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Abstract
The design optimization of ship hull form based on hydrodynamics theory and simulation-based design (SBD) technologies 
generally considers ship performance and energy efficiency performance as the design objective, which plays an important 
role in smart design and manufacturing of green ship. An optimal design of sustainable energy system requires multidis-
ciplinary tools to build ships with the least resistance and energy consumption. Through a systematic approach, this paper 
presents the research progress of energy-efficient design of ship hull forms based on intelligent optimization techniques. We 
discuss different methods involved in the optimization procedure, especially the latest developments of intelligent optimiza-
tion algorithms and surrogate models. Moreover, current development trends and technical challenges of multidisciplinary 
design optimization and surrogate-assisted evolutionary algorithms for ship design are further analyzed. We explore the 
gaps and potential future directions, so as to pave the way toward the design of the next generation of more energy-efficient 
ship hull form.

Keywords  Ship hull form design · Simulation-based design · Intelligent optimization · Energy efficiency · Surrogate 
model · Evolutionary algorithm

1  Introduction

Shipping exhibits a great impact on the global emissions, 
which accounts for almost 3 % of the global anthropogenic 
emissions in 2018, and leads to the increase of greenhouse 
gas (GHG) emissions by about 9.6% degree from interna-
tional shipping compared to the 2012 levels [1]. Recently, 
the International Maritime Organization (IMO) made a tar-
get to reduce 50% GHG emissions by 2050. The challenging 
target has attracted increasing attention toward ship energy 
systems and alternative fuels that can offer a more sustain-
able performance over the past decade. The optimization of 
an energy system either on land or on ships can be consid-
ered at three levels—i.e., synthesis, design, and operation 

[2], and each level cannot be completely isolated from the 
others. To be more specific in shipping areas, it is suggested 
in [2, 3] that the optimization of the whole ship can be con-
sidered as a complex system with all its subsystems—e.g., 
hull form, energy equipments, propulsors, navigation equip-
ment, etc., which is indispensable for its whole life cycle. 
Thus, it is necessary and beneficial to further expend the 
border of ship energy system to include aspects belonging to 
other disciplines, such as hull form and propulsor optimiza-
tion, and hence, moving toward the holistic ship optimiza-
tion [2].

Nowadays, smart design of ship hull form has attracted 
much attention under the promotion of low-carbon econom-
ics. The hull form design does not focus merely on static 
water resistance minimization any longer, but shifts toward 
pursuing optimal overall navigation performance. Under 
the concept of green ship design, it is of great demand to 
establish the energy-efficient and environmental-friendly 
ship manufacturing industry. In 2014, the IMO proposed 
the energy efficiency design index (EEDI), which calls for 
hull form design to be safer, more environmental friendly, 
more cost-effective, and more comfortable in the future. 
Therefore, energy conservation and emission reduction 
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have become the main issues of future development of ship 
design. As the core component of ship design, hull form 
design plays a crucial role in energy conservation and fuel 
efficiency, which is considered as the fundamental technol-
ogy that can bring profound and long-lasting impacts in 
terms of energy efficiency [4]. Hence, energy-efficient hull 
form design plays an important role to reduce total resist-
ance, fuel consumption, and carbon dioxide emission. How-
ever, traditional hull form design methods struggle to meet 
the development demands of green ship.

Ship hull form design calls for multidisciplinary optimi-
zation tools involving numerous sub-domains, with close 
relation to hydrodynamic performance, navigation perfor-
mance, energy efficiency, seakeeping performance, general 
layout, operational economy, etc. With the development of 
computer-aided design techniques, the simulation-based 
design (SBD) approaches have significantly promoted the 
transformation of hull form design from traditional empiri-
cal methods to intelligent modes [5]. Through the SBD 
approaches, ship performance calculation and optimization 
techniques based on computational fluid dynamics (CFD) 
[6–10] are combined with hull geometry reconstruction 
methods, aiming to achieve the best performance (e.g., mini-
mal resistance and lowest energy consumption) under given 
conditions or constraints.

This paper reviews the progress of intelligent optimiza-
tion techniques for ship hull form design in recent years. 
The rest of the paper is organized as follows. We summarize 
the main techniques in hull form optimization in Sect. 2. 
Section 3 describes SBD and intelligent optimization meth-
ods used for energy-efficient ship hull. For more in-depth 
research of this filed, we present multidisciplinary design 
optimization and robust design for ship hull in Sect. 4. Spe-
cifically, we elaborate the advances in surrogate-assisted 
optimization for expensive problems in Sect. 5, which is 
not only the underlying optimization tool but also of prom-
ising potential to develop new methods in designing green 
hull form. Moreover, Sect. 6 provides some conclusions and 
insights for intelligent hull form design optimization.

2 � Main technologies in hull form 
optimization

Ship hull form design optimization based on hydrodynamics 
theory and SBD technology is a complicated system engi-
neering, which integrates multidisciplines, i.e., CFD, CAD, 
computer technologies, and optimization methods. General 
hull form design patterns are shown in Fig. 1. The basic 
principle of ship hull form design based on SBD technology 
is to complete the numerical simulation and hydrodynamic 
calculation for given performance targets such as ship resist-
ance and seakeeping with the assistance of CFD technology 
[11]. Then, optimization methods are used to search the hull 
geometric design space based on the automatic hull geom-
etry reconstruction technology so as to obtain the excellent 
hull form with the best hydrodynamic performance under 
condition of comprehensive constraints. Therefore, hull form 
optimization system mainly involves five key technologies: 
CFD numerical simulation technology, hull geometry recon-
struction technology, optimization technology, approxima-
tion technology, and integration technology.

2.1 � CFD numerical simulation technology

Ship hull form optimization based on hydrodynamic theory 
requires detailed description of the flow field around the 
hull and effective measurements to control the flow around. 
Therefore, ship hull form optimization is inseparable from 
the scientific guidance of ship hydrodynamic theory, includ-
ing the calculation method and analysis technology of hydro-
dynamics. The hydrodynamic theory used to solve ship 
resistance can be divided into two categories, i.e., potential 
flow theory and viscous flow theory, while potential flow 
theory can be further separated into linear one and nonlin-
ear one. Currently, commonly used potential flow theories 
include linear wave resistance theory based on Michell inte-
gral method and nonlinear wave resistance theory based on 
Rankine source method. Viscous flow theory primarily uti-
lizes CFD methods to predict a ship’s viscous resistance and 
wave resistance. It involves setting up numerical simulations 

Fig. 1   Principle of ship hull 
form design optimization based 
on SBD technology

Optimization platform

Hull form geometry 

Automatic reconstruction 
Mesh regeneration CFD numerical calculation



Research progress on intelligent optimization techniques for energy‑efficient design of…

for static water conditions and wave conditions to investigate 
the optimal hull design with minimal resistance.

2.2 � Hull geometry reconstruction technology

Hull geometry reconstruction technology serves as a bridge 
between ship resistance performance evaluations and optimi-
zation methods. For hull form optimization based on hydro-
dynamic theory, especially CFD methods [11], the rela-
tionships between objective functions (such as commonly 
used minimum total resistance) and design variables are 
often implicit. How to establish the relationships between 
design variables and objective functions is a prerequisite for 
implementing CFD-based hull form optimization. Usually, 
a small number of parameters are used to parameterize the 
geometric shape of the hull form firstly. Then, we build the 
relationships between hull’s shape parameters and design 
variables. After that, better design variables can be obtained 
with the assistance of optimization methods. Lastly, geo-
metric reconstruction techniques can be used to modify the 
geometric shape of the ship hull. According to different ship 
parameters, hull geometric reconstruction techniques can be 
divided into two categories: (1) ship parameterization—i.e., 
expressing the geometric shape of the hull through a series 
of ship characteristic parameters; (2) geometric modeling—
i.e., achieving the reconstruction of the hull’s geometric 
shape by changing the positions of a series of control points. 
It is worthy noting that the stability of the designed hull form 
needs to be guaranteed when generating different geometric 
shapes.

2.3 � Optimization technology

Generally, the optimization techniques commonly used in 
the field of ship design can be broadly classified into three 
categories: 

1.	 Gradient-based optimization algorithms [12], including 
nonlinear programming (NLP), sequential quadratic pro-
gramming (SQP), and mixed integer quadratic program-
ming (MISQP).

2.	 Derivative-free intelligent optimization algorithms [13, 
14], such as genetic algorithm (GA) [15–17], particle 
swarm optimization (PSO) algorithm [14, 18], artificial 
bee colony (ABC) algorithm [19], and other evolution-
ary algorithms.

3.	 Mixed optimization algorithms combining gradient-
based optimization with intelligent optimization tech-
niques, e.g., combining GA with SQP [20], combining 
DPSO with SQP [21], and combining DPSO with the 
DIRECT method [14, 22].

Gradient-based optimization methods show fast convergence 
and good performance given initial values, but there also has 
obvious shortcomings. Ship hull form optimization usually 
involves multiple disciplines such as speediness, wind and 
wave resistance, maneuverability, etc. It is difficult to estab-
lish clear analytical expressions between each performance 
index and design variables while they may possess the char-
acteristics of multi-peak, non-conductive or black box. The 
gradient information can only be obtained by computation-
ally expensive numerical analysis. For complex and non-
linear ship resistance performance optimization problems, 
gradient-based optimization cannot be applied directly and it 
is easy to converge to the local optimal solutions. Moreover, 
optimization results obtained by it are very sensitive to the 
settings of initial values. Contrarily, intelligent optimization 
algorithms have strong global search ability, but their local 
search ability is poor, which results in slow search speed. 
Therefore, the combination of above two optimization meth-
ods can take advantage of their respective advantages to 
form a more efficient hybrid global optimization algorithm.

2.4 � Approximation technology

Optimization algorithms usually require numerous iterative 
objective evaluations before achieving satisfactory results. 
It intends to be unaffordable if a high-precision solver is 
involved, e.g., CFD, which requires long response time and 
intensive computational cost. Therefore, it is difficult to 
complete a quick optimization process within the stipulated 
time. How to solve a large number of numerical calculations 
based on hydrodynamic theory is a prerequisite for ship hull 
form optimization engineering. There are two main meth-
ods: (1) high-performance computing—e.g., parallel/distrib-
uted computing techniques; (2) approximation technology, 
which can simulate the design space to obtain the implicit 
expressions of multiple objective functions with low com-
putational cost, and thus greatly reducing the computational 
resource in the optimization process. As a result, approxima-
tion technique has received more attention from researchers. 
Approximation technique mainly includes some parts [23]: 
screening and variable reduction, design of experiments 
(DoE) sampling, approximate model (or surrogate model) 
construction, and sequential sampling. 

1.	 Screening and variable reduction is an efficient step for 
reducing the cost of the surrogate’s construction, with 
drastic dimensionality reductions being possible.

2.	 DoE is a crucial part in building surrogate models, 
which is an effective mathematical statistical sampling 
method for selecting sample points for simulation. It is 
important to allocate sample points in the design space 
reasonably so as to improve the model accuracy. A 
good experimental design should satisfy that the sample 
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points are full of the design space, that is, uniformity and 
orthogonality, and can effectively compress the sample 
size to reduce computational overhead.

3.	 At present, commonly used surrogate models include 
kriging model, response surface method (RSM), neural 
network (NN), radical basis function (RBF), and support 
vector machine (SVM). Compared with other commonly 
used surrogate models, kriging models can provide not 
only the predicted value of the prediction point, but also 
the prediction error (variance), that is, the confidence 
interval of the Gaussian process (GP) regression model. 
Thereby, the prediction probability errors given by the 
kriging model can be used naturally to dynamically 
update the model to improve its prediction accuracy.

4.	 Sequential sampling is an efficient way of making use 
of limited computational budget. Techniques make use 
of both the prediction and the uncertainty estimates of 
the surrogate models to intelligently sample the design 
space.

2.5 � Integration technology

Hull form optimization based on hydrodynamic theory is a 
complex system engineering involving various technologies. 
How to integrate different modules to form a unified interface 
optimization platform is also the key part of realizing optimi-
zation process automation. Nowadays, integration technologies 
are mainly completed based on optimization platforms, such 
as ISIGHT [24] and OPENFOAM [25]. ISIGHT is a popular 
and relatively mature optimization platform, and thus most 
researchers use it for synthesis [8, 18, 24, 26–30]. ISIGHT 
optimization platform integrates CFD resistance calcula-
tion module and CAD geometry reconstruction module, and 
reserves program interface between modules. OPENFOAM is 
a CFD open source platform that can be re-developed, which 
has been used a lot [31–36]. Wan et al. [37] developed the 
naoe-FOAM-SJTU solver for marine ship hydrodynamics 
problems based on the OPENFOAM platform. Furthermore, 
they have developed a holistic hull optimization platform for 
hull form design, called OPTShip-SJTU [9, 38, 39], which 
integrates several key components like hull form expression, 
ship shape transformation, experimental design, hydrodynamic 
performance evaluation, approximation module and optimiza-
tion algorithms. Ao et al. [40] proposed multi-fidelity deep net-
work assisted optimization methods to reduce the exponential 
growth in data requirements as the result of increasing design 
variables caused by integration.

3 � Application of SBD and intelligent 
optimization methods for energy‑efficient 
ship hulls

This section reviews and analyzes the research on ship hull 
form design based on SBD technology and intelligent opti-
mization methods, elaborates and summarizes the main 
theories and methods involved in optimization, and focuses 
on the latest developments of intelligent optimization meth-
ods and surrogate model design in this field. In general, ship 
hull form optimization design problem can be expressed as 
follows:

where f (x) is the objective function of hull form optimiza-
tion, i.e., hydrodynamic performance index, such as resist-
ance value, companion fraction value, and motion response. 
And x refers to design variables (solution vectors), repre-
senting the ship shape transformation parameters, D is the 
feasible domain, which means the design space of the prob-
lem. Any point on the feasible domain represents a solution 
vector x . gi(x) and hj(x) are inequality constraint function 
and the equation constraint function [41], respectively, e.g., 
precise shape constraints for the wet surface area, main 
scale, displacement volume and even propeller shaft height. 
Therefore, ship hull form optimization is a typical class of 
engineering optimization problems that involves a large 
number of design variables and constraints.

Ship hull form design based on SBD solved by intelligent 
optimization algorithms requires a large number of com-
putationally expensive objective functions before finding 
the global optimum. It is extraordinarily time-consuming 
if physical model tests or numerical simulation calculations 
are carried out in each generation of the optimization pro-
cess. Therefore, numerous surrogate models, instead of the 
original high-fidelity CFD evaluations, can be used to reduce 
computational cost. However, surrogate model accuracy 
plays a crucial role in affecting the effectiveness of the opti-
mization. Often, surrogate model reliability can be improved 
through cross-validation and reduction of model variance. 
DoE generally makes the sample points fill the design space, 
which does not consider the differences of the objective 
function in the design space. As a result, it cannot guarantee 
the local accuracy of surrogate models. Dynamically updat-
ing the approximation model by adding new sample points in 
an orderly manner with certain criteria (e.g., selecting points 
with largest variance) can effectively improve the surrogate 
accuracy. Therefore, the optimization idea of ship resistance 
performance of SBD technology combining intelligent opti-
mization algorithms and approximate models is shown in 

(1)

Min ∶f (�), x ∈ D

s.t. ∶gi(�) ≤ 0, i = 1,… , p

hj(�) ≤ 0, j = 1,… , q
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Fig. 2, where approximate models replace part of true objec-
tive function calculations, and the optimal hull form design 
can be obtained with minimal computational resource.

We review the representative publications on optimal 
design of ship hull form published in important scientific 
journals, which are indexed by Web of Science in the past 
ten years. As can be seen from Fig. 3, publication count 
keeps on the rising trend over time, especially in the last 
three years. Therefore, we summarize the mainstream meth-
ods proposed in the representative publications, as discussed 
according to the major components depicted in Fig. 2.

3.1 � Design variables based on hull form expressions 
and transformations

As the first step of hull form optimization design, the key 
technology of hull form expression lies in how to design 
variables effectively, accurately and directly to express 
the complex hull geometry (e.g., ship scale ratio, longi-
tudinal centre of buoyancy, and etc.). Based on ship form 

representation technology, ship form transformation tech-
nology mainly focuses on which deformation method (hull 
geometry reconstruction technology) can effectively obtain 
smooth and practical ship form, large deformation space 
and fewer deformation control parameters. The choice of 
hull form transformation technique and the determina-
tion of deformation parameters affect the design space for 
hull form optimization design problems. The current ship 
hull form transformation methods include [42] translation 
method, free-form deformation (FFD), B-splines, Lack-
enby transform, superposition fusion (morphing), RBF, 
orthogonal basis functions and so on. FFD method has 
been used to automatically modify the geometry of the 
ship [9, 35, 39, 43–47]. In the literature [32], multiple 
branches of ship surfaces are combined and deformed in 
conjunction with the FFD method. In the literature [48], 
RBF method was used for local deformation of the bow, 
and FFD method for local deformation of the stern, and 
translation method for global deformation, respectively.

Fig. 2   The framework of SBD technology incorporating intelligent optimization and approximate models

Fig. 3   Distribution of articles 
published in important journals
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Meanwhile, some recent research focuses on the estab-
lishment of ship hull form transformation methods, such as 
[35, 42, 45, 49, 50]. Among them, Li et al. [45] combined 
the mesh deformation with the adaptive method. Wang et al. 
[42] proposed an improved RBF method for ship hull form 
expression and optimization. Ichinose [50] expanded the tra-
ditional method which only superimposes two or three hull 
forms to N hull forms by introducing the center of gravity 
coordinate system in the superposition fusion method, and 
further assisted decision making by visualizing and analyz-
ing the decision space in the vicinity of the optimal hull 
forms.

To obtain a more practical and efficient design space for 
hull form representation, some dimension reduction tech-
niques have been used to simplify the design variables [36, 
51–55] and reduce computational cost to some extent. Some 
works use Karhunen–Loeve expansion (KLE) [51, 56–60] 
or proper orthogonal decomposition (POD) [34, 35] to com-
press dimensionality of design space, and then establish a 
reduced dimensional representation for hull form trans-
formation. Among them, D’Agostino et al. [51] proposed 
off-line decision space dimension approximation method 
that relies on geometric variance to conduct decision space 
evaluations without simulation or performance analysis. It 
is worthy pointing out that, under certain conditions, KLE 
(or POD) method is approximately equivalent to principal 
components analysis (PCA) method [59]. Zhang et al. [61] 
adopted a linear dimensionality reduction method, principal 
component analysis, to decrease the dimensionality of the 
geometric space, which can compress optimization variables 
and thus reducing computational resource consumption. 
Zheng et al. [52] proposed a dynamic spatial approxima-
tion method that used data mining techniques to dynami-
cally approximate the range and number of design variables 
during the optimization process. Qiang et al. [55] designed 
a multi-stage spatial approximation technique by combining 
Self-Organizing Map (SOM) and rough set theory respec-
tively. Zheng et al. [52] established a hierarchical dimension 
approximation method by combining SOM with simulated 
annealing search method. Khan et al. [53] proposed a ship 
hull shape-supervised initial design space dimensionality 
approximation method to describe the important intrinsic 
structure of the hull by constructing shape-signature vectors 
(SSVs) such that the resulting reduced dimensional subspace 
retains the required reconfiguration capabilities, which can 
provide diversity, robustness, and more important hull phys-
icsal information.

3.2 � Objective functions based on hydrodynamic 
performance evaluation

The technology of ship hydrodynamic performance evalua-
tion is to provide calculation tools for the objective functions 

(such as speediness, seakeeping and maneuverability) in ship 
form optimization design problems, so as to evaluate the 
quality of the optimization results. The reliability, efficiency, 
and economy of hydrodynamic performance evaluation tech-
niques are major concerns and difficulties for ship hull form 
optimization design. Traditional methods use empirical for-
mulas and model tests, while some recent methods adopt 
CFD numerical simulation calculations. They can be divided 
into following two categories: 

1.	 Methods based on potential flow theory. Michell integral 
method, Neumann–Kelvin method, Dawson method, and 
Rankine method are used to calculate the resistance of a 
rising wave. Slice theory and facet method are adopted 
for calculating seakeeping performance. Also, slender 
body theory and facet method can be used to calculate 
maneuvering performance. At present, there have been 
many studies on the optimal design of ship hull form 
based on the potential flow theory. Moreover, the calcu-
lation cost is low as a result of the small mess volume. 
However, the optimized ship shape may be more compli-
cated and strange as a result of the ignorance of viscous 
effects. In addition, practical problems are simplified 
and resulting calculation accuracy may not meet the 
actual requirements, which may account for the failure 
of its reliability.

2.	 Methods based on viscous flow theory. For example, 
Reynolds average Navier–Stokes (RANS) equation con-
siders viscosity, separated eddy simulation method, and 
direct numerical simulation method. Ship hull form opti-
mization viscous solvers generally use RANS models 
to meet the high accuracy requirements. The numerical 
results obtained by viscous flow CFD methods are usu-
ally of high accuracy and it can capture many details of 
the flow field.

3.3 � Intelligent optimization algorithm

Early ship hull form optimization concentrates on single-
objective optimization [62], and its aim is to minimize the 
hydrodynamic resistance performance.

Recently, ship hull form design optimization turns to 
multi-objective optimization which considers several per-
formance indicators simultaneously [63]. For example, Yang 
et al. [43] improved the hydrodynamic performance of a ship 
hull form by solving the hull design optimization problem at 
different speeds, and explores the design space using a multi-
objective PSO (MOPSO) optimization algorithm where two 
objective functions—i.e., total drag at two different speeds 
(12 and 14 knots)—are evaluated by RANS solver. Follow-
ing the same idea, Ni et al. [44] used MOPSO algorithm to 
optimize the SWATH hull form where total drag at two dif-
ferent speeds (11 and 15 knots) are considered.
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Compared with single-objective optimization problems, 
the main characteristic of multi-objective optimization 
Problems (MOPs) is that their optimization objectives are 
conflicting [64, 65]. That is to say, there is no single opti-
mal solution to make all objectives optimal, and the optimal 
solution is a set of solutions that compromise each other 
among objectives, i.e., Pareto front (PF). The aim of solv-
ing an MOP is to obtain a set of vectors that are uniformly 
distributed and as close as possible to the true PF of the 
problem, which in turn facilitates the decision maker’s selec-
tion based on preferences or further requirements [66–68]. 
Therefore, it is required that the resulting final solution set 
has good convergence and diversity. As a class of global 
optimization algorithms based on population-directed sto-
chastic search, multi-objective evolutionary algorithms 
(MOEAs) have become the most popular methods for solv-
ing MOPs. We list some representative MOEAs, such as 
NSGA-II based on Pareto dominance [69], MOEA/D based 
on decomposition strategy [70] and the multi-objective par-
ticle swarm optimization algorithm [71].

During the past decade, ship researchers have carried out 
a lot of research on ship optimization design using SBD 
technology. The various intelligent optimization algorithms 
used for ship hull form design in the existing mainstream 
literature are summarized in Table 1. Also, the compara-
tive distribution of the number of different algorithms (the 
improved algorithms for PSO, IPSO, and DPSO are also 
denoted by PSO) is shown in Fig. 4. It can be seen that the 
single-objective optimization methods, such as PSO and its 
improved versions IPSO and DPSO, and the multi-objective 
optimization methods, such as NSGA-II, have received more 
attention. In addition to consider two objective functions 

in ship hull form optimization design, some recent works 
explore three or even more objective functions, and then 
use reference point-based high-dimensional multi-objective 
optimization algorithm NSGA-III to solve them [72].

3.4 � Approximate technology

The accuracy of any approximate model is primarily affected 
by two factors: (i) noise in the data and (ii) inadequacy of the 
fitting model (called modeling error or bias error). In view 
of the first factor, screening and variable reduction as well 
as DoE techniques can play important roles in constructing 
a good approximation model.

As the number of variables in the surrogate increases, 
the number of simulations required for surrogate construc-
tion rises exponentially (curse of dimensionality). However, 
some of the variables may have only a negligible effect on 
the response surface approximation. Hence, several tech-
niques have thus been proposed for evaluating the impor-
tance of the variables economically [23], like variable 
screening techniques, variance-based techniques, variable 
transformation techniques and dimensionality reduction by 
subspace construction.

Mainstream DoE methods include orthogonal experimen-
tal sampling [102, 103], Latin Hypercube Sampling (LHS) 
[59, 90, 91] and Optimized Latin Hypercube Sampling ( 
Optimized Latin Hypercube Sampling, OLHS) [7, 8, 34] and 
Sobol sampling [104, 105]. For example, Tahara et al. used 
an orthogonal test sampling method to sample the design 
space for the optimization of DTMB 5415 [102] and Delft 
ship hull form [103], respectively. Huang et al. [31] used the 
LHS method for sampling the central slice optimization of a 
trimaran. Wu et al. [37] used OLHS sampling for optimizing 

Table 1   Intelligence optimization algorithms used in the literature of 
hull form optimization

Objective num Algorithms Articles

single-objective GA [17, 62, 73]
MIGA [8, 27, 74]
MPGA [75]
ABC [19, 76]
PSO [14, 18, 55, 58, 77–81]
DPSO [14, 21, 22, 51, 82]

multi-objective MOGA [13, 83, 84]
NSGA-II [9, 37, 39, 42, 48, 49, 55, 85–96]
NSGA-III [10, 46, 47]
MOPSO [6, 43, 44, 80]
MODPSO [57, 97]
MOEA/D [98]
MOABC [31, 99]
DMOEOA [100]
SHERPA [101]

Fig. 4   Distribution of number of different intelligent optimization 
algorithms for ship hull form design
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design of DTMB 5415. In addition, some other sampling 
methods have been successfully applied in ship hull form 
optimization. Volpi et al. [106] used the Latin center-of-
mass Voronoi gridded sampling method to initially sample 
the Delft ship hull form optimization. Ouyang et al et al. 
[107] proposed an improved maximum entropy sampling 
method for S60 ship hull form for optimization analysis. We 
summarize DoE methods used in the existing literature in 
Table 2. It can be clearly seen that LHS and OLHS methods 
are most popular among researchers because they have bet-
ter prediction accuracy and simpler construction process. 
Moreover, it is evident that Sobol sampling attracts several 
attention mainly due to the fact that Sobol sampling can 
effectively ensure the construction of high-dimensional sur-
rogate models with high prediction accuracy.

Recently, surrogate model construction in hull form opti-
mization has led to a large number of research works. Peri 
et al. [111] introduced surrogate models into the field of hull 
form optimization earlier, and compared the advantages and 
disadvantages of various surrogate models such as RSM, 
kriging, NN and RBF. Since then, several studies have given 
examples of hull form optimization based on surrogate mod-
els. Wang et al. [112] construct a robust surrogate model of 
the ship hydrodynamic performance in response to design 
changes based on CFD results. Kang et al. [113] construct 36 
high-precision agent models of structural limit state for solv-
ing river-sea-going ship design problems considering uncer-
tain factors. Tahara et al. [102] used kriging model in opti-
mizing the Delft catamaran. Volpi et al. [106] used DRBF 
and DKG methods to construct approximation models to 
optimize the Delft catamaran. Chen et al. [58] adopted four 
approximation models, i.e., RBF, kriging, SVM, and multi-
harmonic spline methods, and experimental results showed 
that RBF model works better. Leotardi et al. [114] used RBF 
to construct an approximate model for optimizing DTMB 
5415. Diez et  al. [115] adopted NN method to train an 
approximate model in optimizing DTMB 5415. Serani et al. 
[14] used RBF method to construct a surrogate model to 
optimize DTMB 5415. Huang et al. [31] used RBF method 
to construct an approximate model in the triple-hulled ship 

optimization. Li et al. [116] used RSM in optimizing the 
total resistance of a bulk carrier. Chen et al. [58] used RBF 
to optimize the Delft Catamaran 372 model. Yang et al. [5] 
used RBF in optimizing a Series 60 hull to reduce the total 
drag at two speeds. Wu et al. [37] took advantage of krig-
ing method to construct an approximate model to optimize 
the DTMB 5415. Hou [22] used NN to optimize the EEDI 
of a Wigley hull. Diez et al. [6] used RBF to optimize the 
drag and seakeeping performance of Delft Catamaran 372 
model considering stochastic conditions. Zong et al. [27] 
used second order RSM to optimize the total drag coefficient 
of a trimaran. Coppede et al. [32] used the kriging model 
to optimize the total drag of KCS vessel. Zhang et al. [26] 
used Elman neural network to optimize the total drag coef-
ficient of DTMB-5512 and Wigley III hulls in calm water 
at given speed. Miao et al. [9] optimized the S60 catamaran 
using the kriging model to reduce drag by varying the de-
hulling shape and separation. Serani et al. [57] optimized the 
DTMB-5415 hull by using RBF to minimize the expected 
value of the mean total drag and maximize the maneuver-
ability of the vessel in a completely stochastic environment. 
The popularity of deep learning in recent years also brings 
opportunities in the field of ship optimization, e.g., Zhang 
et al. [78] constructed a surrogate model for predicting the 
total resistance based on a deep belief network and showed 
its superiority over the traditional surrogate models.

The methods for evaluating hydrodynamic performance 
of ship have different fidelity levels. It is possible to obtain 
hydrodynamic performance metrics for new hull forms by 
using different physical models or numerical discretization 
schemes if these methods complement each other. Then, 
high-precision surrogate models can be constructed and thus 
evaluating new sample hulls in a highly efficient manner. 
Therefore, for simulation-based hull hydrodynamic perfor-
mance optimization, the establishment of multi-fidelity sur-
rogate models is very necessary. A series of research works 
have followed this line of idea and have become one of the 
research hotspots [34, 73, 96, 98, 105, 117–119]. For exam-
ple, a dual-fidelity co-kriging surrogate model was proposed 
for the optimization design of marine propellers, where the 

Table 2   Design of experiment 
approaches used in the literature 
of hull form optimization

DoE sampling method Articles

Orthogonal test sampling [102, 103]
LHS [24, 31, 32, 36, 59, 79, 85, 90, 91, 94, 

104, 106, 108, 109]
OLHS [7, 8, 26, 29, 37–39, 86, 93, 95, 98, 100]
Sobol sampling [28, 35, 36, 73, 77, 104, 105, 110]
Uniform design sampling [47, 62]
Sequence sampling based on Voronoi diagrams [30]
Latin Center of Mass Voronoi Gridded Sampling [106]
Maximum Entropy Sampling [107]
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boundary element method is used for the low-fidelity model 
and RANS is used for the high-fidelity model [105]. Liu 
et al. [73] proposed a multi-fidelity co-kriging surrogate 
model that uses more low-fidelity sample data to assist fewer 
high-fidelity sample data to predict high-fidelity outputs, 
which can reduce the total computational cost and make 
the surrogate model have relatively high accuracy. A multi-
fidelity co-kriging surrogate model was similarly developed 
for Japanese bulk carriers in [34], and POD technology is 
used to study the flow field dimensionality reduction so as 
to make full use of the flow field results of the new sample 
hull. In conclusion, the multi-fidelity surrogate models can 
balance high efficiency and high accuracy while using fewer 
samples for high-fidelity simulations and more samples for 
low-fidelity simulations. However, it has not yet been widely 
applied in the optimization of hydrodynamic performance 
of ship hull forms.

The accuracy and applicability of surrogate models may 
vary for different engineering problems. Sometimes, high-
fidelity accuracy surrogate cannot be guaranteed with only a 
single model in the entire design space. Therefore, surrogate 
ensemble (SEN) methods have been proposed to fully utilize 
advantages of different surrogate models. To be specific, 
ensemble surrogates are constructed by weighted combina-
tion of several different surrogate models [120]. The key 
point of constructing an ensemble model is to determine the 
weight coefficients. In [18], an adaptive surrogate ensem-
ble strategy that combines polynomial response surface 
(PRS) and kriging surrogate models by means of weighted 
sums was proposed. The weight of each surrogate model is 
determined according to its prediction error. The optimal 
weighting factor in surrogate ensemble is determined based 
on the minimization of the local mean square error in [108]. 
Therefore, various surrogate models mentioned above are 
summarized in Table 3, which shows that kriging model, NN 

model, and RBF model are the most commonly used ones. 
However, there is no more systematic comparative study to 
explore the performance of these different surrogate models.

4 � Multidisciplinary design optimization 
and robust design of ship hull

Ship form optimization design based on hydrodynamic 
theory is a systematic discipline, which needs the support 
of many disciplines. During the optimization process, it is 
necessary to consider the coupling of multiple disciplines, 
the design of variables and various nonlinear constraints. 
As a result, multidisciplinary design optimization (MDO) 
[124] strategy has been successfully applied in the field of 
ship hull form design and continues to gain attention. MDO 
was first proposed in the aerospace field and applied to the 
exterior design of aircraft (e.g., airplane wings). Then, MDO 
was expanded to various complex engineering system opti-
mization problems. For example, MDO used for hull form 
optimization takes full account of the interaction and cou-
pling among various disciplines/subsystems, such as ship 
hull form (hull scheme and hydrodynamic performance anal-
ysis), structural science (pressure-resistant hull design), and 
energy science (energy consumption and energy carrying 
capacity). More specifically, MDO utilizes effective design 
optimization strategies to optimize all design variables syn-
chronously and coordinate interdisciplinary interactions to 
organize and plan the entire design process of the hull form. 
Usually, MDO can be mainly categorized into single-level 
and multi-levels according to the multidisciplinary system 
decomposition hierarchy. Single-level algorithms are suit-
able for solving simple systems with few design variables, 
small computational volume and less disciplines. Whereas 
multi-level algorithms can make up for the above mentioned 

Table 3   Surrogate models used 
in the hull form optimization

Surrogate model Articles

RSM [8, 27, 28, 85, 116]
GP–RSM [32]
GP [33, 62, 109, 119]
Kriging [9, 32, 37, 39, 86, 92, 93, 102, 121]
Elman NN [26]
ANN (BP) [22, 36, 79, 100, 115, 122]
RBF [5, 14, 31, 38, 47, 55, 58, 76, 77, 81, 95, 114]
DRBF [6, 29]
SRBF [57, 106, 117, 118]
SVR [19, 90]
SVM–GSM [91]
Co-kriging [34, 73, 105]
Surrogate integration method [18]
Deep belief networks [78, 123]
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deficiencies effectively. Commonly used multi-level optimi-
zation algorithms [124] include collaborative optimization 
(CO), concurrent subspace optimization (CSO), bilevel inte-
grated system synthesis (BLISS) and enhanced collaborative 
optimization (ECO) algorithms. The development of these 
algorithms intends to be mature, and interested readers can 
refer to [124] for more details.

For MDO, design variables and parameters are usu-
ally regarded as deterministic input information. However, 
uncertainties are widespread and unavoidable exist in real 
sea conditions, such as aleatoric uncertainties caused by 
random factors and epistemic uncertainties caused by lack 
of knowledge [17, 125]. For example, material properties, 
geometry and external workloads of equipment are all uncer-
tain. For multidisciplinary system, uncertain information can 
be propagated through the coupling relationship between dif-
ferent disciplines. The cumulative effects of the propagation 
can degrade the performance of the system and thus greatly 
reduce the reliability and safety of the system. Combined 
with uncertainty analysis in the field of engineering optimi-
zation, Fig. 5 gives three common types of uncertainty faced 
in robust design optimization of ships.

1.	 Environmental uncertainty (A in Fig. 5). It is possible 
that the same vessel performs differently in different sea 
state environments (e.g., the effects of wind, waves, and 
currents). The actual speed varies from the designed 
speed to some extent.

2.	 Parameter space uncertainty (B in Fig. 5). This kind of 
uncertainty exist in decision space. The performance of 

optimal solution may degrade due to the error of the 
manufacturing techniques. The goal of robust optimiza-
tion is to find the solution with little performance loss 
within the error range of the decision variable x.

3.	 Performance evaluation uncertainty (C in Fig.  5). 
It refers to uncertainty in the target space, caused by 
simulation or experimental results with noise or bias in 
the predictions of the approximate model [85]. Robust 
optimization aims to deal with this kind of uncertainty.

Some scholars have applied MDO to scientific ship hull 
form design. For example, Liu et al. [92] established a multi-
objective MDO design for heavy underwater vehicles. Feng 
et al. [90] considered the multidisciplinary optimization of 
ship hull forms for offshore aquatic vessels, in which both 
the drag performance and the quality of the aft flow field 
were taken into account. Chen et al. [100] combined the 
coupling of hydrodynamic discipline, weight and balance 
discipline, propulsion system discipline, and energy disci-
pline, thus they established a four-disciplinary, three-objec-
tive optimization system of drag, forward momentum, and 
endurance. Luo et al. [29] established a MDO system based 
on CO method for underwater vessels. Hu et al. [18] com-
bined the disciplines of hull shape, structural design, and 
energy utilization to establish a multidisciplinary coupled 
computational model and conducted optimization by PSO. 
Yang et al. [75] proposed a MDO framework based on CCO 
method, which considers the underwater glider optimization 
in five disciplinary areas of hydrodynamic shape, pressure-
resistant shell, buoyancy, attitude and energy.

Fig. 5   Diagram of uncertainty 
types in robust ship design 
systems



Research progress on intelligent optimization techniques for energy‑efficient design of…

As seen from Fig. 5, ship robust design are fronted with 
many uncertainties. Measuring Uncertainty Quantification 
(UQ) is a prerequisite for achieving robust design optimi-
zation, which can address the effects of on output brought 
by uncertain inputs. Some commonly used UQ methods 
include multidimensional polynomial chaos [81], interval 
analysis [85], and traditional Monte Carlo method. For 
example, Wei et al. [81] established reliability-based robust 
design optimization (RBRDO) for ship hull form design and 
performed uncertainty analysis by combining polynomial 
chaos expansion and maximum entropy method; Wan et al. 
[85] used interval analysis for UQ analysis and a two-tier 
nested optimization system where the inner tier considers 
the uncertainty interval of the objective function. In addi-
tion, they considered the uncertainty of the surrogate models 
and performed UQ based on the confidence of the surrogate 
models. Other related works that consider UQ in the field 
of ship design can be found in detail in the literature [6, 57, 
62, 106, 114, 118].

In terms of MDO for ship design, Diez et al. [126] ana-
lyzed some uncertain factors and applied Bayesian theory 
to quantify the degree of uncertainty of optimal design, 
and then established the conventional model and the model 
based on robust design in speedboat design. Leotardi et al. 
[114] considered multidisciplinary robust design optimiza-
tion (MRDO) in uncertain environments. They achieved 
optimal ship hull form design assisted by variable accuracy 
approximation models through a multidisciplinary feasibility 
structure. Wu et al. [79] considered the design optimiza-
tion of ultra-deep sea ship design system, where MDO was 
divided into two parts, i.e., deterministic optimization and 
uncertainty optimization. They used the deterministic CO 
structure to organize the coupled collaborative optimization 
of related disciplines, and used the interval analysis method 
to introduce the uncertainty of design parameters and surro-
gate model. Finally, more reliable optimization results were 
obtained through PSO optimization.

In conclusion, although MDO has achieved some suc-
cess in the field of ship hull form design, there are still a 
lot of aspects that need to be further studied. How to com-
bine intelligent optimization algorithms and approximation 
techniques to achieve faster modeling, higher optimization 
efficiency, and better optimization quality. Moreover, robust 
MDO method incorporating uncertainty can fully consider 
the actual large engineering system, which is conducive to 
improving the practicality and reliability of the ship hull 
form. It is promising to provide guidance for exploring the 
new generation of ship hull form design methods.

5 � Advances in surrogate‑assisted 
evolutionary optimization methods 
for hull design

Evolutionary optimization methods are being increasingly 
studied for solving hull form design optimization for its easy 
implementation and high efficiency. However, the objective 
function evaluations of hull design optimization are usually 
time-consuming (i.e., computationally expensive). The rep-
resentative methods used are surrogate-assisted evolutionary 
algorithms (SAEAs) [127, 128], also referred to data-driven 
evolutionary optimization [129]. The basic framework of 
SAEAs is illustrated in Fig. 6(a), where the surrogate model 
is trained by historical or real-time data of the optimization 
problems, and they can be used to replace a majority part of 
actual models for the purpose of the rapid fitness evaluation. 
Nowadays, SAEAs have been the mainstream method in the 
field of ship form design optimization, which are expected to 
provide a guidance for future work of artificial intelligence-
based and knowledge-based ship hull form optimization.

The first step of SAEAs is surrogate model construc-
tion, as illustrated in Fig. 6b, for which Gaussian process 
(also known as kriging model) [130] is widely used [127] 
as a result of its good performance. GP model can provide 

Fig. 6   The illustration of SAEAs
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a confidence-based uncertainty measurement, which facili-
tates the online model updating. However, existing stud-
ies have shown that the time complexity of constructing 
a GP grows exponentially and the accuracy of the model 
decreases as the dimension of the decision variables 
increases, making it difficult to solve large-scale optimiza-
tion problems [128, 131]. In addition, the fitting ability of 
different models trained by data with different character-
istics varies greatly. It is impossible to construct a unified 
and efficient surrogate model. Recently, SAEAs for expen-
sive multi-objective optimization problems have gradually 
gained attention from scholars. A number of works have 
appeared both at the level of algorithm design [127, 128] 
and engineering applications (e.g., trauma system alloca-
tion optimization [132] and fuel efficiency [133].).

Due to the deviation between surrogate model and real 
mode, it is necessary to update surrogate model by using 
the newly generated real data samples during the optimiza-
tion process, which is called model management. In this 
procedure, surrogate model is updated by sampling new 
points through the extraction function according to the 
posterior information of the model. The purpose of the 
extraction function is to establish new sampling samples 
to update surrogate model, which plays a crucial role in 
balancing the optimization performance of both explora-
tion and exploitation. Currently, model management in 
multi-objective optimization has become one of the fron-
tiers, such as filling sampling criterion based on ensemble 
strategy [127].

As a dominant method for solving expensive problems, 
how to construct effective and efficient surrogate models 
in high-dimensional space remains an immense challenge. 
A high-accuracy surrogate model can be trained by suffi-
cient data samples, however, which can inevitably result 
in high surrogate construction time consumption. How to 
balance surrogate accuracy and construction time is a key 
issue when adopting SAEAs for solving HEPs. The exist-
ing surrogate models are mainly selected from GP, RF and 
RBF. Some novel and effective machine learning methods, 
such as deep brief networks [134], should be investigated as 
surrogate models in the evolutionary community, especially 
for problems with complicated data structures. Recently, Jin 
et al. [129] conducted a detailed review and analysis of data-
driven evolutionary algorithms. SAEAs are classified into 
online and offline methods according to whether new data 
are generated or not during the optimization process. Among 
which, online methods are more widely used as a result of 
promising optimization results. Some cutting-edge research 
on online SAEAs include [129]: (1) improving model accu-
racy through surrogate model ensemble, (2) enhancing con-
vergence by a combination of local and global surrogate 
models, (3) taking advantages of advanced machine learning 
techniques, such as semi-supervised learning, active learning 

and transfer learning during the whole process of evolution-
ary search.

Overall, investigation of these methods mentioned above 
is of promising potential for developing advanced SAEAs 
of green hull design. However, some details of SAEAs used 
for hull form optimization need to be further researched, 
i.e., surrogate construction, surrogate training, model man-
agement and base optimizer selection [135]. Particularly, 
SAEAs are fronted with challenges when dealing with high-
dimensional hull form design optimization, such as low sur-
rogate accuracy and high surrogate training time.

6 � Conclusion and future directions

This paper analyzes and summarizes various techniques of 
energy-efficient ship hull form optimization. Also, ship hull 
form design optimization based on SBD technology and 
intelligent optimization methods are presented, especially 
focusing on the latest development of intelligent optimiza-
tion methods and surrogate model design. Meanwhile, the 
current development trend of multidisciplinary design opti-
mization and data-driven evolutionary optimization theory 
research are analyzed to provide more guidance for its 
development in ship hull form design optimization research. 
Based on the above analysis of the developmental status of 
related research, some challenges are still existing for ship 
hull form optimization and need to be studied in depth in 
the future:

•	 Deep synergistic optimization of hull form design with 
other ship performances is of great potential [136, 
137]. The coupled synergy of multidisciplinary can be 
strengthened by multi-objective optimization, i.e., the 
establishment of a hull form with low energy consump-
tion, low impedance, good endurance, and high robust-
ness.

•	 To further explore intelligent optimization algorithms 
based on multi-fidelity surrogate models for hull form 
design. Multi-fidelity surrogate models can guarantee 
both high efficiency and high accuracy, but they have not 
been widely used in the optimization of hydrodynamic 
performance of ship hull forms.

•	 The uncertainties of numerical computation, real com-
plex maritime conditions and ship operations need to be 
considered into optimization. Multidisciplinary domain 
knowledge of hull design can be integrated with machine 
learning algorithms driven by collected sample data. 
We should conduct in-depth research on constructing a 
hybrid knowledge-driven and data-driven optimization 
method for more energy-efficient hull form design.
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