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Abstract
The present work focuses on three notions about spiking neural P systems (SN P systems), namely normal forms, homoge-
neous systems, and software tools for easy access and visual simulation of such systems. The three notions are presented 
in general and specific ways: their backgrounds and motivations, with detailed and up to date results. The aim of the work 
is to outline many results on these notions, mainly for research and pedagogy. SN P systems with normal or homogeneous 
forms, having many biological and computing inspirations, have much to contribute in the opinion of the author to membrane 
computing at least. The software we here mention aims to support both learning and research of such systems. We provide a 
brief survey of results in chronological order, using a unified notation to aid in more detailed comparisons of results. Lastly, 
we provide a list of open problems or research topics on the three notions and related areas, with the hope to further extend 
the theory and applications of SN P systems.
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1 Introduction

Membrane computing is an active area of investigation under 
the more general field of natural computing, being part of 
a four-volume handbook in [89]. P systems, the models in 
membrane computing started in [78] (earlier as a technical 
report in [77]), are investigated both for their theory and 
practice. Some evidence for the enthusiasm in the investiga-
tions of P systems includes a recent survey in [90], a biblio-
metric analysis in [87], and the acceptance of the Journal 
of Membrane Computing (established in 2019) in the ESCI 
and SCOPUS indexing.1

A P system variant known as spiking neural P systems (in 
short, SN P systems) introduced in 2006 [55] is one of many 
P system variants with vigorous research activity. One of the 

main reasons for the great interest in spiking neuron models 
such as SN P systems, according to [82], is that, while nature 
proves to be a rich source of ideas for computing, the human 
brain is a “gold mine” of such idea source. Furthermore, 
the human brain consumes only about 20 watts of power, 
but it is capable of parallel and distributed processing of 
images, speech, consciousness, and so on. For these reasons 
and more, the research on SN P systems is quite active. For 
instance in the bibliometric analysis in [87], we see the fol-
lowing numbers: 10 of the top 20 papers are about SN P 
systems or variants; SN P systems, together with membrane 
algorithms, are the top in the 9 largest co-citation clusters.

SN P systems and their variants, whether biologically 
or mathematically inspired, have been used to solve many 
computational problems. Further details can be found in 
[55, 82] and the SN P systems chapter in the membrane 
computing handbook [84]. Some works on the computing 
power of SN P systems and variants include [55, 69, 75] 
with recent works such as [5, 67, 74]. Such works mainly 
look at the effects or requirements of certain features with 
respect to classes of languages or problems that can or can-
not be solved. Such features, with some given more details 
in the sections below, include delays in sending the spike 
signals, amount of spikes produced, the types of rules or 
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neurons in the system. The classes of languages or problems 
are often with regards to classical models such as automata, 
grammars, Turing machines.

Some works on computing efficiency include [27, 62, 
73, 100] with recent works in [7, 19, 108]. These works on 
efficiency are mainly concerned with how much space or 
time is required to solve certain, usually computationally 
hard, (classes of) problems. In the case of SN P systems, 
space usually refers to the total number of neurons, rules, 
synapses, and so on, while time usually refers to (non)deter-
ministic “clock steps” to halting after a solution (or lack 
thereof) is reached. Besides these theoretical results, much 
advancements in applications of SN P systems and variants 
appear in the last decade such as [95, 96, 109] with ear-
lier surveys in [28, 34, 36]. Further details, especially when 
contributing to the three main notions of this present and 
brief survey, are provided in their respective sections in the 
following sections.

Several PhD theses have also been done on SN P sys-
tems and their variants listed in [86] and the International 
Membrane Computing Society [54]. The present work is a 
largely revised and extended version of the abstract and talk 
given by the author in [12], with many references taken from 
a bibliography, as of March 2022, in [20]. The revisions 
and extensions include some up to date results as of March 
2024 by the groups of the authors on the three main notions 
focused by this present work.

The organization of this work is as follows: Sect. 2 begins 
with some very brief preliminaries, followed by three gen-
eral notions; Sect. 2.1 defines the basic or standard model 
of SN P systems, with an illustrative example in Sect. 2.2. 
Sect. 2.3 and Sect. 2.4 provide a chronological view of the 
results on normal forms and homogeneous systems, respec-
tively, for SN P systems and variants; Besides the chrono-
logical order of results, Sect. 2.3 and Sect. 2.4 provide a 
more unified notation to compare many results on their 
respective ideas; For instance, a convention for providing 
results is to focus on a normal form of some variant with a 
certain feature, with less or no focus on comparable features 
of a normal form for another variant. Section 2.5 introduces 
pedagogical software for the improved ease of access, visu-
alization, and interaction of SN P systems and variants. Sec-
tion 3 provides a long list of open problems and research 
topics based on, but not limited to, the previous sections.

2  SN P stories: definitions and main notions

We consider two theoretical notions (Sects. 2.3 and 2.4) and 
one practical notion (Sect. 2.5) also in the hopes of further-
ing both theory and practice of SN P systems. Both theoreti-
cal notions have some biological inspiration: bio-neurons 
can be seen as rather “simple” or restricted compared to 

other types of cells; bio-neurons also seem rather “similar” 
or homogeneous at least for certain parts of the brain. The 
practical notion is an easy to access and visual tool for peda-
gogical purposes, not just for experts but also for students or 
new researchers. Definitions of SN P systems, their syntax 
and semantics, are only mentioned in brief below to be able 
to focus more on three main notions in the present section. 
Excellent introductions to and definitions of SN P systems 
include the seminal work in [55], the dedicated chapter in 
the handbook in [89], with open access tutorials in [61] and 
[80].

2.1  SN P systems: the basic model

Very briefly, an SN P system includes spike processors 
(the neurons) as nodes in a directed graph, where edges 
are called synapses. The neurons communicate using sig-
nals known as spikes which are sent to other neurons using 
synapses. Specifically, an SN P system is a tuple or con-
struct Π = ({a}, �1, �2,… , �m, syn, in, out) which uses a 
single symbol a as the spike symbol, each �i is a neuron, 
syn ⊂ {1, 2… ,m} × {1, 2,… ,m} is the set of synapses 
between the m neurons (a reflexive synapse (i,  i) is not 
allowed in this basic model), with in and out as the labels of 
the input and output neurons, respectively.

Each neuron �i = (ni,Ri) includes the number ni of spikes 
contained in �i , and a rule set Ri . Rules in Ri include spiking 
rules of the form E∕ac → a;d where E is a regular expres-
sion over {a}, with natural numbers c ≥ 1, d ≥ 0. A spiking 
rule is enabled if neuron �i contains ni spikes written as 
string ani , such that ani ∈ L(E), that is, there is a regular set 
L(E) to “check” if all ani spikes are “covered” in the language 
L(E). The application or firing of a spiking rule consumes c 
spikes, so only ni − c spikes remain in �i , followed by send-
ing of one spike to each �j such that (i, j) ∈ syn.

Checking, consuming, and firing of spikes are performed 
in a single step t, except when the delay d ≥ 1 in which 
the spike is received by “neighbor” neurons at step t + d . 
From step t until t + d − 1 the neuron is closed, inspired by 
refractory periods of bio-neurons: a closed neuron is wait-
ing to release or fire its spike at step t + d , it cannot apply 
other rules, and it cannot accept new spikes. Spikes sent to 
a closed neuron are considered lost or removed from the 
system. The neuron becomes open at step t + d when new 
spikes can be received. A rule can be applied next by the 
open neuron at step t + d + 1.

The other rule form in rule set Ri is a forgetting rule of 
the form as → �. The meaning is that if neuron �i contains 
exactly s spikes these spikes are erased or removed from �i . 
Note that in the basic model, the enabling of forgetting rules 
and spiking rules are mutually exclusive, that is, we can have 
all spikes in �i as ani enabling either forgetting rules only, or 
spiking rules only. More specifically, if �i has a forgetting 
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rule as → � then as ∉ L(E) for any E of any spiking rule of 
�i.

It is possible to have more than one rule in a neuron �i 
that can be applied, that is, there exist at least two rules 
with expressions E1 and E2 where L(E1) ∩ L(E2) ≠ �. In this 
case, the rule to be applied is chosen nondeterministically. 
The system Π is globally parallel, that is, all neurons can 
fire at each step, but Π is locally sequential, that is, at most 
one rule in each neuron is applied. Π has a global clock to 
synchronize all neurons, that is, at each step if a neuron can 
apply a rule then it must do so. A system can have an out (in, 
respectively) neuron only if acting as a generator (acceptor, 
respectively), or both in and out neurons as a transducer or 
device for computing functions.

Even with the basic or standard definition of an SN P 
system in this present section, there are various ways to 
interpret or obtain the output. Here we mention for now 
one common way to obtain the output, using a time interval 
between the first two spikes of the output neuron out to the 
environment. Visually, the out neuron has a synapse going 
out of the system given by an arrow that does not point to 
any neuron. Specifically, if neuron out fires its first and sec-
ond spikes at steps t and t′ , respectively, the output is said to 
be the number n = t� − t. Thus, the basic model computes or 
generates numbers, or sets of numbers in the case of nonde-
terministic systems. This way of obtaining the output applies 
whether the system halts or not. A system halts if no more 
rules can be enabled.

2.2  An example: generating numbers

Consider a small example as follows, labeled as SN P system 
Π1.

Let Π1 = ({a}, �1, �2, �3, syn, 3), where 

1. �1 = (2, {a2∕a → a;0, a → �}), that is, neuron 1 initially 
contains 2 spikes and its rule set R1 contains two rules.

2. �2 = (1, a → a;0, a → a;1), here neuron 2 is the only 
nondeterministic neuron in Π1 ∶ both of its rules require 
exactly one spike a, but one rule has no delay while 
the other rule has a delay of 1 step when firing its 
spike. A writing convention is seen here: if E = ac then 
E∕ac → a;d is written simply as ac → a;d.

3. �3 = (3, a3 → a;0, a → a;1, a2 → �), with neuron 3 as 
the output neuron.

4. syn = {(1, 2), (2, 1), (1, 3), (2, 3)} are synapses of Π1.

We briefly describe the computation of Π1 as follows:
Step 1: all 3 neurons can fire, but only neuron 2 has a 

nondeterministic choice. Neuron 1 must apply its rule 
a2∕a → a;0 which consumes one spike (only one spike 
remains in �1 ) and sends one spike each to �2 and �3 . Assume 
for now that neuron �2 applies rule a → a;0, no spikes remain 

in �2 and one spike each is sent to �1 and �3 . Neuron 3 applies 
rule a3 → a;0 so at step t = 1 the output neuron fires its first 
spike to the environment, consuming all of its spikes.

Step 2: �1 has two spikes in total from step 1, so it must 
apply the same rule from step 1. At this step, as long as neu-
ron �2 decides to apply its first rule a → a;0 then �1 always 
behaves as in step 1, while �3 always contains two spikes 
so it must always apply its forgetting rule a2 → �. The out-
put is obtained soon after �2 decides to apply its second 
rule. Assume here at step 2 that �2 applies its second rule 
instead: it is closed from step 2 until step 2 + 1 − 1 = 2, that 
is, closed for only one step.

Step 3: The spike from �1 to �2 in step 2 is lost since �2 
was closed in step 2. Only the forgetting rule a → � of �1 can 
be used so it contains no more spikes. Note that the spike 
from the opening of �2 here at step 3 can only be used by �1 
at the next step 4. Neuron 2 is now open and sends one spike 
each to �1 and �3 . Neuron 3 has only one spike from �1 in 
step 2 so a → a;1 is applied and �3 closes.

Step 4: neuron 1 applies its forgetting rule, so here both 
�1 and �2 contain no spikes. Neuron 3 fires its second spike 
to the environment at step t� = 4. Π1 halts since no more 
rules can be applied, with the output of this nondeterministic 
branch of computation as t� − t = 4 − 1 = 3.

The reader can easily verify that Π1 can generate smaller 
or larger numbers depending on the step when �2 decides 
to apply its second rule. In this way, we say Π1 computes 
or generates all natural numbers starting from 2, that is, 
L(Π1) = {k ∣ k ≥ 2}. From the definition in Sect. 2.1 and 
the seminal work in [55], we make a quick note: a minor 
“bug” in [61] where Π1 appears as Fig. 1 to compute the 
set {k� ∣ k� ≥ 1} , that is, all natural numbers starting from 
1. A visual representation of Π1 appears later in Fig. 5 of 
Sect. 2.5.

2.3  Normal forms

In short, a normal form is a simplifying set of restrictions 
for a given machine, model, or system. In language theory, 
a well-known normal form is the Chomsky normal form 
(in short, CNF) for context-free sets from [29] which says 
that instead of writing context-free rules in a large number 
of forms, it is enough to use two forms to describe all such 
sets. In other words, we maintain the computing power of 
context-free grammars to generate context-free sets while 
restricting the forms of rules of such grammars. The CNF is 
of theoretical and practical use, allowing less complicated 
proofs and further results. It is thus of interest to apply nor-
mal forms to other models, certainly to SN P systems.

We set up some basic notations for use in the follow-
ing sections, although a few more are introduced later 
when they are more relevant. We note that in the cited 
works there is not a standard convention, though there are 
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many intersections, for the notations that follow. Further 
details of the following notations, including the prelimi-
naries of computations in SN P systems, can be found 
in tutorials, monographs, surveys as in [61, 80, 84]. We 
write as SpikiPj(rulek, consl, forgm, dleyn) the set of numbers 
computed by the basic model of SN P systems as defined 
in Sect. 2.1. The parameter i ∈ {2, acc} depends on how 
the result is obtained: as a number generator the result is 
the interval between the first two spikes from the output 
neuron, hence the subscript 2; as a number acceptor, the 
result is halting the system, given an input as the inter-
val between the first two spikes to the input neuron. The 
parameters j, k, l, m, and n give the upper bounds for the 
number neurons, rules, consumed spikes, forgetting rules, 
and rules with delay, respectively. If the bound is finite but 
arbitrary we replace the parameter with the ∗ symbol. A D 
is appended at the start of the set of numbers to emphasize 
deterministic computation since we assume by default that 
computations are nondeterministic.

Even in the seminal paper of SN P systems in [55], we 
already have some results on normal forms, though such 
results were not labeled as “normal form” in the paper. For 
instance, the set of all finite sets of numbers NFIN can be 
generated by an SN P system with at most 2 neurons, each 
neuron with an unbounded number of rules, each rule con-
suming at most one spike, and without forgetting rules. We 
can summarize this result as follows:

Theorem 1 (Ionescu et al 2006 [82] )

We use parameters indi and outdj to mean a neuron has an 
indegree at most i and an outdegree at most j, respectively. 
For the indegree of SN P systems, Theorem 2 is one result 
from [81] which limits the indegree of each neuron to at 
most two incoming synapses. In the sections that follow, we 
omit from writing some parameters such as ind and outd if 
such parameters are not the main focus of a work or result.

Theorem 2 (Păun et al 2006 [81])

An early and explicit work on normal forms for SN P sys-
tems is [48]. Results from [48] are about Turing complete-
ness or the characterization of the set of all Turing comput-
able sets of numbers NRE, as follows:

Theorem 3 (Ibarra et al 2007 [48]) The following sets of 
numbers are equivalent to NRE: 

1. Spik2P∗(rule3, cons4, forg5, dley0, outd∗).

2. DSpik{2,acc}P∗(rule2, cons3, forg2, dley0, outd∗).

3. Spik2P∗(rule3, cons4, forg4, dley0, outd2).

Spik2P1(rule∗, cons1, forg0) = Spik2P2(rule∗, cons∗, forg∗) = NFIN.

Spik2P∗(rule2, cons3, forg1, dley1, ind2, outd2) = NRE

Fig. 1  A screen of Snapse, showing the software interface, four neurons (boxes labeled with 8, 9, 10, 12), synapses (arrows), a spike (yellow cir-
cle between neurons 9 and 10)
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4. Spik2P∗(rule2, cons3, forg0, dley1, outd2).

5. Spik2P∗(rule2, cons2, forg1, dley2, outd2), a
i for i ≥ 1 or 

a+.

Some interesting results in Theorem  3 from [48] 
include: removal of delay, for both the nondeterministic 
(item 1) and deterministic case (item 2); restricting the 
outdegree of each neuron (item 3); removal of forgetting 
rules (item 4); lastly, restricting the type of regular expres-
sion (item 5).

Notice that results in Theorem 3 allow only the removal in 
a mutually exclusive way for features such as delays, forget-
ting rules, or simplified regular expressions. In [40], some of 
these features are combined while maintaining the comput-
ing power of SN P systems. For instance, Theorem 4 com-
bines simplified regular expressions and removal of delays.

Theorem 4 (García-Arnau et al 2009 [40])

using rules of the form a∗∕a → a or ar → a, and as → � for 
r, s ≤ 3.

An open problem from [40] asks if more than two features 
of the system can be removed simultaneously while maintain 
Turing completeness. A positive answer to this open prob-
lem was provided in [71] as Theorem 5.

Theorem 5 (Pan, Păun 2010 [71])

using only the following types of regular expressions: 
a(aa)∗, a(aaa)∗, or (a2 ∪ a).

What is surprising about Theorem 5 is how restricted an 
SN P system is where rulee

k
 means that each neuron uses at 

most k rules and at most e types of regular expressions. The-
orem 5 not only answers an open problem from [40] but also 
shows how “simple” the neurons can be to be Turing com-
plete: a neuron only needs at most two rules using exactly 
one of three types of regular expressions, and without delays 
and forgetting rules. An open problem from [71] is if the 
system can maintain its computing power with fewer types 
of regular expressions.

Before we proceed to further normal forms for SN P sys-
tems, we make a short digression for some variants of SN 
P systems. SN P systems with anti-spikes or ASN P sys-
tems are SN P systems that allow for a second type of spike 
known as an anti-spike [72]. The idea of an anti-spike in [72] 
is inspired from the inhibitory features of biological neurons. 
Using a as the anti-spike symbol, a normal form for ASN P 
systems include Theorem 6 (Theorem 1 in [94]).

Spik2P∗(rule3, cons3, forg3, dley0, outd2) = NRE

Spik2P∗(rule
1

2
, cons3, forg0, dley0, outd4) = NRE

Theorem 6 (Song et al 2013 [94])

using categories (a, a), (a, a).

The feature prulek means each neuron uses at most k 
“pure” spiking rules of the form E∕bc → b�, and the regular 
expression E has L(E) = bc for b, b� ∈ {a, a}. That is, we 
simply write pure spiking rules as bc → b′. The feature catl 
means there are at most l categories in each neuron, from 
a total of four possible categories: (a, a), (a, a), (a, a), (a, a). 
For instance, category (a, a) means rules can only consume 
anti-spikes and produce spikes.

Another normal form was introduced in [92] for sequen-
tial SN P systems. Sequential SN P systems, as introduced 
in [49], are systems where neurons cannot operate in paral-
lel. For instance, in the case of max-sequential mode, only 
the neuron with the most number of spikes can apply a 
rule: if more than one such neuron exists then one neuron 
is nondeterministically chosen to apply its rule. A normal 
form (Theorem 3.1) from [92] improves a result in [49] 
by proving systems in max-sequential mode are Turing 
complete without forgetting rules, each neuron has exactly 
one rule, but with the use of delays.

The last variant we consider for now are SN P systems 
with (structural) plasticity or SNPSP systems from [17]. 
SNPSP systems are inspired by the ability of biological 
neurons to create new or remove existing synapses. A 
parameter introduced in [17] was � ∈ {+,−,±,∓} where � 
is used in a new type of rule known as a plasticity rule. For 
� = + , this means that a rule can only create new synapse, 
up to some number k, while � = ± means a rule can create 
new synapses in the present step and delete synapses in the 
next step. A normal form from [91] is Theorem 7.

Theorem 7 (Song, Pan 2015 [91])

Theorem 7 has rule4
4
 which means each neuron uses at 

most 4 types of regular expressions and at most 4 rules. 
Another normal form for SNPSP systems is Theorem 8 
from [66]. Normal forms for SNPSP systems under max- 
and min-sequential modes, as in [49], are given in [16].

Theorem 8 (Macababayao et al 2019 [66])

where R is the maximum number of subtraction instruc-
tions associated with any register of the simulated register 
machine.

Spik2ASNP∗(cat2, prule2, forg0, dley0) = NRE

Spik2SNPSP∗(� ∈ {+,−}, rule4
4
, cons4, forg1, dley0, outd3) = NRE.

Spik2SNPSP∗(� ∈ {±}, rule3
3
, cons4, forg0, dley0, outdR) = NRE
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Explicit in the results of Theorem 8 and later results is the 
idea of a register machine: actually all the results on Turing 
completeness in this work since the seminal paper in [55] 
are shown by simulating register machines. In short, regis-
ter machines are Turing complete models which have finite 
and rudimentary instructions or programs. Further details 
on register machines and how SN P systems and variants 
simulate them are from [61, 84]. Theorem 8 uses a single 
yet “compound” type for � , unlike the “simple” types in 
Theorem 7, with the trade-off that Theorem 8 has smaller 
values for other ingredients, including the lack of delays and 
forgetting rules.

Now we return to an open problem from [71]: can fewer 
than three types of regular expressions allow SN P systems 
to be Turing complete? That is, can we improve on Theo-
rem 5? The belief in [71] was in the negative. An early and 
positive answer to this open problem comes from improving 
Theorem 8 for SNPSP systems and attempting to apply it to 
SN P systems, resulting in Theorem 9 from [21].

Theorem 9 (Macababayao et al 2019 [21]) Using only regu-
lar expressions a(aa)∗ or (a2 ∪ a), the following sets of num-
bers are equivalent to NRE : 

and

Even more interesting are improvements from [67] which 
lowered the values from [21].

Theorem 10 (Macababayao et al 2022 [67]) Using only the 
regular expression a(aa)∗, the following sets of numbers are 
equivalent to NRE : 

and

where R is the maximum number of subtraction instruc-
tions associated with any register of the simulated register 
machine.

2.4  Homogeneous systems

Next we look at a notion not too dissimilar to a normal 
form: the idea of a homogeneous system. At least in the 
context of SN P systems, such a system is homogeneous 

Spik2P∗(rule
1

2
, cons3, forg0, dley0, outd4),

Spik2SNPSP∗(� ∈ {±}, rule1
1
, cons4, forg0, dley0, outd4).

Spik2P∗(rule
1

2
, cons3, forg0, dley0, outd3),

DSpikaccP∗(rule
1

1
, cons3, forg0, dley0, outd3),

Spik2SNPSP∗(� ∈ {±}, rule1
1
, cons3, forg0, dley0, outd2R)

if every neuron has the same set of rules. The idea of 
homogeneous SN P system was first introduced in [114]. 
In some sense a homogeneous system is a “restricted” sys-
tem, hence the similarity of the notions of normal forms 
and homogeneous systems. From the perspective of com-
puting, a homogeneous system is where processors, or 
neurons in the case of SN P systems, are not distinct from 
each other. In terms of engineering for instance, this can 
mean that replacing a malfunctioning or damaged proces-
sor can be easily done: we simply swap the old processor 
with a new processor, since both processors are identical. 
Not only in engineering, such homogeneous systems may 
also reduce other necessary resources, such as during the 
design, manufacture, and maintenance of a single kind of 
processor.

From the perspective of the human brain, the neocortex 
or “new brain” is visually uniform. A natural question for 
the study of the brain is how various functions, such as 
perception, language, vision, and so on, arise from such 
uniformity. A common answer to this question, though 
much details still elude us, is how neurons are connected: 
the “size” of each connection, number of connections, 
"distance” between connections, and so on. Thus, both 
from the computing and biological perspectives, the idea 
of homogeneous SN P systems is well-motivated.

An early result is that SN P systems as number genera-
tors can be Turing machines with the same set of seven 
rules in every neuron, given by Theorem 11 (Theorem 4.1 
from [114]). Since every neuron or processor in the SN 
P system has the same set of rules, the “programming” 
of the system is focused on the topology or connection 
of the system using synapses, rather than the “details” of 
each neuron.

Theorem 11 (Zeng et al 2009 [114]) The following sets of 
numbers are equivalent to NRE : 

and

The weight5 feature in Theorem 11 refers to synapses hav-
ing integer weights of at most 5, to multiply the number of 
spikes sent to specific neurons. A way to remove the weight 
feature, resulting in “standard” synapses of weight of 1, is 
also included in [114]. As expected, removing the synapse 
weight increases the number of synapses and outdegree of 
the system.

Further results on homogeneous SN P systems com-
bine ideas from results on normal forms, such as removing 
delays. In [58] the max-sequential mode is applied to HSN 
P systems, resulting in Theorem 12.

Spik2HSNP∗(rule
6

7
, cons7, forg1, dley1, outd3,weight5),

DSpikaccHSNP∗(rule
6

7
, cons7, forg1, dley1, outd3,weight6).
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Theorem 12 (Jiang et al 2013 [58]) The following sets of 
numbers are equivalent to NRE : 

and

An interesting result from Theorem 12 using max-sequen-
tial mode, hence the superscript ms, the delay is removed but 
values of other ingredients are increased, such as number of 
rules. An improvement on another computing parameter is 
given in [76] where they improve on [114] by giving “small” 
universal systems. We return later to small universal sys-
tems, where the main goal of such works is to reduce the 
number of neurons while maintaining Turing completeness.

An interesting extension of Theorem 11 is in [64] where 
the entire system is heterogeneous, but parts of the system 
are homogeneous. That is, the system is locally homoge-
neous. Specifically, neurons in modules are homogene-
ous, where such modules simulate operations of a register 
machine. Since there are three such operations, there are 
three sets of rules in [64] summarized in Theorem 13. We 
note in Theorem 13 that some of their modules now use 
negative weights, unlike previous results where the mini-
mum weight is one: weight−2

5
 means the minimum weight is 

-2 while maximum is 5.

Theorem 13 (Liu, Qi 2016 [64])

Before we end this section, we mention more recent 
works on homogeneous variants of SN P systems. In [31], 
homogeneous SNPSP systems were investigated. Each of the 
neurons in the homogeneous SNPSP systems in [31] uses 
the same set of 9 rules. In [117], the asynchronous mode 
is applied to homogeneous SN P systems. In asynchronous 
mode, a second level of nondeterminism is applied: if a neu-
ron can apply a rule the neuron nondeterministically decides 
to apply the rule or not. Specifically, local synchronization 
is used where the entire system is asynchronous but sets of 
neurons operate in a synchronous manner, similar to the idea 
of locally homogeneous systems in [64]. Local synchroni-
zation is used since the lack of synchronization makes pro-
gramming the system more difficult, see for instance details 
in [24]. Using local synchronization, at most 5 rules are 
required to characterize NRE, with trade-offs including an 
increase in the outdegree of neurons.

An interesting and recent work on homogeneous SN 
P systems is in [33] which introduces H, a homogeniza-
tion algorithm for an arbitrary SN P system Π , such that 
H(Π) = Π� where Π� is a homogeneous SN P system 

Spikms
2
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8

8
, cons11, forg1, dley0, outd3,weight5),

DSpikms
acc
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8
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, cons7, forg1, dley0, outd3,weight6).

Spik2LocHSNP∗(rule
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−2
5
) = NRE.

computing the same set as Π . Algorithm H requires some 
reasonable constraints, such as the lack of delay which is 
known to not affect their computational completeness, see 
for instance [67]. Using operations such as neuron transla-
tion and subsystem scaling, H introduces modifications in 
the number of spikes, rule sets, synapses, and neurons of Π 
to produce Π�.

2.5  Visual‑ and web‑based simulators

The practical notion is that of a visual simulator, for now 
at least, of SN P systems and some variants. At least one 
way to better engage or increase enthusiasm of new and old 
researchers is to have tools to allow easy and visual crea-
tion and experimentation of theoretical models. One such 
pedagogical tool for use in automata and grammar models 
is a well-known tool Java Formal Languages and Autom-
ata Package (in short, JFLAP) see for instance [42]. With 
JFLAP, novice and experts can easily and visually interact 
with notions from automata and formal languages, such as 
a step-by-step transformation of a nondeterministic finite 
automaton to a deterministic one or a regular grammar.

For SN P systems, in a similar way, it is useful to have 
some examples of solutions to problems: applying notions 
such as normal forms from Sect. 2.3 or homogeneous sys-
tems in Sect. 2.4 can improve appreciation and increase 
engagement. For instance, an easy access and visual tool 
to create or interact with SN P systems generating certain 
languages, accepting numbers, or solving small instances 
of hard problems. An early attempt for such an easy access 
and visual tool is Snapse, see Fig. 1, in [37] which includes 
a download link to the tool. Snapse allows a visual and 
(quite) easy to access tool to experiment with SN P sys-
tems, with features such as: animations for the sending of 
spikes between neurons, pseudorandom mode to simulate 
nondeterministic application of rules or guided mode to 
allow users to select which rules to apply, some examples 
such as a natural number generator, a bit comparator, and a 
bit adder. While Snapse was tested in a few platforms, such 
as Windows and Linux computers, it’s ease of access (among 
other features) can still be improved. Thus, WebSnapse was 
introduced in [35], see Fig. 2, with links in [110]. Web-
Snapse is mainly a web browser version of Snapse.

WebSnapse allows an improved ease of access since 
its access is not limited to computers running Windows 
or Linux. Most modern web browsers, including those 
found in laptops, tablets, or mobile phones can be used to 
access WebSnapse. Besides the improved ease of access, 
WebSnapse includes new features such as the viewing of a 
computation history of an SN P system: for each time step, 
WebSnapse records the rules applied for each neuron, and 
the output of the system. WebSnapse also supports an XML 
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Fig. 2  A screen of WebSnapse version 1, showing the software interface, eight neurons, synapses, firing of spikes (arrows with broken lines)

Fig. 3  A screen of WebSnapse V2, with some new features: improved 
access to edit parts (e.g., nodes or neurons, synapses) of the system; a 
slider at the top right, to change the simulation and animation speed; 

support for weights on synapse, such as weight of 1 for both synapses 
in the screen
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file format, inspired by one of the formats of the well-known 
tool P-Lingua [68].

An improvement is in WebSnapse V2 (that is, version 
2) from [30], also shown in Fig. 3. In WebSnapse V2, all 
features of version 1 are included, together with further 
variants or ingredients, such as multiple input and output 
neurons, weights on synapses. WebSnapse V2 also includes 
new simulator features, such as increasing or decreasing the 
speed of the simulation and animation, improving the ways 
to create, remove, or edit parts of the system.

More recently, a significant improvement is WebSnapse 
CS (that is, client–server) from [43] and shown in Fig. 4. 
Together with another contemporary variant known as Web-
Snapse V3 from [39], WebSnapse CS includes all features 
of WebSnapse V2 but with improved efficiency from the 
perspective of the user and from the software developer. For 
the user: the screen interface can be more intuitive or aligned 
toward recent software applications especially for mobile 
devices such as phones and tablets; improved ways to add, 
edit, or delete neurons, rules, spikes, and synapses using 
context-aware gestures or clicks of the computer mouse; 
support for LaTeX-like input of rules and regular expres-
sions; support for improved representation of input or out-
put trains of spikes, such as by writing the string 1 08 10 in 
the output neuron out in Fig. 4 instead of the explicit string 
10000000010 from previous versions; support for light and 
dark themes or modes to improve visibility depending on the 
screen or device used.

For the developer, WebSnapse CS allows easier exten-
sion for future variants by improving the separation of the 

code for the user interface and the “logic” and simulations 
of the computation. Also, the CS or client–server part of 
WebSnapse CS allows the logic to be computed in a sepa-
rate machine from the machine for the user interface (i.e., 
the computer for viewing the screen): in previous versions 
both the simulation and user interface can only be done in 
the same machine or computer; with WebSnapse CS it is 
possible to use a more powerful computer (e.g., server or 
workstation computer) to perform the computations of the 
simulation, while a less powerful computer (e.g., laptop or 
tablet computer) can be used to view the animations, results. 
In this way, larger systems can be simulated compared to 
previous versions of WebSnapse, while maintaining ease of 
access and visual simulations.

WebSnapse is currently used not only for research but 
also for pedagogy in the research group of the author. For 
instance, at least in the undergraduate classes CS198 and 
CS199 for two semesters at the University of the Philip-
pines Diliman, WebSnapse has been used since 2021 for 
some students to learn about SN P systems or variants. In 
both classes, undergraduate students are expected to prepare 
a technical or research project for the degree. The author 
and some colleagues use WebSnapse, as well as require the 
software for students focusing on SN P systems or related 
systems. Our experience is similar with the JFLAP tool 
for automata and formal languages, where WebSnapse 
allows improved understanding of SN P systems and their 
computations.

Recalling the example Π1 from Sect. 2.2, we see the sys-
tem depicted in WebSnapse in Fig. 5.

Fig. 4  A screen of WebSnapse CS using dark theme or mode; at the 
bottom right is a minimap, a small directed graph to represent the 
simulated system and its placement in the software canvas; support 

for LaTeX-like inputs and outputs; support for client–server architec-
ture or style of simulation
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A few more examples of SN P systems in WebSnapse 
are the bit adder in Fig. 6 with more details in [30, 45], 
and a comparator or sorting “module” in Fig. 7 with more 
details in [25, 30]. We do not go here in the details, only 
to mention other examples for WebSnapse include addition 
(increment), subtraction (decrement) modules simulating 

instructions of register machines, and a system solving an 
instance of the NP-complete problem Subset Sum from 
[62]. The group aims to keep adding more examples to 
the list in the WebSnapse page [110], and we welcome the 
contributions of other users and researchers.

Fig. 5  The SN P system Π1 from Sect. 2.2, shown with output 1001 = 1021 in the environment node with label env
out

 : spikes represented as sym-
bol “1” are released by neuron 3 at clock tick or step 1 and step 4; in this way the generated output is 4 - 1 = 3 ∈ {k ∣ k ≥ 2}

Fig. 6  An SN P system included in the list of examples in Web-
Snapse: a bit adder which adds the binary numbers 021 = 001 and 
031 = 0001, which are the binary strings in reverse for the numbers 

410 = 1002 and 810 = 10002; the expected output is the string 03120 = 
0 0011 0 with only the digits in bold considered part of the output in 
reverse, that is, 11002 = 1210
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Recently, we provide a tutorial or step-by-step guide in 
using WebSnapse and its extensions to learn and work with 
SN P systems and some variants: the shorter and online ver-
sion in [110] with revision and extension at [59]. The group 
has also prepared some test cases or benchmarks for use by 
novices or experts, found in the main WebSnapse page at 
[110]. The WebSnapse page also includes links to all main 
versions of the software, including the simulators and their 
source codes.

3  Some open problems and research topics

What follows is a list of problems or topics which is of 
course not meant to be exhaustive. Unlike the previous sec-
tions there is less structure in the next list, for instance, there 
is no ordering according to significance, interest, or time 
with the membrane computing community. The topics are 
presented in varying depth, some more formal, some more 
informal or preliminary. 

 1. An early and explicit work restricting SN P systems is 
[51], though their work is mainly focused on Turing 
complete systems or otherwise, with two types of 
neurons: bounded neurons consist of only bounded 
or finite rules of the form ai∕aj → a;d where the lan-
guage L(ai) is finite; unbounded neurons consist of 
only unbounded rules of the form E∕aj → a;d where 
language L(E) is an infinite and unary regular set of 
expression E. The extension of such neuron and rule 

types to systems is a natural one: a bounded (resp., 
unbounded) SN P system is one that consists only of 
bounded (resp., unbounded) neurons. The third type, 
for instance from [52], are general neurons which can 
have bounded and unbounded rules. Most of the results 
from Sect. 2.3 and Sect. 2.4, except perhaps [67], do 
not focus or even ignore such types of neurons. How 
are results from [51, 52] affected, such as trade-offs, 
when considering the earlier normal forms such as 
Theorem 3 or the more recent and restrictive forms 
from Theorem 10?

   Extending results from [51, 52], Sects. 2.3, and 2.4 
to other classes of numbers or languages, between the 
capabilities of finite automata and the Turing machine 
is of interest, not just for theory but for practical appli-
cations also. Such extensions are also suggested in 
problems L and K in [82]. A recent attempt on other 
classes in the Chomsky hierarchy is [32], but several 
problems remain open: what are the effects of applying 
normal forms or homogeneous systems on the SNPSP 
systems and other variants to “simplify” the construc-
tion? How about a characterization (the work in [32] 
was only in one direction) with normal or homogene-
ous forms for context-free and other language classes, 
including infinite sequences such as in [38] ?

 2. Some rather “general” issues or interests from, but not 
limited to, Sects. 2.3 and 2.4: most if not all results 
here mentioned are about generating or accepting 
sets of numbers. How about languages applying such 
notions to systems accepting or generating languages? 

Fig. 7  An SN P system included in the list of examples in WebSnapse: a comparator which compares two inputs numbers written in unary, that 
is, comparing the numbers 210 = 11 = 12 and 410 = 14 ; the smaller and larger numbers are stored in neurons min and max, respectively
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One early work on SN P systems generating languages 
is [26], with a recent work in [74] using homogene-
ous SNPSP systems to generate label languages. The 
case of computing strings is interesting: certain “easy” 
functions and languages cannot be computed by SN 
P systems as transducers [83] and language genera-
tors [26] over a binary alphabet. Can normal forms 
or homogeneous systems maintain or reduce further 
the power of such systems? SN P systems as various 
transducers are given in [50] with recent results in [2, 
15]. From the view of theory and applications, it is 
interesting to provide trade-offs, normal and homoge-
neous forms for such transducers.

 3. For WebSnapse and similar software for SN P sys-
tems, the following are some natural topics. Since 
WebSnapse is open source it is interesting to extend it 
to other types of P systems, including P systems with 
active membranes: not just for experts but also for 
novice researchers, the author suspects it is of inter-
est to have the user define a “small” P system with 
active membrane ΠAM . Details of P systems with active 
membranes is in [79] and the corresponding chapter 
in the [84]. The user can then view the animation of 
ΠAM similar to animations in WebSnapse, such that the 
polynomial number of cells (with respect to a “small” 
instance of a problem) produce an exponential number 
of cells. An animation feature, among other features, 
perhaps can be used to attract not only researchers but 
even more funding: at the least, such features can per-
haps make our work more accessible to laypersons or 
researchers of other scientific fields.

   A visual suggestion is provided in Fig. 8. Web-
Snapse and similar software can be used by novice or 
experts to easily create, share, and experiment with 

their P systems of choice, using laptop computers, 
workstations, tablet computers, mobile phones and 
other devices. Common file formats can be shared 
between simulation software, or even specific formats 
for certain applications. For instance in [10], they men-
tion more than one decade of using P systems for con-
trolling robots: perhaps WebSnapse and similar soft-
ware can be extended to design and visualize P systems 
for robot controls. Aside from robots, WebSnapse can 
be extended to include the use of evolutionary comput-
ing such as genetic algorithms to automatically design 
P systems. A survey of evolutionary membrane com-
puting is in [115] with recent works on SN P system 
from [23, 44]. For the inclusion of evolutionary SN P 
systems in WebSnapse, the animation feature can be 
extended so that users can see the changes made by the 
genetic algorithm on the neurons, rules, synapses etc of 
the system. Perhaps even view the evolution of popula-
tions of SN P systems, from an initial population.

   Other theories on SN P systems and variants, includ-
ing those from Sects. 2.3 and  2.4, can be included 
in WebSnapse and other software to make “more tan-
gible” the theories especially for novice researchers. 
For instance, a preliminary work on implementing the 
homogenization algorithm in [33] is given in [65]. In 
this preliminary work, using WebSnapse V2, a user 
can click or tap a button which transforms an input 
system Π to an equivalent and homogeneous Π� . Our 
group also aims to support, among other output for-
mats, to output LaTeX code such that the created sys-
tem in WebSnapse can be exported to a format for use 
in preparing LaTeX documents. It is also convenient 
if outputs can be produced in matrix or vector forms, 

Fig. 8  A visual suggestion for 
extending WebSnapse or similar 
software, for improved ease of 
access and integration of work-
flows, features, tools
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for ease of use with parallel simulators such as those 
in [22, 44, 70].

   Using WebSnapse or similar tools, an interesting 
problem is how to setup an easy to access, use, and 
“integrated” workflow for researchers and users? An 
integrated workflow between users and developers, 
including their hardware and software, can perhaps 
allow better access to practical applications. That 
is, domain and software (hardware) experts working 
together in WebSnapse to achieve domain specific 
goals. For instance, designing and visualizing the prob-
lem (which may include checking for model errors), 
perhaps downloading to specialized circuits, robots, 
“wet laboratory”, parallel hardware or software, and so 
on, then back to WebSnapse for further evaluations and 
analyses. Such integrated workflows can perhaps make 
SN P systems and membrane computing accessible 
to many more researchers, for practical applications, 
see for instance [103]: WebSnapse or other software 
tools can (and perhaps must) be extended to work with 
hardware tools including parallel accelerators such as 
GPUs, FPGAs, robots, and so on.

   For instance, WebSnapse or similar tools can be 
used or integrated in the workflow regarding the real 
world or practical problem of pattern recognition. For 
instance, the first work to use SN P systems with Heb-
bian learning to recognize English letters is [95]. Sys-
tems such as those from [95] help in automating tasks 
such as image to text or image to speech.

   Another practical problem where tools such as Web-
Snapse can further help developers, domain experts 
and other users include skeletonizing images. Skel-
etonizing images helps reduce the amount of stored 
information by removing less useful or important 
parts of the images. Work in [96] uses SN P systems 
with weights to improve the skeletonizing method of 
images.

 4. Several ways to study the properties and computa-
tions of SN P systems and variants include their matrix 
representation [3, 113] and formal framework [104, 
105]. Similar to other normal forms in informatics, a 
usual trade-off for restrictions such as a normal form 
or homogeneous system is the increase in the number 
of other parameters, such as rules and computation 
time. How can we use the matrix representations or 
formal framework for SN P systems to compare and 
contrast results on Turing completeness, to transfer 
results, and so on? Related to this question is how to 
use such representation or framework to investigate 
further properties of systems under normal forms, prior 
to transferring results. A related idea to matrix repre-
sentation (even energy efficiency, more on this later) 
is reversibility in the computations of SN P systems as 

in [97]. In short, a reversible SN P system is one where 
earlier configurations of the system can be obtained 
by reversing the order of rules applied in the system. 
It is of interest to design normal or homogeneous and 
reversible SN P systems, analyzed with matrix repre-
sentation or formal frameworks.

   For instance in [69], it is shown that the lower 
bound for a universal SN P system is 4 neurons, using 
extended spiking rules which are rules allowing a neu-
ron to fire more than one spike each step. Systems in 
[69] require more details than given here, such as a 
different way to encode inputs, outputs, and instruc-
tions of register machines compared to results from 
Sects. 2.3 and 2.4. As expected, one trade-off from 
the lower bound results in [69] is the larger number of 
rules for each neuron. Mentioned in [18] is the idea of 
Korec simulation technique which assumes “simpler 
neurons”, that is with much fewer or simpler types of 
rules, compared to “super neurons” such as in [69] 
and elsewhere. How can we use results on normal 
forms, together with matrix representations, formal 
frameworks, to further compare and transfer results 
on “small” systems with “super neurons” and systems 
using Korec simulation technique from Sects.  2.3 
and 2.4?

   Related to the use of normal forms or homogene-
ous systems is that resulting systems have a sparse 
adjacency matrix, that is, we have more processors or 
neurons than links or synapses. A recent work in [9] 
shares some details on the effects of using a “dense” 
representation of SN P systems and variants, on the 
time and memory performance of parallel processors. 
Preliminary experiments of some ideas from [9] is 
in [46] with extensions in [47], providing significant 
improvements of the dense representation over well-
known representations in GPU computing. On the one 
hand, normal forms and homogeneous systems pro-
vide “simple” systems for theoretical investigations. 
On the other hand, we may need to modify our exist-
ing approaches for such systems in parallel computing, 
circuits, robots, and so on to gain improvements on real 
world applications.

 5. Specifically for results on “small” universal systems 
such as [18, 69], starting from [75] is to find small uni-
versal systems under normal forms or that are homoge-
neous. The search for such SN P systems and variants 
is quite active, for instance the bibliography on SNP 
systems as of June 2016 in [63] lists at least 17 cita-
tions dedicated to such small systems. Related to the 
Korec simulation technique mentioned in [18] are the 
following notions: for small universal systems to use 
the rulek parameter in Sect. 2.3 where each neuron has 
at most k rules; for comparison or transfer of results 
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(see again item 3 in this list) a notion such as rule 
density, that is, the ratio of the total number rules over 
the total number of neurons. Again we go back to the 
idea of bio-neurons seemingly “simple” or not “too 
complex”. Hence, such a ratio can be a metric to use 
in new normal or homogeneous forms, among other 
results.

 6. An open problem in [24] is whether asynchronous SN 
P systems using only standard spiking rules (that is, at 
any step a neuron can fire at most one spike) are Turing 
complete. The difficulty in answering this problem led 
to features to work around the removal of a global 
clock or synchronization, such as local synchroniza-
tion in [117]. Perhaps one way to approach an answer 
to this problem is to use normal forms or homogeneous 
systems, to restrict the ways the system can perform its 
computations.

   Besides the asynchronous feature, another feature 
is polarization to remove regular expressions in SN 
P systems. SN P systems with polarizations or PSN P 
systems were introduced in [111], since even a “regular 
oracle” can be too powerful in the following sense: that 
is, the ability to evaluate in one time step if a string 
of arbitrary length is described by a regular expres-
sion. Thus, PSN P systems only use at most three 
kinds of polarizations: positive, negative, and neutral. 
Together with the feature to send spikes is the feature 
to send such polarities, so that neurons have an addi-
tional information (the polarity) besides the contained 
spikes. A normal form for PSN P systems is in [5] 
which says that at most 2 polarizations is enough to 
achieve Turing completeness. In [111] it is asked how 
to “transfer” some of their results to SN P systems with 
regular expressions, to further find restricted types of 
regular expressions while maintaining the computing 
power. In Theorem 10, a single type of regular expres-
sion is the optimal lower bound, with [67] giving some 
ideas on some optimizations for “bounded rules”. That 
is, certain neurons in the system only serve as “relay 
neurons”. Hence, a bounded rule such as a → a is suf-
ficient, instead of an unbounded rule.

 7. Since WebSnapse and similar tools are mainly peda-
gogical tools, they can be integrated or connected to 
more performance-specific simulators such as those 
in GPUs which are massively parallel processors. For 
instance, the CuSNP simulators of SN P systems in 
GPUs from [1, 22, 44]. Normal forms and homogene-
ous systems can support such simulators, by perhaps 
using a “preprocessing” phase to convert (at least parts) 
of an input system to a more restricted system prior 
to simulation. A preliminary work to combine ben-
efits of web-based simulations with GPUs is in [102] 
with improvements in [70]. Again, some hardware 

details such as those investigated in [9] and item 4 in 
this list may be considered. When using evolutionary 
approaches such as those from [23, 44, 115], restricted 
forms of SN P systems can be considered to decrease 
the size of the search space for such approaches in 
order to find “optimal” populations or chromosomes.

   For pedagogical tools, perhaps the inclusion of 
“game playing” or “gamification” can be another 
dimension to consider. That is, the inclusion of game 
or play elements including, but not limited to: coop-
eration, adversaries, ranking based on a reward sys-
tem such as points or scores. In automata and language 
theory, a well-known way to prove certain languages 
are not regular or context-free is using an adversarial 
style of proving, such as pumping lemmas. Similarly, 
from results now or in future for normal or homogene-
ous forms, including ideas from small systems such 
as those from [75], how can we apply them to allow 
users to “play” with SN P systems or similar systems? 
The slider feature in WebSnapse (see Sect. 3 and [43]) 
allows the increase or decrease of the simulation speed: 
combining this feature for instance with evolutionary 
approaches such as in [23, 115] can be a form of play 
between humans with or versus humans (or machines).

 8. In this work, we mention only a few variants of SN 
P systems, but in fact there are many variants so here 
we mention a few more. SN P systems with rules on 
synapses (RSSN P systems) are an interesting vari-
ant which takes inspiration from the fact that synapses 
in brains perform processing instead of simply acting 
as a communication channel, more details in [93]. In 
fact, a similar and optimal lower bound normal form 
for RSSN P systems is also given in [67]. At least for 
computing numbers or strings, much can still be inves-
tigated for normal or homogeneous forms for RSSN P 
systems.

   A less explored but still interesting variant is spik-
ing neural distributed P systems (SN dP systems) from 
[53]. An SN dP system Δ consists of a finite number 
of components Π1,Π2,… where each component Πi is 
an SN P system. Each Πi are independent in most parts 
of their computations, except when they need to com-
municate through special external synapses: the idea 
is that the input to system Δ is partitioned and distrib-
uted among its components, so that not one component 
has the entire input. Thus, components must commu-
nicate and cooperate to recognize certain languages 
using their external synapses. A recent work on SN dP 
systems involves homogeneous components, but not 
neurons in such components, from [11]. Of interest is 
to investigate normal or homogeneous components or 
neurons of SN dP systems. For instance, component 
Πi may have a normal or homogeneous form different 
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from Πj for i ≠ j. For such normal or homogeneous 
systems, it is interesting to show what are their capa-
bilities or limitations.

   A related yet distinct variant of ASN P systems from 
[94] are SN P systems with inhibitory synapse (ISN P 
systems) with homogeneous results in [98]. Besides 
the results in [98], many problems still remain for 
ASN P systems, such as: lower or optimal bounds in 
the normal or homogeneous forms; can the bounds be 
lowered using other features such as other derivation 
modes, or using a trade-off such as increase in one 
parameter (for instance the number of neurons or rules 
in the system) but decrease in another? For RSSN P 
systems, [57] provides results on homogeneous syn-
apses. As with other variants, much work remains open 
for such systems such as: how to remove delay and/
or forgetting rules; decrease other bounds in the sys-
tem, since synapses which are processors in [57] each 
use 8 rules; identify trade-offs when decreasing other 
parameters, such as number of rules, neurons, types of 
regular expressions. Further results similar to those in 
Sects. 2.3 and 2.4 applied to ISN P systems, RSSN P 
systems, SN dP systems and other variants are of inter-
est.

   Another variant related to SNPSP systems from [17] 
are SN P systems with scheduled synapses (in short, 
SSN P systems) in [14]. SNPSP and SSN P systems 
are variants focusing mainly on dynamism of synapses, 
instead of mainly dynamism of neurons as in most 
related works. That is, systems with a dynamic topolo-
gies, inspired not only by dynamism in biological and 
spiking neurons, but also by dynamic or time-varying 
graphs, networks from maths and computing. Some 
normal forms are provided for SSN P systems in [14] 
involving features, such as number of rules, delays, and 
consumed spikes. In SSN P systems, certain synapses 
appear or disappear depending on a schedule: a system 
with local schedules defines disjoint sets of neurons, 
each with a reference neuron which defines the sched-
ules for a specific set; a system with a global schedule 
has only one set of reference neurons. Further details, 
topics, and problems on topologically dynamic systems 
such as SSN P systems are provided in [14].

 9. Much of the present work and items on this list are 
about computing power, but certainly of theoretical 
and practical interest is computing efficiency. That is, 
the amount of time, space, and other resources is 
required to solve problems. For instance, a variant of 
SN P systems inspired by neurogenesis in the brain, 
that is, the creation of new neurons, are SN P systems 
with neuron division and budding from [73]. Division 
rules allow creation of neurons in parallel: if a division 
rule is applied in neuron �i, then �i is replaced with two 

neurons �′
i
 and �′′

i
 such that the incoming and outgoing 

synapses of �i are inherited by �′
i
 and �′′

i
 . Budding rules 

allow creation of neurons in sequence: if a budding 
rule is applied to �j a new neuron �′

j
 is created with a 

new synapse from �j to �′
j
 and all outgoing synapses of 

�j are transferred to �′
j
 . Systems from [73] were used 

to solve the SAT problem in time polynomial in terms 
of the input size of the problem.

   A sort of normal form is given in [107] where it is 
shown that neuron division suffices to efficiently solve 
SAT: that is, neuron budding is not required. Some 
interesting problems from or related to [73, 107] are 
the following: identification of trade-offs, normal or 
homogeneous forms for solving problems; for instance, 
division rules can be considered “wasteful” in the 
sense that such rules create two neurons instead of 
one, so how about trade-offs for using budding rules 
only? What are the computing efficiency of systems 
from Sect. 2? As in automata and formal language the-
ory, we usually expect that systems under a normal or 
homogeneous form incur a “slowdown”, but it remains 
interesting to show how much is the slowdown; Aside 
from sequential or asynchronous modes from Sect. 2, 
further results on restricting SN P systems and variants 
using other derivation modes or semantics are interest-
ing. Some of these semantics include: maximally par-
allel mode, exhaustive mode, generalized use of rules, 
time or clock-free systems, with more details from [61] 
and [6].

   The human brain, as with many examples in biology 
at least, seems to be quite “wasteful” in the sense that 
from childhood to adulthood some billions of neurons 
are created only to be pruned later. Such phenomenon 
may be an inspiration for pre-computed resources in 
[27] and emphasized again in [82] and elsewhere: an 
arbitrarily large number of resources (mainly, neurons 
and synapses) exists at the start of the computation, 
with some of these neurons later “activated” to effi-
ciently solve problems. Perhaps to make such systems 
can become “closer” to biology for instance, by apply-
ing some normal or homogeneous form to them. For 
instance, in [56] the PSPACE-complete problem QSAT 
is solved in linear time. In [100] a normal form for 
regular expressions provides systems which character-
ize the class P, while a polynomial amount of time is 
upper bounded by the class PSPACE.

 10. Lastly, we mention some “nearby” areas of similar 
inspiration with SN P systems. For instance, in the 
area of machine learning, it is of interest to use and 
extend SN P systems to recognize images, perform 
natural language processing, and more. A recent sur-
vey of efforts to combine machine learning with SN P 
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systems and variants is [28]. In recent years, advances 
in computer vision and natural language processing are 
in part due to parallel processors such as GPUs, and 
recent variants of artificial neural networks known as 
transformers. However, it seems that only exception-
ally large companies or organizations can afford the 
training and maintenance of “large” models of natu-
ral languages using transformers and GPUs: the cost 
of training and maintaining such models, even with a 
large number of expensive GPUs, can be very prohibi-
tive. Such costs are usually in terms of processor hours, 
in joules or watts of energy. While many approaches 
are considered to reduce the costs of training and main-
tenance of such models, perhaps ideas based on normal 
or homogeneous forms, certainly the human brain, can 
further reduce the costs.

   Besides such issues on software and hardware, much 
of the modern computers today including parallel pro-
cessors are based on the von Neumann architecture. 
Creating hardware and software inspired by the brain 
is known as neuromorphic computing: unlike the von 
Neumann architectures which is inspired by the Turing 
machine, a neuromorphic processor can be analog 
instead of digital, or use circuit elements other than 
silicon transistors. Again we ask how ideas on normal 
or homogeneous forms can aid in the design of such 
neuromorphic computers, since as late as around the 
first half of the twentieth century we know how similar 
and different human brains and digital computers can 
be [106].

   Other models bearing many similarities to SN P sys-
tems, certainly in the structural or visual sense, include 
Boolean circuits and Petri nets. Ideas for Petri nets and 
SN P systems are mentioned in problem N in [82], with 
latter works such as [13]. Some recent works involving 
similar analyses and properties between Petri nets and 
SN P systems include [3, 4] including formal verifica-
tion in [41]. Petri nets and Boolean circuits seem to 
represent many interesting ideas related to normal or 
homogeneous forms, also similar to SN P systems in 
[111]. Thus, work between such nets, circuits, SN P 
systems and variants, are likely to lead to interesting 
or useful ideas. For instance, the feature of probabil-
istic or stochastic computation is well-known in Petri 
nets, but can still be further investigated for SN P sys-
tems, with some results in [8, 60, 112]. It is interesting 
to include a feature in WebSnapse to convert certain 
classes of SN P systems to Petri nets and vice-versa, 
including the support of colored spikes inspired by 
colored tokens [99].

   In relating SN P systems to Boolean circuits or simi-
lar models, we are likely to have or even require some 

normal or homogeneous form, to obtain further results 
on topology of SN P systems. What kinds of languages 
are computed by such systems with (non)planar and 
other types (for instance, kite or hammock, simple, 
acyclic) of graphs? How much time and space are 
required to solve hard problems using such systems? 
Further topics for investigations on SN P systems are 
in [85], with a recent book on applications, software, 
and hardware of P systems in [116].

4  Final remarks

A survey of results with the length of the present work, 
even confined on notions such as those in Sect.  2 is 
expected to be incomplete: at least a few previous works 
on such notions are likely to be missing in this work. For 
instance, at the time of writing the present work, it is likely 
that at least some of those mentioned in the list in Sect. 3 
are already being investigated even if in preliminary form. 
Besides the results in Sect. 2, the problems and topics in 
Sect. 3 are mainly informed with the experience of the 
author working with SN P systems since around 2011, 
together with excellent and earlier lists such as [61, 82, 85, 
88]. The present work is a brief survey on specific aspects 
of theory and pedagogy of SN P systems, with some recent 
surveys including more comprehensive details on theory 
(see [61]) and applications (see [36]). It is thus recom-
mended to complement ideas from such recent and com-
prehensive surveys with problems and topics mentioned 
in Sect. 3 of the present work. While the research on SN P 
systems and variants is quite active, the author and many 
others, suspect much is still to come in both theory and 
applications of such systems. We end the present work 
with the provocative and hopeful last line from [101] by 
Alan Turing: “We can only see a short distance ahead, but 
we can see plenty there that needs to be done.”
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