLI) have been used in DT classifier
for wheat acerage mapping. As the OLI sensors data have higher
spatial resolution than the MODIS, we used the OLI data for
acerage estimation. The NDVI thresholds were established for
each month for known GPS locations (at least four plots) of
wheat plots collected during field work using GPS. The rules
were generated for those GPS locations, and these rules were
applied to extract wheat crop across the Sahibganj District.

3.5.3 Statistical Wheat Yield Prediction Model

The wheat area (hectares) and production (tonnes) data over
the period 2002–2016 of Sahibganj District have been used to
develop a statistical regression model. Wheat area was plotted
against the wheat production, and by adding a linear trend
line, a production-based statistical regression of wheat acreage
model has been developed (Fig. 5). Equation 4 was developed
for the Sahibganj District based on the simple regression mod-
el between area and production of wheat. The slope and coef-
ficient were applied to predict wheat production for the year
2017. The correlation coefficient (r) was 0.85 and (p value <
0.001) obtained between wheat production and area.

y ¼ 1:019xþ 579:5 ð1Þ
where y is the estimated production (tonnes) and x is the area
(hectares).

4 Results

4.1 MODIS-Based NDVI Profile and Phenological
Parameters

The NDVI during December 2016 to April 2017 has been
plotted in Fig. 6 to capture various stages of wheat such as
emergence, tillering (wintering), flowering (milking), matur-
ing (ripening), and harvesting. Based on the wheat crop cal-
endar of the Sahibganj District, it is usually sown during last
week of November, while harvested during end ofMarch. Our
results from NDVI profile indicate that the emergence of
wheat was observed in early December and tillering
(wintering) was observed in mid-January. Peak growth stage
of wheat was observed with flowering and milking during the
period mid-January to mid-February. The maturing and ripen-
ing was observed in mid-February to mid-March followed by
harvesting during end of March or first week of April. Based
on NDVI profile, we can infer that the various growth stages
of wheat were well captured, which were in line with the crop
calendar information of the Sahibganj District.

Additionally, we have plotted the NDVI profile for the four
GPS points of wheat plots taken during field investigations to
generate key phenological parameters such as maximum grow-
ing rate, maximum peak value, and maximum fading rate (Fig.
7). The emergence stage of wheat was observed when the
NDVI was ~0.3 to 0.35. The tillering/wintering stage noticed
when the NDVI was ~0.4 to 0.5. The peak growth stage of the
wheat was noticed when the NDVI value was close to ~0.5 to
0.65. It was observed that duringmaturing/ripening and harvest-
ing stage, the NDVI value reduces to 0.35 to 0.45 and 0.25 to
0.3, respectively. The derived NDVI profile showed three key
phenological features (maximum growing rate, maximum peak
value, and maximum fading rate) and their corresponding dates
such asmaximum growing date, maximum peak date, andmax-
imum fading date. The detailed characteristics of phenological
features were presented in Table 4.

The maximum growing rate that belongs to the local max-
imum value of the first derivative on the left side was detected
on first week of January 2017 and when the average NDVI
was 0.52. The maximum NDVI value during the growing
season (maximum peak value) was detected on first week of
February 2017, wherein the average NDVI value was 0.66
that belongs to flowering and milking stage. The maximum
fading rate indicating the local minimum value of first deriv-
ative curve on the right side was noticeable on second week of
March 2017 with mean NDVI of 0.49 and it belongs to ma-
turing and ripening stage. These features describe the typical
wheat crop specific phenological patterns, and enable to iden-
tify the wheat growing pattern using the RS satellite data.

4.2 Wheat Acreage Estimation Based on DT Classifier

In the study area, there were limited Landsat-8 data available,
and thus, there was a limitation in generatingNDVI profile at 16-
day interval. However, due its better spatial resolution (30m),we
generated NDVI profile and computed NDVI thresholds.
Despite poor temporal resolution of Landsat-8 (OLI), it can be
useful to compare the NDVI profile with that of MODIS-based
NDVI profile. The Landsat-8 (OLI)-basedNDVI profile showed
that the maximum growing date, maximum peak date, and max-
imum fading date of wheat were well comparable with the
MODIS-based NDVI profile. This understanding helps to gen-
erate NDVI threshold values based on Landsat-8 (OLI) data and
further to derived rules for DT classifier.

To estimate wheat acreage in the Sahibganj District, we
employed DT classification method, wherein Landsat-8 (OLI)
data has been used because of its higher spatial resolution. The
NDVI threshold values used for generating rules for wheat crop
mappingwere shown in Table 5.We found that theNDVI thresh-
old values were having different ranges depending on the various
growth stages of wheat (i.e., emergence stage to harvesting
stage). Notably, these threshold values must be developed accu-
rately so that the accuracy of acerage estimation will be higher.
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The wheat acreage map has been produced using the DT
classifier and presented in Fig. 8. Notably, the wheat crop was
observed in the upper northern part and south-east region of
the district. The croplands along the Ganga River and other
tributaries (lower part of southern region) have dominantly
covered with wheat crop because of easy access to water via
irrigation facility and fertile soils. However, the wheat plots
were sparse over the middle and western portion of the district
as these regions were predominantly covered with forest
patches along the Rajmahal Hills. In this hilly portion, farmers
mainly used the water from minor reservoirs to irrigate the
crops, which were also verified during the field visit.

According to the satellite-based wheat acerage map of
Sahibganj District, the total area of wheat was estimated as

~3870 ha for the year 2016–2017 (Rabi season) (Table 6). As
per the DES [6], the mean wheat acreage of the Sahibganj
District was reported as ~2846 ha (mean over 2002–2016).
The minimum and maximum of wheat acerage over the period
2002–2016 were between 1245 and 5431 ha. As per Eq. 4, the
predicted wheat production was calculated as ~4523 t for the
year 2016–2017 during Rabi season (winter). As per the DES
[6] statistics, it reported the mean production of ~3482 t (mean
over 2002–2016), while production can vary from 1617 to
5616 t. The large inter-annual variability can be explained by
the variation of environmental factors, soil factors, crop

Fig. 3 The detailed methodology
adopted for this study which
employs both satellite data and
ground-based data to estimate
acreage under wheat and to
predict wheat yield

Fig. 5 Wheat crop production plotted against wheat area of Sahibganj
District. The data were pooled from the years 2002 to 2016Fig. 4 An illustration of decision tree classifier used in this study
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management practices, and natural hazards (land degradation,
large-scale mining, and floods). We also observed that the pro-
duction of wheat is higher along the rivers, while lower along the
mountainous areas of Rajmahal Hills. We find that the predicted
production was relatively overestimated than the mean produc-
tion of the district. However, the deviationwaswithin the limit of
maximum range of wheat production. The predicted yield of
1.17 t/ha was well comparable with the DES yield data (1.24 t/
ha). Overall, the wheat yield was underestimated by 0.07 t/ha.

Accuracy assessment is vital to endorse the digital image
classification results. In this study, accuracy assessment has
been performed using the ten GPS points of wheat plots,
which was collected during field visit. The prepared wheat
acerage map based on DT classifier showed a satisfactory
result with a fair overall accuracy of 80%, wherein the pro-
ducer and user accuracy were calculated as of 78% and 70%,
respectively (Table 7). The kappa coefficient was 0.7, indicat-
ing that the classified map was quite reliable, and thus, the
accuracy of acreage estimation can be acceptable.

5 Discussions

In India, wheat is a vital crop that paved way for the na-
tional food security. Its area is about 70% of that of rice but

its production accounts for ~92% of that of rice [6]. Wheat
also contributed largely during the Green Revolution in
India. As cultivation of wheat employs about ~80% of total
workforce of the Jharkhand State, it becomes imperative to
understand the growth stages of wheat including its various
phenological features. So the RS data offer great potential in
estimating crop phenology, extent, and yield at various
scales owing to their synoptic and repetitive coverage.
Over the last few decades, phenology and RS-based vege-
tation indices (e.g., NDVI, EVI, LAI) have been used to
derive phenological metrics [12, 18, 24]. Crop phenological
transitions (e.g., emergence, heading, anthesis) help not only
to track crop growth but also to estimate crop production.
RS-based spectral profile can also aid in the discrimination
of crop types because each crop has an obvious distinct
temporal and spectral signatures. Therefore, the value of
crop growth dynamics and phenology is more evident when
treating the spectral profile separately for each crops and
may provide substantial information on yields [7, 42, 49,
51]. For deriving phenological metrics, a known limitation
of this study was the coarse spatial resolution of satellite
data (MODIS NDVI products: 250 m), but it has better
temporal resolution [25, 48, 49]. This presents significant
challenges where average plot sizes can be far smaller than
pixel sizes of the RS data. The aforementioned limitation

Fig. 6 Growth stages of wheat
based on NDVI values of
MOD13Q1. The various growth
stages of wheat have been shown
using the NDVI profile (average
NDVI values of wheat plot nos. 1,
2, 3, and 4)

Fig. 7 Wheat phenological
parameters obtained from 16-day
NDVI composite data
(MOD13Q1). The four lines rep-
resent wheat plot locations (plot
nos. 1, 2, 3, and 4) collected dur-
ing field visit
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can be observed in most of the states of India (Bihar,
Jharkhand, Odisha, Chhattisgarh, etc.), where most of the
farm holdings are marginal.

Hence, the present study was focused on estimating wheat
acerage and yield by using RS-based data, wherein phenolog-
ical metrics (Landsat-based) and DT algorithms were
employed, in an intensive agricultural region, Sahibganj
District (Jharkhand state) in India. Our findings suggest that
MODIS-derived phenological metrics fromNDVI data can be
utilized to derive phenological transitions of wheat despite
limited by lower spatial resolution. These derive phenological
transitions can be compared with lower temporal resolution
data, such as Landsat-8 OLI data. Our results suggest that the
phenological transitions and growth phases, such as maxi-
mum growing date, maximum peak date, and maximum fad-
ing date of wheat, were well comparable with MODIS-
derived phenological transitions. In this context, several stud-
ies have applied NDVI time-series data to capture phenolog-
ical transitions, and this approach is being used to monitor the
phenology of various agricultural crops in Asia, Europe, and
America [8, 13, 27, 50]. The knowledge gained through phe-
nological transitions can be used for generating rules for DT
classifier. Our key findings suggest that by combining pheno-
logical information and DT classifier, it is possible to obtain
accurate crop types map based on multi-temporal satellite da-
ta. We found that the developed wheat acerage map of
Sahibganj District has overall accuracy of 80%. In this respect,
Friedl and Brodley [10] have suggested that DT classifier can
consistently outperform the supervised algorithms, such as
maximum likelihood and linear discriminant classifiers in re-
gard to classification accuracy. DT algorithms are non-
parametric and, so, more robust to provide crop type maps.
Pal and Mather [29] obtained an accuracy of ~86% in

identifying crop using DT classifier, while Punia et al. [39],
Sharma et al. [43], and Palchowdhuri et al. [30] reported an
accuracy of ~90% for crop type mapping. Notably, phenolog-
ical information and DT approaches were used to estimate
acerage of crop in Sahibganj District of Jharkhand. The ap-
proaches of this case study can be applied in other provinces
of India to map acreages of crops and further, upscaling the
crop yields. The embedded field-based GPS locations of
wheat plots further strengthened the outcomes of acerage of
wheat and thereby, the accuracy of predicting yields.

We further employed simple linear regression tech-
nique to predict yields of wheat, wherein we utilized
time-series available area and production statistics from
DES database (2017). In this respect, we found that pre-
dicted wheat yield of 1.17 t/ha for 2016–2017 Rabi
(winter) season. These results were well comparable with
the DES database (2017) that showed yield of 1.24 (mean
of 2002–2016) tonnes/ha. To our knowledge there were
no literatures for the Sahibganj Province with respect to
wheat acerage map and yield prediction using RS data and
yield model. Therefore, this unique study could be bene-
ficial for acerage estimation and crop monitoring for the
Sahibganj Province. Furthermore, studies have suggested
that statistical regression models using observed yield sta-
tistics and vegetation indices at certain growth stage of the
growing season can give an indication of crop yield [3,
45]. This study has used simple linear yield model on the
basis of long-term area and production data, wherein
satellite-derived acerage was used as an input to the yield
model. Albeit, this is a simple approach but it facilitate to
estimate yield accurately. Nevertheless, other statistical
models, such as linear and non-linear models, can be uti-
lized to predict crop yields. Forecasting methods, such as
logistic and Gompertz, were also available to predict
wheat yields [37].

Keeping in view the importance of wheat, quantitative as-
sessment of APY was critical for a wide range of applications
and for policy makers. Further, quantitative assessment at re-
gional level was extremely vital as it form the basis for eco-
nomic and policy planning by state and central governments.
Accurate maps of wheat crop extent are vital for its yield
estimation from RS-based data as the extent maps can be used
to diminish the errors introduced by non-agricultural land
covers. So, generating accurate wheat maps can form the first
stage of RS-based yield analysis.

Table 4 NDVI-based profile representing wheat phenology metrics and their characteristics

Features Phenological interpretation Average NDVI and date Growth stages

Maximum growing rate The local maximum value of the first derivative curve on the left side 0.52 (first week, January 2017) Wintering

Maximum peak value Maximum NDVI value during a growing season 0.66 (first week, February 2017) Milking

Maximum fading rate The local minimum value of the first derivative curve on the right side 0.49 (second week, March 2017) Maturing

Table 5 NDVI threshold values and rules used in DT classifier to
extract wheat crop acreage

Months NDVI
threshold

Rules

January 0.39–0.45 (b1 > 0.39 and < 0.45), (b2 > 0.58 and < 0.63),
and (b3 > 0.29 and < 0.34)February 0.58–0.63

March 0.29–0.34

The variables b1, b2, and b3 represent January, February, and March,
months, respectively
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6 Conclusions

This study indicates that phenological parameters derived
from RS-based NDVI profile were capable of identifying the
wheat crop. The distinct phenological transition profile of

wheat makes feasibility for wheat mapping and acreage esti-
mation accurately as the NDVI profile separate the wheat from
non-agriculture land covers. By employing DT classifier,
acerage of wheat map was generated, and further, the wheat
map was evaluated against GPS points of wheat plots. The
accuracy assessment results showed that the developed wheat
acerage map has overall accuracy of 80%. As other natural
vegetation classes overlap each other on the condition (rules)

Fig. 8 Wheat acreage map of
Sahibganj District derived from
Landsat-8 (OLI) data using DT
classifier

Table 6 Comparisons of wheat APY between predicted and reported
by DES (2017) for the Sahibganj District

Wheat (APY) Predicted DES (mean) DES (min–max)

Area (hectares) 3870 2846 1245–5431

Production (tonnes) 4523 3482 1617–5616

Yield (tonnes/ha) 1.17 1.24 0.87–1.55

As per the DES, the mean, minimum, and maximum values have been
shown

Table 7 Accuracy
assessment parameters of
wheat map obtained
from DT classifier

Overall accuracy 80%

Producer accuracy 78%

User accuracy 70%

Kappa coefficient 0.7

Remote Sens Earth Syst Sci (2019) 2:96–107 105



created for DT algorithms, it was hard to discriminate the
wheat map with > 90% of overall accuracy. Notably, the clas-
sified map was quite reliable, and thus, the accuracy of acre-
age estimation can be acceptable within the limit of errors.

The DT approach used to produce the acerage map based on
the usages of the multi-temporal data (Landsat-8) is strictly non-
parametric and based on the expert knowledge. Thus, the DT
classifier is very subjective in nature as the accuracy highly de-
pends on threshold based knowledge. Based on the Landsat-8
(OLI) sensor data, the acerage of wheat was estimated as
~3870 ha for the year 2016–2017 (Rabi season) (Table 6).
Further, wheat yield over the Sahibganj District for the year
2016–2017 has been predicted as ~1.17 t/ha, wherein total wheat
production has been predicted as ~4523 t. As per the DES [6]
report, the production ranged from 1617 to 5616 t in the district.
Our predicted values were more than the mean values, but it was
within the range of maximum production (5616 t) reported by
DES [6]. We concluded that satellite-derived acerage estimation
can be successfully preferred instead of the traditional-based
CCE survey. It is a reliable, cost-effective, and time-saving tech-
nique, which could help to the decision and policy maker by
giving an early estimation of yield by using statistical regression
method.
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