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Abstract
In practical engineering applications, many problems involve high computational costs in evaluating the objective function 
during optimization. Traditional optimization algorithms may require a large number of evaluations to find the optimal solu-
tion, which leads to large consumption of computational resources. In recent years, surrogate-assisted evolutionary algorithms 
(SAEAs) have received increasing attention in solving computationally expensive optimization problems (EOPs). This 
paper provides a review of research on surrogate-assisted evolutionary algorithms. Firstly, it introduces the characteristics 
and challenges of expensive optimization problems. Secondly, it introduces the framework of SAEAs and the representa-
tive single-objective and multi-objective expensive optimization algorithms. Then, it presents methods for surrogate model 
construction and model management strategy, summarizes relevant literature, and analyzes the characteristics of different 
methods. Finally, it concludes existing challenges and future research directions in this topic. Through a comprehensive 
review and analysis of surrogate-assisted evolutionary algorithms, this paper provides essential references and guidance for 
further research.
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1  Introduction

In engineering applications, many optimization problems 
face a common challenge: the high cost of evaluating can-
didate solutions, which may require a significant amount 
of computational resources, time, experimental equipment, 
or labor costs. It directly leads to expensive costs in the 
engineering design process [1]. These problems may lack 
explicit mathematical expressions and fall into the category 
of expensive optimization problems. This kind of prob-
lem span various domains in engineering. For example, in 
aerospace engineering, designing the shape of an aircraft 
requires extensive aerodynamic simulations and structural 
analyses [2]. In architectural engineering, designing the 

structure of buildings involves complex finite element analy-
sis and earthquake simulations [3]. In chemical engineering, 
optimizing the design of chemical reactors requires intricate 
reaction kinetics simulations and fluid dynamics analyses 
[4]. In power system scheduling optimization, many power 
flow simulations and optimization calculations are needed 
to achieve stable operation and economy for the power grid 
[5]. These evaluation processes demand significant compu-
tational resources and time and may entail expensive experi-
mental equipment and labor costs.

Specifically, expensive optimization problems cover a 
variety of types, including single/multi-objective expensive 
optimization problems [6, 7], multimodal expensive optimi-
zation problems [8, 9], high-dimensional expensive optimi-
zation problems [10, 11], constrained expensive optimiza-
tion problems [12, 13], dynamic optimization problems [14, 
15], etc. Some researchers employ evolutionary algorithms 
to tackle such problems. Evolutionary algorithms simulate 
the process of natural selection and genetic mechanisms in 
biological evolution. Through operations like crossover and 
mutation among individuals in the population, they itera-
tively optimize the solutions within the search space. How-
ever, since the real evaluation of the objective function is 
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required in each iteration, a considerable amount of compu-
tational resources and time are needed to find the optimal 
solution. Additionally, Bayesian optimization methods are 
utilized in some related studies. These methods based on 
Bayesian inference, guide the search process by construct-
ing the posterior distribution of the objective function, aim-
ing to find the optimal solution with as few evaluations as 
possible. Due to the high computational costs of expensive 
optimization problems, traditional optimization algorithms 
consume substantial computational resources and exhibit 
low efficiency when solving such problems. Therefore, spe-
cialized optimization strategies and algorithms are needed 
to accelerate the solving process and enhance optimization 
efficiency.

Researchers have recently proposed surrogate-assisted 
evolutionary algorithms to solve expensive optimization 
problems [16]. Figure  1 shows the number of relevant 
research papers in the past two decades, which is counted 
by Web of Science. The number of papers in this study is 
approximately increasing year by year. Surrogate models, 
also known as approximation models, represent a data-
driven approximation model. By collecting a large number 
of actual samples to train the model, surrogate models estab-
lish approximate mappings between variables and objective 
values to replace the original simulation, effectively serving 
as a model of the model [5]. Many machine learning models 
can serve as surrogate models, such as Gaussian process 
model (GP) [17], Kriging model (KRG) [18], radial basis 
function model (RBF) [19], polynomial regression model 
(also known as response surface model) (PRS) [20], artificial 

neural networks (ANNs) [7], support vector machines 
(SVM) [21], or combinations of multiple surrogate models 
[22]. Different surrogate models exhibit different advantages 
in dealing with specific expensive problems [23]. Evolution-
ary algorithms possess strong global search capabilities and 
robustness, enabling them to efficiently search for global 
optimal or near-optimal solutions in complex spaces. They 
have been widely applied across multiple domains with 
significant effectiveness. Common evolutionary algorithms 
include the genetic algorithm (GA) [24], particle swarm 
optimization algorithm (PSO) [25], differential evolution 
algorithm (DE) [26], ant colony optimization (ACO) [27], 
bee colony optimization algorithm (BCO) [28], etc. Their 
common characteristic is utilizing collective search behavior 
to solve problems, with the difference in the variations of 
their population evolution mechanisms.

Based on the different functions of surrogate models, 
surrogate-assisted evolutionary algorithms can be divided 
into regression-based algorithms and classification-based 
algorithms. The fundamental idea of the former is to use sur-
rogate models to predict objective function values in place of 
expensive real evaluations, thereby reducing computational 
resource consumption during the optimization process. 
The basic procedure involves initially constructing a sur-
rogate model to approximate the objective function. Subse-
quently, the constructed surrogate model is used to evaluate 
the performance of candidate solutions. Finally, based on 
the evaluations from the surrogate model, an evolutionary 
algorithm is employed to optimize until a satisfactory solu-
tion is found. Unlike regression-based surrogate models, 
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Fig. 1   The number of research papers on surrogate-assisted evolutionary algorithms
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classification-based surrogate models do not directly pre-
dict the objective function values of candidate solutions. 
Instead, they classify candidate solutions into different cat-
egories, such as identifying whether a candidate solution 
is dominated or non-dominated. This classification model 
can assist in evaluating the quality of candidate solutions, 
thereby quickly identifying potential high-quality solutions 
and reducing the reliance on expensive real objective func-
tion evaluations. These algorithms are typically used for 
complex optimization problems and multi-objective opti-
mization problems. In summary, surrogate-assisted evolu-
tionary algorithms transform the optimization of the original 
problem into the optimization of the model [29]. This can 
significantly reduce the number of real evaluations required, 
enabling the discovery of high-quality solutions within lim-
ited computational resources [30]. Such algorithms can 
accelerate the optimization process and improve optimiza-
tion efficiency, and they remain a research hotspot in the 
field of engineering optimization.

Existing studies have shown that approximation errors of 
surrogate models are inevitable in the case of limited train-
ing data, which may mislead evolutionary search. Therefore, 
it is important to make full use of the limited data to build 
accurate models in SAEA. Data resources can be roughly 
divided into direct data and indirect data [31]. The former 
refers to data collected directly from computer simulations 
or physical experiments, which consists of decision vari-
ables and corresponding objective function values, and can 
be directly used to train surrogate models to approximate the 
objective function [32]. The latter are not displayed as con-
crete values, but they can be used to calculate the value of 
the objective function, which is then used to train the surro-
gate model. Typically, the data collected is primarily used to 
build and update the surrogate model to drive evolutionary 
operations. In the process of evolution, whether to actively 
generate new data is the main difference between off-line 
optimization and online optimization [33]. Online optimi-
zation uses a small number of expensive real evaluations 
and can run simulation programs or physical experiments 
to generate new data to update surrogate models. No new 
data is provided in off-line optimization, and only a limited 
historical data management models is used [34].

The accuracy of the model depends on the quality, quantity 
and diversity of the sample data. High-quality sample data can 
provide more accurate model training signals and help the sur-
rogate model to better generalize to new environments. If there 
is noise, error, or bias in the sample data, the performance of 
the model may be degraded. Sufficient sample data can pro-
vide more information to guide the optimization process of 
the model. Too little sample data may cause the evolutionary 
algorithm to lack sufficient information in the optimization 
process, thus affecting the accuracy of the model [35]. The 
diverse sample data can help the evolutionary algorithm to 

better explore the search space and avoid falling into the local 
optimal solution. To maximize the utilization of sample data, it 
is necessary to select a reasonable sampling strategy to ensure 
that the evolutionary algorithm can make full use of the infor-
mation of the sample data and avoid relying too much or too 
little on some samples. It is important to pre-process the sam-
ple data before using it to ensure that it meets the input require-
ments of the model and to extract the relevant feature infor-
mation. Pre-processing includes data cleaning, noise removal, 
feature extraction, feature selection, and so on. In addition, 
data enhancement techniques can increase the diversity and 
quantity of data by transforming, expanding, or synthesizing 
sample data. It helps to improve the search efficiency of the 
algorithm and the generalization ability of the model [36]. On 
the other hand, in the process of algorithm optimization, it is 
very important to evaluate the performance of the model on 
the test set. It can help detect overfitting or performance deg-
radation problems of the model early and adjust optimization 
strategies in time.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the relevant knowledge of expensive opti-
mization problems and evolutionary computation methods. 
Section 3 focuses on the framework of SAEA and representa-
tive expensive optimization algorithms. Section 4 discusses 
methods for model management strategy, analyzes the char-
acteristics of different methods and summarizes relevant lit-
erature. Section 5 presents the challenges and future directions 
of this research, hoping to provide reference for researchers 
in this field.

2 � Background

This section briefly introduces the relevant knowledge of 
expensive single-objective, expensive multi-objective, expen-
sive constrained optimization problems and evolutionary com-
putation methods.

2.1 � Expensive single‑objective optimization 
problems

In single-objective optimization problems, there is only one 
optimization objective or objective function that needs to be 
optimized. In the minimization problem, optimization algo-
rithms aim to find solutions that minimize the objective func-
tion. Single-objective optimization problems are typically 
represented in the following form:

where x denotes the variables of the optimization prob-
lem, also referred to as decision variables or optimization 

(1)

{
min f (x);

xmin ≤ xi ≤ xmax,
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parameters; x =
(
x1, x2,… , xn

)
 belongs to variable space [

xmin, xmax

]
∈ Rn ; f(x) represents the objective function to 

be optimized. The objective of single-objective optimiza-
tion problems is to find a set of values for x such that f(x) 
achieves the minimum value. Expensive single-objective 
optimization problems refer to cases where the evaluation 
of the objective function f(x) is costly.

2.2 � Expensive multi‑objective optimization 
problems

Many optimization problems involve more than one, but 
two or more objectives being optimized, where improving 
one objective may lead to deterioration in other objectives. 
These problems are referred to as multi-objective optimiza-
tion problems. The definition of a multi-objective optimiza-
tion problem aimed at minimizing objectives is as follows:

where x =
(
x1, x2,… , xn

)
 denotes the n-dimensional deci-

sion variables; m represents the number of objectives to be 
optimized; the objective function f(x) contains m conflicting 
subobjectives.

In general, it is not possible to find the optimal value for 
all targets simultaneously. A common approach for solv-
ing multi-objective optimization problems is to identify the 
set of optimal trade-off solutions among different objec-
tives. While a single-objective optimization problem has 
a single optimal solution, the solutions of multi-objective 
optimization problems form a set of balanced points. These 
points are mutually non-dominated and are referred to as 
the Pareto optimal set (PS). The mapping of the Pareto opti-
mal set in the objective space is termed the Pareto front 
(PF). In the case of a two-objective optimization problem, 

(2)

{
min f (x) = [f1(x), f2(x),… , fm(x)];

xmin ≤ xi ≤ xmax,

the relationship between PS and PF is illustrated in Fig. 2. 
The black points in the decision space represent the PS of 
the multi-objective optimization problem, while the black 
points in the objective space represent the PF of the problem.

Definition 1  (Pareto domination) For a minimization 
multi-objective optimization problem with two solutions 
x1 =

(
x11, x12,… , x1n

)
 and x2 =

(
x21, x22,… , x2n

)
 , if the 

objective values of x1 are less than or equal to those of x2 in 
all objectives, and at least one objective value of x1 is strictly 
less than that of x2 . The formula is as follows:

Then x1 Pareto dominates x2 , denoted as x1 ≺ x2.

Definition 2  (Pareto optimal set) Given a set � ∈ Rn , if 
x ∈ �  , and there exists no other element x� ∈ �  in set �  such 
that x′ ≺ x holds, then x is considered the optimal solution 
with respect to set �  . For a minimization multi-objective 
optimization problem, if x∗ is an optimal solution in the fea-
sible domain � , then x∗ is referred to as the Pareto optimal 
solution of the problem, and PS is the set of Pareto optimal 
solutions:

Definition 3  (Pareto front) The mapping of Pareto optimal 
set in the target space is called Pareto front:

Expensive multi-objective optimization problems refer to 
those where the evaluation of one or more objective func-
tions in f(x) is computationally expensive. In surrogate-
assisted multi-objective optimization algorithms, surrogate 

(3)

{
∀i ∈ {1, 2,… ,m}, fi

(
x1
)
⩽ fi

(
x2
)
;

∃j ∈ {1, 2,… ,m}, fj
(
x1
)
< fj

(
x2
)
.

(4)
{
PS = {x∗ ∈ 𝛺|¬∃x ∈ 𝛺, x ≺ x∗}.

(5)
{
PF =

{
f (x) =

[
f1(x), f2(x),… , fm(x)

]|x ∈ PS
}
.

Fig. 2   PS and PF diagram of 
multi-objective optimization 
problem

non-dominated solution dominated solution

PS

objective space decision space
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models often approximate the Pareto front or predict opti-
mal solutions [37]. In surrogate-assisted single-objective 
optimization algorithms, multiple variables correspond to a 
single objective value, representing a many-to-one mapping 
relationship, allowing a single model to perform prediction 
tasks. However, in surrogate-assisted multi-objective opti-
mization algorithms, where multiple variables correspond 
to two, three, or even more objectives, representing a many-
to-many mapping relationship, a common approach is to 
construct a separate model for each objective function.

2.3 � Expensive constrained optimization problems

In practical applications, some problems need to meet a 
series of constraints in addition to optimizing the objective 
function during optimization. These problems belong to the 
class of constrained optimization problems, which are typi-
cally represented in the following form:

where x denotes decision variable; F(x) represents the 
objective function to be optimized; gj(x) corresponds to jth 
constraint.

Expensive constrained optimization problems refer to 
those where the evaluation of the objective function or the 
constraint function is expensive. In other words, the evalua-
tion for the objective or constraints are not readily available, 
and the fitness evaluations rely on time-consuming simula-
tions or expensive physical experiments. Additionally, not 
all objectives or constraints in expensive constrained opti-
mization problems are costly. Expensive constrained single-
objective optimization problems contain one objective and 
at least one constraint. While expensive constrained multi-
objective optimization problems need to optimize multiple 
objective functions F(x) = [f1(x), f2(x),… , fm(x)] . Expensive 
constrained optimization problems widely exist in science 
and engineering field, such as aerospace and automotive 
design [38], computational electromagnetics [39] and struc-
ture design [40]. To solve these problems, it is necessary 
to design specific optimization algorithms and strategies, 
and select appropriate methods to find the optimal solution 
satisfying the constraint conditions within the limited com-
puting resources.

2.4 � Evolutionary computation methods

Evolutionary computation methods are a class of optimi-
zation and search techniques based on biological evolu-
tion, swarm intelligence, and other natural phenomena. It 

(6)

⎧⎪⎨⎪⎩

min F(x);

s.t. gj(x) ⩽ 0, j = 1, 2,… , k;

xmin ≤ xi ≤ xmax

simulates the evolution process in nature. The optimal solu-
tion or approximate optimal solution in the solution space 
is searched through the operation of heredity, variation and 
selection. The main idea is to start from an initial population 
and through simulating mechanisms observed in biological 
evolution, iteratively evolve individuals that better adapt to 
the environment, thereby gradually optimizing the value of 
the objective function. In general, the flowchart of evolution-
ary computation methods can be presented as Fig. 3, which 
includes initialization, fitness evaluation, solution evolution 
with evolution operators, and selection. Moreover, the solu-
tion evolution and selection will be iteratively performed 
to generate and select better solutions from the previous 
generation to the next generation, so as to obtain the opti-
mal or satisfactory solution [41]. Evolutionary computation 
methods typically possess strong global search capabilities, 
and can find good solutions in complex solution spaces. 
Additionally, these methods are suitable for various types 
of optimization problems, including single-objective, multi-
objective, and constrained optimization, demonstrating bet-
ter generality.

3 � Surrogate‑assisted evolutionary 
algorithms

In surrogate-assisted evolutionary algorithms, surrogate 
models are utilized to replace expensive real evaluations, 
thereby reducing the number of evaluations of the true 
objective function, lowering computational costs, and speed-
ing up the optimization process. The evolutionary algorithm 
is primarily responsible for driving the entire optimization 
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Fig. 3   General flowchart of evolutionary computation methods



	 J. Liang et al.

process, providing feedback to the surrogate model, and ulti-
mately obtaining an approximate optimal solution for expen-
sive optimization problems. Figure 4 illustrates the basic 
flowchart of SAEA. Initially, an initial population is gener-
ated, and their objective function values are computed using 
the real objective function. Then, samples with real evalua-
tions are selected to construct the surrogate model. Subse-
quently, the evolutionary algorithm updates the population, 
and the surrogate model is utilized to evaluate the fitness val-
ues of offspring individuals. Next, a subset of high-quality 
individuals is selected as filling samples for real evaluations. 
This process is repeated until the termination condition is 
met, and the optimal solution is outputted. The main dif-
ference between surrogate-assisted evolutionary algorithms 
and general evolutionary algorithms lies in evaluating fit-
ness values for offspring individuals: in SAEAs, surrogate 
models are utilized to replace expensive real evaluations. It 
dramatically reduces the number of evaluations of the true 
objective function and the associated resource consumption.

As shown in Fig. 5, the SAEA framework mainly consists 
of three parts: surrogate model construction, model man-
agement, and evolutionary algorithm. The surrogate model 
construction module utilizes data science knowledge and 
machine learning techniques to construct high-quality sur-
rogate models. Firstly, it is necessary to select a surrogate 
model, and then use existing sample data to train the model 
to approximate the actual objective function. Additionally, 
the accuracy and reliability of the surrogate model need to 
be validated. The model management module is primarily 
responsible for the information exchange between the sur-
rogate model and the evolutionary algorithm, dynamically 
managing and utilizing the surrogate model during the itera-
tion process. The evolutionary algorithm module focuses on 
driving the entire optimization process. These three modules 
complement each other and are indispensable.

In recent years, researchers have begun to explore com-
bining different optimization algorithms with surrogate 
model techniques to seek efficient solutions for expensive 
optimization problems. The following will introduce the sur-
rogate model and the current research status on surrogate-
assisted single-objective and multi-objective optimization 
algorithms.

3.1 � Surrogate model

In surrogate-assisted evolutionary algorithms, the number 
of surrogate models can significantly affect the performance 
of the algorithm. Depending on the number of surrogate 
models used, surrogate-assisted evolutionary algorithms 
can be divided into single surrogate-assisted evolutionary 
algorithms and multiple surrogate-assisted evolutionary 
algorithms. These two types of algorithms are introduced 
in Sects. 3.1.1 and 3.1.2, summarizing related work and ana-
lyzing their characteristics.

3.1.1 � Single surrogate model

In addressing expensive optimization problems, the single 
surrogate-assisted evolutionary algorithms use only one sur-
rogate model. According to the functionality of the surrogate 
model, it can be categorized into global surrogate-assisted 
evolutionary algorithms and local surrogate-assisted evolu-
tionary algorithms.

Global surrogate-assisted evolutionary algorithms utilize 
information from the entire search space to construct optimi-
zation model commonly employed in the early search stages. 
They aid in exploring the search space comprehensively, 
thereby avoiding getting trapped in local optima. In recent 
years, significant research has been done on global surro-
gate-assisted evolutionary algorithms. Ratle [42] proposed 
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to use the Kriging interpolation as a function approxima-
tion model to replace the real function evaluation. An RBF 
network was proposed in [43] to assist an evolutionary algo-
rithm for computationally expensive multiobjective prob-
lems by prescreening the most promising individuals to be 
exactly evaluated. Liu et al. [44] proposed a GP surrogate 
model to assist differential evolution to solve computation-
ally expensive optimization problems. To further address 
high-dimensional expensive optimization problems, a global 
surrogate-assisted cooperative differential evolution algo-
rithm was introduced. It exploits promising information 
in good individuals and potential information hidden in 
flawed individuals to generate multiple promising mutant 
solutions. Then, a surrogate is used to determine the most 
promising subpopulation solutions [12]. Li et al. [11] used 
a surrogate-assisted multi-group optimization algorithm 
(SAMSO) to solve high-dimensional expensive problems. 
This method divides the population into two subgroups, 
proposes a scheme for dynamically adjusting the group 
size to control the evolutionary process, and uses a global 
RBF surrogate model instead of expensive real evaluations. 
Song et al. [45] proposed a global Kriging model-assisted 
dual-archive evolutionary algorithm (KTA2) for solving 
expensive multi-objective optimization problems. Jie et al. 
[46] proposed a surrogate-assisted multi-objective particle 
swarm optimization algorithm (KMOPSO). This method 
adaptively constructs Kriging models for each objective 
function. Then, it utilizes the non-dominated solutions of the 
models to guide the particle swarm update. Han et al. [47] 
introduced a new filling point criterion (EIR2), which com-
bines the Kriging model, optimal Latin hypercube sampling, 
and particle swarm optimization to develop an algorithm for 
solving expensive multi-objective optimization problems. 
Jin et al. [48] adopted a neural network to be a global surro-
gate model to assist a covariance matrix adaptation evolution 
strategy and investigated the effectiveness of the individual-
based and generation-based model management strategies. 
Praveen et al. [49] developed a surrogate-assisted particle 
swarm optimization by employing the radial-basis-function 
model to construct a global surrogate for prescreening the 
promising solutions. However, the main drawback of these 
current global surrogate-assisted methods is that the mod-
eling process becomes very time-consuming when the num-
ber of training data is large, or the dimensionality of decision 
variables is high.

To alleviate the issues above, researchers employ local 
surrogate-assisted evolutionary algorithms to address expen-
sive optimization problems, which can reduce computational 
costs. Unlike the global surrogate model, the local surrogate 
model utilizes only a portion of the search space real data 
to establish local surrogate model. By accurately modeling 
the local search space, they can provide more precise pre-
dictions of the objective function, better adapting to the 

problem’s local structure and characteristics, thus enhanc-
ing the algorithm’s adaptability and robustness. Ong et al. 
[38] employed a trust region method in local search to alter-
nate between precise models of the objective function and 
constrained functions and an inexpensive RBF surrogate 
model. Martinize and Coello [50] proposed a surrogate-
assisted local search algorithm to accelerate the convergence 
of multi-objective evolutionary algorithms. Chugh et al. [35] 
constructed a local Kriging model for each objective func-
tion, reducing the computation time for solving expensive 
multi-objective optimization problems by considering the 
relationship between training samples and reference vectors. 
Yu et al. [51] established local surrogates around the cur-
rent best point and used the optimal individuals predicted by 
the local surrogate model in the local region to accelerate 
PSO algorithm convergence. Yang et al. [52] pre-screened 
offspring generated by three different strategies using dimen-
sionality reduction techniques processed by the GP model. 
Moreover, it comprehensively explores promising regions 
using a local GP-assisted local search strategy. Wang et al. 
[53] utilized a RBF-based interior point local search method 
to assist differential evolution algorithms in solving expen-
sive constraint problems. Sun et al. [54] proposed the fitness 
estimation strategy (FES) for particle swarm optimization 
algorithm, which approximates the fitness of particles from 
their parents, ancestors, and siblings.

3.1.2 � Multiple surrogate models

Multiple surrogate-assisted evolutionary algorithms use 
multiple surrogate models in the optimization process 
rather than a single model. Multiple surrogate models 
includes using multiple global surrogate models, multiple 
local surrogate models, and integrated models comprising 
global and local surrogate models. Different accuracies and 
types of surrogate models may lead to different optimization 
results [55]. Through the competitive selection among mul-
tiple models, adverse effects caused by inaccurate models 
on algorithm convergence performance can be effectively 
mitigated, thus accelerating algorithm convergence. Paral-
lel computing based on multiple surrogate models not only 
reduces the time cost of the optimization process, but also 
enhances the convergence and robustness of the algorithm. 
In most cases, the performance of multiple surrogate models 
surpasses that of a single surrogate model, showing promis-
ing prospects for solving expensive optimization problems.

Multiple global surrogate models can be constructed 
using all samples in the variable space. Evolutionary algo-
rithms assisted by global surrogate models first construct 
different types of surrogate models using the same dataset 
and then perform surrogate-based optimization separately 
in the entire variable space. Chaudhuri et al. [56] assisted 
the NSGA-II algorithm in solving expensive multi-objective 
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optimization problems by constructing multiple SVR models 
with different parameter configurations, and experimental 
results showed a significant improvement in algorithm per-
formance. Viana et al. [57] proposed a PSO algorithm based 
on a hybrid surrogate model of RBF and PRS, effectively 
enhancing its global approximation accuracy by combining 
two types of surrogate models. Tang et al. [58] introduced a 
multi-surrogate model technique based on GP and PRS and 
a PSO algorithm with multiple sampling strategies based 
on EI and PoI, performing parallel optimization. Given that 
Kriging surrogate models can provide uncertain information 
about candidate solutions, various surrogate models were 
combined with Kriging surrogate models for batch sampling 
[22]. Mueller et al. [59] proposed and deeply analyzed a 
mixed surrogate model based on Dempster–Shafer theory. 
In engineering applications, Glaz et al. [60] applied surro-
gate-assisted algorithms to design and optimize helicopter 
rotor blades, demonstrating that the prediction accuracy and 
robustness of multiple surrogate models exceeded those 
of single surrogate models. Zerpa et al. [61] constructed 
multiple surrogate models into an ensemble model using 
an adaptive weighting method and applied it to optimize 
oil extraction processes. Habib et al. [62] proposed a multi-
objective evolutionary algorithm called hybrid surrogate 
model-assisted evolutionary algorithm (HSMEA) to solve 
computationally expensive problems, effectively approxi-
mating the objective function using multiple surrogate 
models. Espinosa [63] proposed a multi-surrogate assisted 
multi-objective evolutionary algorithm for feature selection, 
specially designed to improve generalization error. Yu et al. 
[64] introduced an adaptive surrogate model selection tech-
nique, combining elemental surrogate models into multiple 
integrated surrogate models and adaptively selecting the 
most promising model from the model library based on the 
root mean square error (RMSE). Moreover, they integrated 
this technique with two evolutionary algorithms to solve 
antenna structure optimization problems. Li [65] proposed 
a surrogate-assisted particle swarm optimization algorithm 
(EAPSO). The algorithm generates multiple trial positions 
for each particle in the population. To accelerate conver-
gence and avoid erroneous global guidance by the model, 
both RBF and PRS models are utilized to guide evolution. 
Husain and Kim [66] utilized Kriging, RSM, and RBF mod-
els, while Montano et al. [67] employed RBF models with 
different basis functions as multiple surrogate models.

Multiple local surrogate models can be constructed using 
a subset of samples from the variable space. While global 
surrogate models can approximately reflect the overall trend 
of response surfaces in the variable space, they may not 
accurately describe local characteristics. When the popula-
tion concentrates on exploring local regions, the role of local 
surrogate models becomes more significant. Therefore, by 
partitioning the variable space to construct multiple local 

surrogate models and executing surrogate-assisted evolu-
tionary algorithms in each subspace, the problem of high 
modeling cost of global surrogate models can be effectively 
avoided, but also the local search capability of the algorithm 
can be enhanced [52]. Li et al. [13] proposed an algorithm 
called multiple penalization and multiple local surrogates 
(MPMLS) to solve expensive constrained optimization prob-
lems. This algorithm defines multiple sub-problems and 
constructs a local surrogate model for each sub-problem to 
reduce the overall computational burden of the algorithm. 
Li et al. [68] proposed a global parallel optimization method 
based on a spatial decomposition strategy, which constructs 
multiple surrogate models and implements distributed par-
allel computation using a multi-point sampling strategy. In 
[69], a new method utilizing Kriging, RBF, Multi-Layer Per-
ceptron, and RSM is proposed, which adaptively constructs 
spatially distributed surrogate models based on the accuracy 
of specific surrogate models in the design neighborhood. 
Although constructing multiple local surrogate models 
can improve the local search capability of the algorithm, 
research on the management strategy of local surrogate mod-
els is relatively limited. Blindly executing local search may 
lead to problems such as waste of computational resources 
and reduction of optimization efficiency.

Local surrogate models are more likely to provide 
accurate fitness estimates than global surrogate models. 
However, the local surrogate model may fail to help the 
evolutionary algorithm escape local optima, thus losing a 
significant potential benefit of surrogates [70]. Studies have 
shown that integrated surrogate models composed of local 
and global surrogates generally outperform single surro-
gate models. In most existing surrogate-assisted evolution-
ary algorithms using multiple surrogate models, the global 
surrogate model typically aims to smoothen out the local 
optima, while the local ones aim to capture the local details 
of the fitness function around the neighborhood of the cur-
rent individuals [51]. Georgopoulou and Giannakoglou [71] 
proposed using an RBF network for low-cost pre-evaluation 
of candidate solutions in global search and gradient-based 
refinement of promising solutions in local search. In [72], a 
global surrogate model was proposed for better pre-selection 
bias, while a local surrogate model was used to approxi-
mate fitness in local search. Cai et al. [73] also introduced 
a surrogate model-assisted differential evolution algorithm 
(S-JADE), which combines the optimal values predicted 
by both global and local RBF surrogates with the mutation 
operator to guide the mutation direction of the differential 
evolution algorithm. To leverage the advantages of both 
global and local surrogate models, Tenne and Armfield [74] 
proposed a meme algorithm framework based on variable 
global surrogate models and local surrogate models. Zhou 
et al. [75] proposed a hierarchical surrogate-assisted evo-
lutionary algorithm, employing GP as the global surrogate 
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for pre-screening promising individuals. Moreover, using 
RBF networks as local surrogate models to assist in trust-
region gradient search demonstrates accelerated algorithm 
convergence. Mueller et al. [76] constructed multiple SVR 
models with different kernels and then combined them using 
an adaptive weighting method, with experimental results 
demonstrating the superior performance of the ensemble 
model over individual models. Lin and Wu [77] proposed 
an ensemble surrogate-based framework to address high-
dimensional expensive optimization problems. Train global 
surrogate models across the entire search space to explore 
global regions and train multiple sub-surrogate models in 
different search subspaces to exploit sub-regions, thereby 
enhancing prediction accuracy and reliability. In [78], a deci-
sion space partition based surrogate-assisted evolutionary 
algorithm (DSP-SAEA) is proposed. A two-stage search 
strategy is introduced, where the global search and the local 
search are seamlessly integrated. The decision space can be 
partitioned into several regions based on the clusters. Fur-
thermore, the surrogate model is constructed in each region. 
Zhai [79] proposed a composite surrogate-assisted evolu-
tionary algorithm for expensive many-objective optimiza-
tion. The method constructs two types of models: a global 
model, constructed based on all costly real evaluations, and 
local models construct using partial samples.

3.2 � Surrogate‑assisted single‑objective algorithms

There are various algorithms for solving expensive single-
objective optimization problems. This section introduces 
some relevant algorithms to summarize the current research 
status of expensive single-objective optimization algorithms.

For instance, Yang et al. [12] proposed the surrogate-
assisted classification-based cooperative differential evo-
lution algorithm (SAC-CDE). This algorithm divides the 
current population into two subpopulations based on spe-
cific feasibility rules and introduces a classification-based 
cooperative mutation operation. Then, a surrogate model 
is utilized to identify the most promising subpopulation 
solutions to accelerate convergence. To address the opti-
mization of expensive antenna structures, Liu et al. [80] 
developed a parallel surrogate modeling-based differential 
evolution algorithm. Yu et al. [81] suggested a brand-new 
model management strategy based on multi-RBF parallel 
modeling technology. The proposed strategy aims to adap-
tively select a high-fidelity surrogate from a pre-specified 
set of RBF modeling techniques during the optimization 
process. Liu introduces an efficient surrogate-assisted bi-
swarm evolutionary algorithm (SABEA) [82]. The evolu-
tionary swarm is randomly partitioned into two sub-swarms, 
one sub-swarm evolves using the differential evolution 
(DE) and the other one evolves using teaching–learning-
based optimization (TLBO). Yi et al. [83] introduced an 

online variable-fidelity surrogate-assisted harmony search 
algorithm with a multi-level screening strategy to solve the 
optimal design problem of elongated cylindrical gas pres-
sure vessels. Building upon the hierarchical learning swarm 
optimizer and gradient-boosting decision tree classifier, Wei 
et al. [84] proposed a classifier-assisted hierarchical learning 
swarm optimizer to enhance the robustness and scalability of 
SAEA. Yu et al. [85] introduced an optimal restart strategy 
for a surrogate-assisted social learning particle swarm opti-
mization (SL-PSO) based on a generated surrogate model. 
This algorithm periodically restarts within the global RBF 
model and reinitializes the population using the best sam-
ple points from the database at each restart. Additionally, 
a global search framework is introduced, which adaptively 
adjusts the classification-based cooperative mutation opera-
tion based on iterative information to achieve an effective 
global search. Li et al. [86] proposed a rapid surrogate-
assisted particle swarm optimization algorithm (FSAPSO) 
to address moderately sized problems with high compu-
tational costs by employing a limited number of function 
evaluations. It selects candidate individuals for expensive 
real evaluations simultaneously using two pre-screening cri-
teria. To improve the search performance of population, Li 
and Zhang [87] proposed a three-layer radial basis function 
SAEA by designing strategies such as global exploration, 
subregion search and local exploitation. Yu [34] proposed a 
twofold infill criterion-driven heterogeneous ensemble sur-
rogate-assisted neighborhood field optimization algorithm 
(HESNFO). The proposed algorithm takes into account both 
the diversity and accuracy of surrogates to speed up the opti-
mization process. Jia et al. [88] proposed hybrid surrogate 
modeling (HSM) approach and particle swarm optimization 
(PSO) algorithm for efficient optimization. In addition, the 
multi-parameter optimization of electromagnetic acoustic 
transducer is conducted with the proposed algorithm. Chen 
developed a surrogate-assisted evolutionary algorithm with 
hierarchical surrogate technique and adaptive infill strategy 
(SAEA-HAS) [89]. This algorithm uses a novel hierarchical 
surrogate technique and proposes an adaptive infill strategy. 
Gong [90] presented a novel two-stage progressive search 
approach with unsupervised feature learning and Q-learning 
(TSLL) to enhance surrogate-assisted evolutionary optimi-
zation for medium-scale expensive problems. Chu et al. [91] 
proposed a surrogate-assisted social learning particle swarm 
optimization (SASLPSO) to handle expensive optimization 
problems. An adaptive local surrogate (ALS) strategy intro-
duced in SASLPSO is introduced to accurately fit the land-
scape near the global optimum.

To address high-dimensional expensive optimization 
problems, Chu et al. [92] proposed a fuzzy hierarchical 
surrogate-assisted probabilistic particle swarm optimiza-
tion algorithm. This algorithm first fits fitness evaluation 
functions using fuzzy surrogate-assisted models, including 
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local and global surrogate models. Then, it utilizes a proba-
bilistic particle swarm optimization algorithm to predict and 
update samples based on the trained models. Dong et al. 
[10] introduced an RBF-assisted wolf optimization algo-
rithm with a strategy of global search and multiple restarts 
of local search to tackle high-dimensional expensive black-
box optimization problems. Gu et al. [93] proposed a surro-
gate-assisted differential evolution algorithm with adaptive 
multi-subspace search (SADE-AMSS) to solve large-scale 
expensive optimization problems. This algorithm constructs 
multiple subspaces based on principal component analysis 
and random decision variable selection and employs three 
search strategies for adaptive search within the constructed 
subspaces. In [94], a surrogate-assisted differential evolution 
with fitness-independent parameter adaptation (SADE-FI) is 
proposed in the paper. The SADE-FI algorithm consists of 
a global surrogate-assisted prescreening strategy (GSA-PS) 
and a local surrogate-assisted DE with fitness-independent 
parameter adaptation (LSA-FIDE). Additionally, research-
ers employ various multi-population cooperative evolution 
mechanisms to improve the performance of expensive opti-
mization algorithms during the evolutionary process. For 
example, Li [11] introduces a surrogate-assisted multi-group 
optimization algorithm (SAMSO) for high-dimensional 
computational cost problems. The proposed algorithm 
divides the population into two subgroups and proposes a 
scheme for dynamically adjusting population size to control 
evolution. Sun et al. [95] use a surrogate-assisted particle 
swarm optimization algorithm and a social learning-based 
PSO algorithm to search for the global optimum jointly. 
They share promising solutions that are evaluated by the real 
fitness function. Tian et al. [96] proposed a new method to 
solve high-dimensional expensive optimization problems, in 
which the population will firstly be granulated into two sub-
sets, coarse-grained individuals and fine-grained ones, then 
different approximation methods are proposed for each cat-
egory. Ren and Guo [97] proposed a new hierarchical SAEA. 
This algorithm first randomly projects training samples onto 
a set of low-dimensional subspaces, then trains a surrogate 
model in each subspace, and finally achieves evaluations of 
candidate solutions by averaging the resulting models. The 
combination of global and local search strategies is also a 
common approach to deal with high-dimensional expensive 
problems. For example, Chu et al. [92] used a fuzzy cluster-
ing technology to cluster high-dimensional variables, and 
established a local surrogate model based on the cluster-
ing results. Wang [98] proposed an evolutionary sampling-
assisted optimization method (ESAO) that combines global 
exploration and local exploitation capabilities. This kind of 
method can handle high-dimensional problems well, but its 
robustness is relatively low because the construction of the 
global surrogate has a great influence on the selection of the 
subsequent optimal solution. Although the above algorithms 

show great performance in solving high-dimensional expen-
sive problems, training and predicting with surrogate models 
in high-dimensional spaces become more challenging, and 
the accuracy and efficiency of the models may degrade. It 
remains a worthwhile research question.

3.3 � Surrogate‑assisted multi‑objective algorithms

In expensive multi-objective optimization algorithms, sur-
rogate models are often used to approximate the Pareto front 
or predict the Pareto optimal solutions. This section intro-
duces various types of expensive multi-objective optimiza-
tion algorithms, summarizes the related work, and analyzes 
their characteristics.

According to different solution approaches of multi-
objective optimization algorithms, surrogate-assisted multi-
objective optimization algorithms can be classified into three 
categories: dominance-based, decomposition-based, and 
indicator-based surrogate-assisted multi-objective optimi-
zation algorithms. In the first category, algorithms rank and 
filter the solution set by comparing the dominance relation-
ships among candidate solutions. The algorithms construct 
a nondominated solution set based on dominance relation-
ships and select the optimal solution as the final Pareto solu-
tion set. Examples include NSGA-II-GP [99], CSEA [7], 
CPS-MOEA [100], and KMOPSO [46], among others. The 
second algorithms transform the multi-objective optimiza-
tion problem into a series of single-objective optimization 
problems. Examples include K-RVEA [35], ParEGO [101], 
HSMEA [62], and MOEA/D-EGO [102], GCS-MOE [103], 
among others. Indicator-based surrogate-assisted multi-
objective optimization algorithms evaluate and rank the 
solution set by introducing a set of evaluation indicators. 
These indicators can measure the performance of the solu-
tion set on different objective functions, such as solution 
diversity and convergence [104].

In surrogate-assisted multi-objective evolutionary algo-
rithms, surrogate models are utilized to approximate the 
objective functions and other functions to expedite the evo-
lutionary process. Based on the functionalities of surrogate 
models, existing SAEAs can be roughly categorized into 
two different classes. In the first category, one or multiple 
models can approximate the fitness function. And the fitness 
function can be a single objective function, an aggregation 
function of all objective functions, or even a performance 
indicator. For instance, ParEGO constructs a single Krig-
ing model to approximate the aggregation function at each 
iteration, where the aggregation function is constructed from 
randomly selected weight vectors from a set of uniformly 
distributed weight vectors [101]. In SMS-EGO, individ-
ual fitness is defined as the contribution of the individual 
to the overall HV score, and a Kriging model is built to 
approximate the HV function [104]. Similarly, the K-RVEA 
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algorithm uses separate models to approximate multiple 
objective functions, while the MOEA/D-EGO algorithm 
builds a Kriging model for each objective function of each 
subproblem [99]. In the second class of surrogate-assisted 
multi-objective optimization algorithms, surrogate mod-
els are used as classifiers to partition candidate solutions 
into good or bad, dominated or non-dominated solutions 
[105]. For example, the classification and pareto sorting-
based multi-objective evolutionary algorithm (CPS-MOEA) 
[100] and the decomposition and preselection-based multi-
objective evolutionary algorithm (MOEA/DP) [106]. Then, 
a classification and regression tree method is used to pre-
dict the category of newly generated offspring to reduce the 
number of real function evaluations [107]. Lu et al. [108] 
proposed a classification and regression-assisted differential 
evolution algorithm called CRADE. Pan et al. [7] introduced 
a classifier-assisted evolutionary algorithm (CSEA) for solv-
ing multi-objective optimization problems, using a surro-
gate model to predict the dominant relationship between 
candidate solutions and reference solutions. Tian proposed 
a novel surrogate-assisted evolutionary algorithm [109], 
which employs a surrogate model to conduct pairwise com-
parisons between candidate solutions, rather than directly 
predicting fitness values.

In addition, there are a lot of related work for solving 
expensive multi-objective optimization problems. For exam-
ple, a two-stage adaptive multi-fidelity surrogate-assisted 
MOGA (AMFS-MOGA) is developed to relieve compu-
tational burden [110]. It shows great potential in solving 
engineering design problems. Lv et al. [111] proposed a 
surrogate-assisted PSO with Pareto active learning. At the 
same time, to enhance the quality of candidate solutions, a 
hybrid mutation sampling method based on the simulated 
evolution is used. Li proposed incorporating the surrogate-
assisted multi-offspring method and surrogate-based infill 
points into a multi-objective evolutionary algorithm to 
solve high-dimensional computationally expensive prob-
lems [112]. A hierarchical pre-screening criterion is used 
to select the surviving offspring and exactly evaluated off-
spring. Oliveira proposed a framework that uses an inverse 
modeling approach coupled with an MOEA [113]. The 
inverse surrogate modeling is used to sample solutions that 
are combined with the evolutionary search of the MOEA. 
Shen [114] proposed a decomposition-based local learning 
strategy to accelerate convergence in the high-dimensional 
search space. Specifically, an individual is updated by learn-
ing from one of the best solutions of its corresponding local 
area based on the multi-objective decomposition approach. 
Li et al. [115] proposed an SAEA framework named expla-
nation operator based surrogate-assisted evolutionary algo-
rithm (EXO-SAEA). It divides the current population into 
two populations according to the a priori knowledge from 
the surrogate model. Li [116] proposed a novel framework 

for expensive multi-objective optimization called RM-
SAEA, which utilizes a regularity model (RM) operator to 
generate offspring more effectively. Mazumdar [117] pro-
posed a hybrid multi-objective policy optimization approach 
for solving multi-objective reinforcement learning (MORL) 
problems with continuous actions. It combines the faster 
convergence of multi-objective policy gradient (MOPG) and 
a surrogate assisted multi-objective evolutionary algorithm 
(MOEA) to produce a dense set of Pareto optimal policies. 
Pan [118] proposed a two-phase SAEA (TP-SAEA), which 
follows the idea of convergence first and diversity second, 
for solving high-dimensional expensive multi-objective 
optimization problems. Li [119] proposed an inverse dis-
tance weighting (IDW) and RBF-based surrogate assisted 
evolutionary algorithm (IR-SAEA). In this algorithm, an 
RBF–IDW model is developed to provide both the predicted 
objective values and the uncertainty of the predictions. Gu 
[120] developed a large-scale multi-objective evolutionary 
algorithm guided by low-dimensional surrogate models of 
scalarization functions. The proposed algorithm (LDS-AF) 
reduces the dimension of the original decision space based 
on principal component analysis. Wu [121] proposed a fast 
SAEA using sparse GPs for medium-scale expensive multi-
objective optimization problems. These algorithms provide 
great insights for solving expensive multi-objective optimi-
zation problems and reduce the management cost of surro-
gate models, but they still have the following shortcomings. 
Firstly, how to balance the diversity and convergence of the 
algorithms remains a topic that needs further research. Sec-
ondly, some existing algorithms do not sufficiently exploit 
the estimated solution quality information from the surrogate 
models during offspring generation. Moreover, how to apply 
existing common high-dimensional processing methods to 
high-dimensional expensive multi-objective problems is still 
challenging.

4 � Model management strategy

Model management is primarily responsible for maintaining 
the interaction between surrogate models and evolutionary 
algorithms, managing the constructed surrogate models, and 
leveraging the available information provided by algorithms 
to enhance the predictive performance of models. Model 
management strategy allow adjustments and updates to sur-
rogate models based on feedback information and data pro-
vided by the optimization algorithm. Model management 
strategy mainly involves managing surrogate models during 
the optimization process based on feedback information and 
data provided by the algorithm. Depending on whether real 
fitness evaluations can be performed during the optimiza-
tion process, surrogate-assisted evolutionary algorithms can 
be categorized as online SAEA and off-line SAEA [122]. 
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As is shown in Fig. 6, the main difference between them 
lies in their ability to perform real fitness evaluations on 
population individuals: online SAEA can perform real fit-
ness evaluations on population individuals, and then model 
management strategy use the real available information the 
algorithm provides to help construct more accurate surrogate 
models. Online SAEA is suitable for scenarios where a small 
number of fitness evaluations can be obtained from physical 
experiments or expensive computations during the optimi-
zation process, while off-line SAEA is designed for cases 
where real fitness evaluations are too expensive or difficult 
to implement. Although there are differences between the 
two, their main idea is to use surrogate models to reduce the 
number of real evaluations and save computational resources 
to accelerate the optimization process.

4.1 � Off‑line SAEA

Off-line SAEA cannot obtain new data through real fitness 
evaluations during optimization; it can only use limited his-
torical data to construct surrogate models. This approach is 
suitable for problems with large datasets where obtaining 
real data is difficult. There are many real-world off-line opti-
mization problems, such as trauma system design, magne-
sium furnace performance optimization, and ore processing 
operation indicators [123].

In off-line surrogate-assisted evolutionary algorithms, the 
model management strategy heavily relies on the quality and 
quantity of available data. Since new data cannot be gen-
erated, the surrogate model can only be constructed using 
limited data, posing significant challenges to model manage-
ment. Therefore, there are currently few studies on off-line 
SAEA. To alleviate the current challenges, Wang et al. [33] 

proposed an advanced DDEA-SE algorithm using a selec-
tive ensemble surrogate method. This algorithm exhibits 
excellent optimization efficiency for off-line data-driven 
optimization problems. The DDEA-SE algorithm constructs 
many surrogate models by resampling from off-line data. 
It adaptively selects built surrogate models to approximate 
fitness functions at different evolutionary stages to reduce 
prediction errors. To address the issues of insufficient avail-
able data and accurate surrogate construction, an algorithm 
consisting of novel boosting strategies and local data gen-
eration strategies has been proposed [124]. The boosting 
strategy iteratively constructs and combines surrogate mod-
els to obtain the optimal model for different problems. The 
local data generation strategy generates new data within the 
neighborhood of evaluated data to increase the available data 
volume, indirectly improving the quality of constructed sur-
rogate models. Building upon this, Li et al. [125] proposed 
a data perturbation-based ensemble surrogate-assisted evo-
lutionary algorithm framework incorporating multi-faceted 
surrogate generation and selective ensemble methods. Guo 
et al. [99] simultaneously constructed low-order PR and 
GP models using limited small datasets. The low-order PR 
model serves as the true fitness function to generate new data 
during the optimization program search process, while the 
GP model acts as a surrogate to assist in evolutionary search. 
To address the problem of designing surrogate models using 
only limited off-line data capable of correctly guiding the 
search, Yang et al. [126] proposed an off-line data-driven 
multi-objective evolutionary algorithm based on knowledge 
transfer between surrogate models.

Since no new data is available during the optimization 
process, the algorithm can only utilize existing data to build 
surrogate models for exploring the search space. Studies 
have found that the quality of data samples used to construct 
surrogate models significantly affects the performance of 
the algorithm. Therefore, many data preprocessing methods 
are used to eliminate the influence of poor-quality data on 
the models. For instance, in multi-objective blast furnace 
optimization problems, Chugh et al. [127] employed a local 
regression approach to reduce noise in the off-line dataset, 
followed by establishing the Kriging model to enhance 
the evolutionary algorithm guided by reference vectors. 
For large and redundant datasets, data mining and related 
methods can be utilized to reduce redundancy and lengthy 
computation times. For example, in trauma system design 
problems, Wang et al. [122] applied clustering methods 
within multi-objective algorithms to identify valuable data 
patterns for constructing models, ultimately saving approxi-
mately ninety percent of algorithm runtime. In cases where 
the given dataset is too small to build accurate surrogate 
models, generating additional data may be a promising solu-
tion [31]. For instance, in multi-objective magnesium fur-
nace optimization problems, Guo et al. utilized low-order 
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polynomial models to generate synthetic data and predict 
their fitness values [99].

The above algorithms proved to be very efficient, but 
there are still some challenges. One serious challenge is the 
unavailability of new data during the optimization. Without 
creating new data for model management during the opti-
mization process, the search ability can be limited since sur-
rogate models are built barely based on the data generated 
off-line. What’s more, no new data is available to assess the 
quality of surrogate models, making it very challenging to 
ensure the reliability.

4.2 � Online SAEA

Compared to off-line SAEA, online SAEA can provide more 
real data for model management, and incremental data can 
be reused during optimization. In the iterative optimization 
process of evolutionary algorithms, a portion of generated 
individuals are subjected to real evaluation and used for 
updating surrogate models, which helps improve the pre-
dictive accuracy of the models. The frequency of generating 
new data samples and how to use these new data samples 
also affect model updates, which are also worthy of research 
attention.

Online SAEA can utilize the data evaluated in real-
time for model testing, allowing the model management 
strategy to select better-performing models for fitness 
prediction adaptively. Current model management strat-
egy mainly involves generation-based or individual-based 
selection methods. In online SAEA, generation-based strat-
egies adjust the frequency of sampling new data genera-
tion by generation, while individual-based strategies select 
a subset of individuals for sampling in each iteration [123]. 
Individual-based strategies are more flexible compared to 
generation-based individual selection strategies. Surrogate 
models can help select individuals for real evaluation by 
using pre-screening criteria, which are crucial for SAEA. 
Firstly, not all fitness values are equally important during the 
iterative process, and evaluating only a subset of individu-
als can save computational resources. Secondly, pre-screen-
ing criteria determine which individuals can be calculated 
through accurate evaluation. It significantly impacts the bal-
ance between exploration and exploitation of the algorithm, 
indirectly affecting the convergence rate of the algorithm. 
Pre-screening criteria typically fall into three categories: 
performance-based criteria, uncertainty-based criteria, and 
a combination of both [30].

In performance-based criteria, individuals with prom-
ising prospects are typically selected. Promising samples 
are usually located near the optimal values of the surrogate 
model, and sampling promising individuals can enhance the 
predictive accuracy of the surrogate model in the promising 
region [48]. Real evaluations of such individuals contribute 

to improving the reliability of the model [128]. For instance, 
Regis [129] designed multiple trial positions for each par-
ticle and then used an RBF model to select positions with 
the minimum predicted fitness values. Sun et al. [8] uti-
lized a global and local surrogate-assisted PSO algorithm 
(SAPSO) to address computationally expensive problems, 
precisely evaluating particles with predicted fitness values 
lower than their personal best values. The lower confidence 
bound (LCB) criterion of GP model was employed to select 
promising offspring [44]. Tang [58] proposed a surrogate-
assisted particle swarm optimization algorithm, where the 
surrogate model guides particles toward better directions by 
solving for the global optimum predicted by the model. A 
comparison between the global optimum predicted by the 
model and the global best particle is made to select a better 
leader. Yu et al. [64] introduced an adaptive surrogate model 
selection technique to adaptively select a promising model 
from constructed multiple models and perform real evalu-
ations on individuals with predicted values lower than the 
current global best. Mallipeddi and Lee [130] used surrogate 
models to generate competitive offspring among trial off-
spring points. Gong utilized a cost-effective density function 
model to select the most promising candidate offspring from 
a set of candidate offspring generated by multiple breeding 
operators [131]. Cai et al. [73] proposed a surrogate model-
assisted Differential Evolution algorithm, selecting individu-
als with the minimum predicted model values for accurate 
evaluation. Jie [46] proposed a Kriging metamodel assisted 
multi-objective particle swarm optimization method. Calcu-
lating the generalized expected improvement (GEI) to get a 
general judgment of the improvement on objective value of 
each particle. Then, a limited number of particles with high-
est GEI are selected to perform actual simulation. To reduce 
expensive evaluations, a prescreening criterion is put for-
ward to choose promising individuals for exact evaluations, 
which uses nondominated ranks and distance information 
[132]. In [77], a new infill sampling criterion is designed 
based on a set of reference vectors to select promising sam-
ples for training the models.

Samples with high uncertainty often reside in unex-
plored regions of the search space. Enhancing the collec-
tion of uncertain samples can further assist evolutionary 
algorithms in exploring unknown regions and effectively 
improve the diversity of surrogate models. Real evaluations 
of such individuals are beneficial for discovering potential 
locations of the best solution [133]. Liu and Wu [134]took 
the uncertainty as a criterion and proposed a surrogate-
assisted evolutionary criterion based on uncertain grouping 
infill. Many methods for predicting fitness uncertainty have 
been proposed. The Kriging model can provide confidence 
levels based on predictions, making them the preferred 
choice when model management requires uncertain infor-
mation [35]. In addition to Kriging model, Wang and Guo 
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[135] attempted to use the predicted variance of the surro-
gate model as a measure of individual uncertainty. The dis-
tance from samples to training data is also commonly used 
to measure uncertainty [136]. Li and Dong [137] selected 
excellent individuals far from the existing sample points 
and proposed a distance-based infill strategy. Furthermore, 
the predicted variance output by ensemble models based on 
machine learning can also serve as an uncertainty indicator 
for predicting fitness [138].

To better leverage the strengths of each strategy and bal-
ance the exploration and exploitation capabilities of algo-
rithms, a combination strategy based on both performance 
and uncertainty can be employed. This combined strategy 
evaluates both promising individuals and uncertain individu-
als. In the individual-based selection approach, the combi-
nation strategy balances promising samples and uncertain 
samples by adopting multiple selection criteria, which in 
Bayesian optimization is also referred to as acquisition 
functions or infill sampling criteria [139], such as expected 
improvement (EI) [140], probability of improvement (PoI) 
[141], and lower confidence bound (LCB) [70]. Given the 
dual advantages of combination strategies, Tian et al. [142] 
proposed a multi-objective infill criterion-driven GP-assisted 
social learning PSO for solving high-dimensional expensive 
optimization problems. The multi-objective infill criterion 
simultaneously optimizes fitness and minimizes uncer-
tainty. Ding et al. [123] introduced a multi-objective infill 
criterion that considers predicted fitness and estimated fit-
ness variance as two optimization objectives. This criterion 
selects the first and last individuals of the Pareto front as 
new infill samples, which shows significant effectiveness 
for high-dimensional optimization problems. Li et al. [86] 
simultaneously consider both promising individual-based 
selection strategies and uncertainty-based individual selec-
tion strategies to balance the exploratory and exploitative 
performance of the algorithm. A surrogate-assisted parti-
cle swarm optimization algorithm is employed to generate 
multiple trial positions for each particle in the population, 
and promising positions are selected based on both perfor-
mance and uncertainty criteria [65]. In [79], optimization is 
classified into three requirements: convergence, diversity, 
and uncertainty. The authors consider all three aspects when 
selecting individual solutions for actual fitness evaluation. 
Song et al. [45] proposed an adaptive infill criterion that 
identifies the most important requirement on convergence, 
diversity, or uncertainty to determine an appropriate sam-
pling strategy for re-evaluations using the expensive objec-
tive functions. Song [143] proposed a generic framework 
with a Pareto-based bi-indicator infill sampling criterion. 
It calculates their corresponding potential improvement of 
convergence and diversity. Then, the non-dominated sorting 
approach is applied to screen the solution in the first front. 
The screened solutions are evaluated through expensive 

functions. Zheng et al. [144] proposed a noise-resistant 
surrogate-assisted multi-objective evolutionary algorithm. 
It uses a noise-resistant infill sampling criterion considers 
convergence, diversity, and model uncertainty to select the 
most potential individual from candidates for re-evaluation.

In online SAEA, the main goals are to enhance the accu-
racy of the surrogate models and balance the convergence 
and diversity. Thus, model management is critical. In an 
ideal scenario, any evolutionary algorithm can be used in 
online SAEA. However, in reality, the evolutionary algo-
rithms and the surrogates should be integrated seamlessly 
to ensure the success of the surrogate-assisted optimization 
algorithms [31]. Therefore, how to choose appropriate evo-
lutionary algorithms and surrogate models is a significant 
issue to consider. How to select the training data is another 
challenge. In online SAEA, surrogates need to be continu-
ously updated to enhance their accuracy and to improve the 
exploration of the evolutionary algorithms as well.

5 � Challenges and future research

Many studies have successfully implemented surrogate-
assisted evolutionary algorithms to efficiently solve expen-
sive optimization problems. However, we found that research 
in this area is still not systematic enough, and there are still 
some problems that need to be solved. Therefore, this sec-
tion summarizes the existing problems in the above research 
status and the future research direction from the following 
aspects. It is hoped that the further extensive and in-depth 
study of this subject can be inspired.

Selection of sample data: When training a surrogate 
model, choosing the right sample data is critical to the mod-
el’s accuracy and generalization ability. How to select high 
quality training data is a current challenge. The accuracy 
of the model depends on the quality, quantity and diversity 
of the sample data. In online SAEA, the surrogate model 
needs to be constantly updated to improve its accuracy and 
the exploration performance of evolutionary algorithms. 
Therefore, the diversity and convergence of the surrogate 
model should be considered when selecting training sam-
ples. In addition, the size of the sample data also affects the 
algorithm effect, which is often overlooked in many online 
optimization algorithms. Using a large number of training 
samples may increase the complexity of model construction 
and even cause overfitting. Too little training data will easily 
lead to underfitting and reduce the prediction accuracy of 
the model. Therefore, how to select the appropriate scale of 
training data is also worthy of attention.

Model construction and management: How to choose 
the right surrogate model is an urgent problem. It is found 
that different models have different performance in different 
optimization problems. In many cases, the surrogate model 
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is chosen based on the user’s experience. There are few 
reports on the theoretical guidance or research literature on 
the selection of surrogate models. In the face of surrogate 
models with many types and great performance differences, 
it is more significant to design a suitable model selection 
method. The next key problem after determining the models 
is how to use them in evolutionary algorithms. For instance, 
using surrogate models to approximate the objective func-
tion, classifying individuals based on their fitness, predicting 
individual ranks [145] or hypervolumes [146], transforming 
multi-objective optimization problems into single-objective 
problems to approximate scalar functions [147], and approx-
imating the Pareto front [148] are all issues that researchers 
must consider and address when designing algorithms. To 
better manage models, researchers have proposed several 
popular sampling criteria for selecting candidate solutions. 
However, these sampling techniques and model management 
strategies have their advantages and limitations and must 
be tailored to specific optimization problems and combined 
with the evolutionary algorithms used.

Selection of evolutionary algorithm: In the surrogate-
assisted evolutionary algorithms, it is also crucial to choose 
the appropriate evolutionary algorithm. However, in the cur-
rent research, there are not many studies on how to choose 
evolutionary algorithms [31]. In reality, different evolution-
ary algorithms have different advantages and limitations and 
should be used according to the nature of the problem to be 
solved. For example, using dominance-based evolutionary 
algorithms for optimization problems with three or more 
objectives may not be feasible [149]. Although some stud-
ies have used transfer learning techniques to build surrogate 
models between related objectives, research on expensive 
multi-objective optimization problems with different delays 
between objective functions still needs to be improved.

In addition, designing appropriate termination criteria 
and performance metrics is crucial. Especially for expensive 
optimization problems, if the quality of the solutions does 
not improve, continuing to run the algorithm may result in 
resource waste. Metrics such as inverted generational dis-
tance (IGD) or hypervolume (HV) contribution are often 
used as performance indicators for multi-objective algo-
rithms to measure the algorithm’s solving ability. However, 
the calculation of IGD is influenced by the reference set 
size, and these metrics may not provide accurate measure-
ment results. As Ishibuchi et al. [150] pointed out, we need 
to consider not only the impact of parameters on algorithm 
performance metrics and termination criteria but also the 
impact of the accuracy and uncertainty of surrogate models 
on them.
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