
Vol:.(1234567890)

Journal of Membrane Computing (2024) 6:148–167
https://doi.org/10.1007/s41965-024-00147-y

REVIEW PAPER

Thinking about spiking neural P systems: some theories, tools,
and research topics

Francis George C. Cabarle1,2

Received: 5 December 2023 / Accepted: 28 March 2024 / Published online: 29 April 2024
© The Author(s) 2024

Abstract
The present work focuses on three notions about spiking neural P systems (SN P systems), namely normal forms, homoge-
neous systems, and software tools for easy access and visual simulation of such systems. The three notions are presented
in general and specific ways: their backgrounds and motivations, with detailed and up to date results. The aim of the work
is to outline many results on these notions, mainly for research and pedagogy. SN P systems with normal or homogeneous
forms, having many biological and computing inspirations, have much to contribute in the opinion of the author to membrane
computing at least. The software we here mention aims to support both learning and research of such systems. We provide a
brief survey of results in chronological order, using a unified notation to aid in more detailed comparisons of results. Lastly,
we provide a list of open problems or research topics on the three notions and related areas, with the hope to further extend
the theory and applications of SN P systems.

Keywords Membrane computing · Spiking neural P systems · Normal forms · Visual simulators

1 Introduction

Membrane computing is an active area of investigation under
the more general field of natural computing, being part of
a four-volume handbook in [89]. P systems, the models in
membrane computing started in [78] (earlier as a technical
report in [77]), are investigated both for their theory and
practice. Some evidence for the enthusiasm in the investiga-
tions of P systems includes a recent survey in [90], a biblio-
metric analysis in [87], and the acceptance of the Journal
of Membrane Computing (established in 2019) in the ESCI
and SCOPUS indexing.1

A P system variant known as spiking neural P systems (in
short, SN P systems) introduced in 2006 [55] is one of many
P system variants with vigorous research activity. One of the

main reasons for the great interest in spiking neuron models
such as SN P systems, according to [82], is that, while nature
proves to be a rich source of ideas for computing, the human
brain is a “gold mine” of such idea source. Furthermore,
the human brain consumes only about 20 watts of power,
but it is capable of parallel and distributed processing of
images, speech, consciousness, and so on. For these reasons
and more, the research on SN P systems is quite active. For
instance in the bibliometric analysis in [87], we see the fol-
lowing numbers: 10 of the top 20 papers are about SN P
systems or variants; SN P systems, together with membrane
algorithms, are the top in the 9 largest co-citation clusters.

SN P systems and their variants, whether biologically
or mathematically inspired, have been used to solve many
computational problems. Further details can be found in
[55, 82] and the SN P systems chapter in the membrane
computing handbook [84]. Some works on the computing
power of SN P systems and variants include [55, 69, 75]
with recent works such as [5, 67, 74]. Such works mainly
look at the effects or requirements of certain features with
respect to classes of languages or problems that can or can-
not be solved. Such features, with some given more details
in the sections below, include delays in sending the spike
signals, amount of spikes produced, the types of rules or

 * Francis George C. Cabarle
 fcabarle@us.es; fccabarle@up.edu.ph

1 Research Group on Natural Computing, Department
of Computer Science and Artificial Intelligence, SCORE lab,
I3US, Universidad de Sevilla, Avda. Reina Mercedes s/n,
41012 Sevilla, Spain

2 Department of Computer Science, University
of the Philippines Diliman, Diliman, 1101 Quezon City,
Philippines 1 See https:// www. sprin ger. com/ journ al/ 41965/ updat es/ 19161 752

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-024-00147-y&domain=pdf
https://www.springer.com/journal/41965/updates/19161752

149Thinking about spiking neural P systems: some theories, tools, and research topics

neurons in the system. The classes of languages or problems
are often with regards to classical models such as automata,
grammars, Turing machines.

Some works on computing efficiency include [27, 62,
73, 100] with recent works in [7, 19, 108]. These works on
efficiency are mainly concerned with how much space or
time is required to solve certain, usually computationally
hard, (classes of) problems. In the case of SN P systems,
space usually refers to the total number of neurons, rules,
synapses, and so on, while time usually refers to (non)deter-
ministic “clock steps” to halting after a solution (or lack
thereof) is reached. Besides these theoretical results, much
advancements in applications of SN P systems and variants
appear in the last decade such as [95, 96, 109] with ear-
lier surveys in [28, 34, 36]. Further details, especially when
contributing to the three main notions of this present and
brief survey, are provided in their respective sections in the
following sections.

Several PhD theses have also been done on SN P sys-
tems and their variants listed in [86] and the International
Membrane Computing Society [54]. The present work is a
largely revised and extended version of the abstract and talk
given by the author in [12], with many references taken from
a bibliography, as of March 2022, in [20]. The revisions
and extensions include some up to date results as of March
2024 by the groups of the authors on the three main notions
focused by this present work.

The organization of this work is as follows: Sect. 2 begins
with some very brief preliminaries, followed by three gen-
eral notions; Sect. 2.1 defines the basic or standard model
of SN P systems, with an illustrative example in Sect. 2.2.
Sect. 2.3 and Sect. 2.4 provide a chronological view of the
results on normal forms and homogeneous systems, respec-
tively, for SN P systems and variants; Besides the chrono-
logical order of results, Sect. 2.3 and Sect. 2.4 provide a
more unified notation to compare many results on their
respective ideas; For instance, a convention for providing
results is to focus on a normal form of some variant with a
certain feature, with less or no focus on comparable features
of a normal form for another variant. Section 2.5 introduces
pedagogical software for the improved ease of access, visu-
alization, and interaction of SN P systems and variants. Sec-
tion 3 provides a long list of open problems and research
topics based on, but not limited to, the previous sections.

2 SN P stories: definitions and main notions

We consider two theoretical notions (Sects. 2.3 and 2.4) and
one practical notion (Sect. 2.5) also in the hopes of further-
ing both theory and practice of SN P systems. Both theoreti-
cal notions have some biological inspiration: bio-neurons
can be seen as rather “simple” or restricted compared to

other types of cells; bio-neurons also seem rather “similar”
or homogeneous at least for certain parts of the brain. The
practical notion is an easy to access and visual tool for peda-
gogical purposes, not just for experts but also for students or
new researchers. Definitions of SN P systems, their syntax
and semantics, are only mentioned in brief below to be able
to focus more on three main notions in the present section.
Excellent introductions to and definitions of SN P systems
include the seminal work in [55], the dedicated chapter in
the handbook in [89], with open access tutorials in [61] and
[80].

2.1 SN P systems: the basic model

Very briefly, an SN P system includes spike processors
(the neurons) as nodes in a directed graph, where edges
are called synapses. The neurons communicate using sig-
nals known as spikes which are sent to other neurons using
synapses. Specifically, an SN P system is a tuple or con-
struct Π = ({a}, �1, �2,… , �m, syn, in, out) which uses a
single symbol a as the spike symbol, each �i is a neuron,
syn ⊂ {1, 2… ,m} × {1, 2,… ,m} is the set of synapses
between the m neurons (a reflexive synapse (i, i) is not
allowed in this basic model), with in and out as the labels of
the input and output neurons, respectively.

Each neuron �i = (ni,Ri) includes the number ni of spikes
contained in �i , and a rule set Ri . Rules in Ri include spiking
rules of the form E∕ac → a;d where E is a regular expres-
sion over {a}, with natural numbers c ≥ 1, d ≥ 0. A spiking
rule is enabled if neuron �i contains ni spikes written as
string ani , such that ani ∈ L(E), that is, there is a regular set
L(E) to “check” if all ani spikes are “covered” in the language
L(E). The application or firing of a spiking rule consumes c
spikes, so only ni − c spikes remain in �i , followed by send-
ing of one spike to each �j such that (i, j) ∈ syn.

Checking, consuming, and firing of spikes are performed
in a single step t, except when the delay d ≥ 1 in which
the spike is received by “neighbor” neurons at step t + d .
From step t until t + d − 1 the neuron is closed, inspired by
refractory periods of bio-neurons: a closed neuron is wait-
ing to release or fire its spike at step t + d , it cannot apply
other rules, and it cannot accept new spikes. Spikes sent to
a closed neuron are considered lost or removed from the
system. The neuron becomes open at step t + d when new
spikes can be received. A rule can be applied next by the
open neuron at step t + d + 1.

The other rule form in rule set Ri is a forgetting rule of
the form as → �. The meaning is that if neuron �i contains
exactly s spikes these spikes are erased or removed from �i .
Note that in the basic model, the enabling of forgetting rules
and spiking rules are mutually exclusive, that is, we can have
all spikes in �i as ani enabling either forgetting rules only, or
spiking rules only. More specifically, if �i has a forgetting

150 F. G. C. Cabarle

rule as → � then as ∉ L(E) for any E of any spiking rule of
�i.

It is possible to have more than one rule in a neuron �i
that can be applied, that is, there exist at least two rules
with expressions E1 and E2 where L(E1) ∩ L(E2) ≠ �. In this
case, the rule to be applied is chosen nondeterministically.
The system Π is globally parallel, that is, all neurons can
fire at each step, but Π is locally sequential, that is, at most
one rule in each neuron is applied. Π has a global clock to
synchronize all neurons, that is, at each step if a neuron can
apply a rule then it must do so. A system can have an out (in,
respectively) neuron only if acting as a generator (acceptor,
respectively), or both in and out neurons as a transducer or
device for computing functions.

Even with the basic or standard definition of an SN P
system in this present section, there are various ways to
interpret or obtain the output. Here we mention for now
one common way to obtain the output, using a time interval
between the first two spikes of the output neuron out to the
environment. Visually, the out neuron has a synapse going
out of the system given by an arrow that does not point to
any neuron. Specifically, if neuron out fires its first and sec-
ond spikes at steps t and t′ , respectively, the output is said to
be the number n = t� − t. Thus, the basic model computes or
generates numbers, or sets of numbers in the case of nonde-
terministic systems. This way of obtaining the output applies
whether the system halts or not. A system halts if no more
rules can be enabled.

2.2 An example: generating numbers

Consider a small example as follows, labeled as SN P system
Π1.

Let Π1 = ({a}, �1, �2, �3, syn, 3), where

1. �1 = (2, {a2∕a → a;0, a → �}), that is, neuron 1 initially
contains 2 spikes and its rule set R1 contains two rules.

2. �2 = (1, a → a;0, a → a;1), here neuron 2 is the only
nondeterministic neuron in Π1 ∶ both of its rules require
exactly one spike a, but one rule has no delay while
the other rule has a delay of 1 step when firing its
spike. A writing convention is seen here: if E = ac then
E∕ac → a;d is written simply as ac → a;d.

3. �3 = (3, a3 → a;0, a → a;1, a2 → �), with neuron 3 as
the output neuron.

4. syn = {(1, 2), (2, 1), (1, 3), (2, 3)} are synapses of Π1.

We briefly describe the computation of Π1 as follows:
Step 1: all 3 neurons can fire, but only neuron 2 has a

nondeterministic choice. Neuron 1 must apply its rule
a2∕a → a;0 which consumes one spike (only one spike
remains in �1) and sends one spike each to �2 and �3 . Assume
for now that neuron �2 applies rule a → a;0, no spikes remain

in �2 and one spike each is sent to �1 and �3 . Neuron 3 applies
rule a3 → a;0 so at step t = 1 the output neuron fires its first
spike to the environment, consuming all of its spikes.

Step 2: �1 has two spikes in total from step 1, so it must
apply the same rule from step 1. At this step, as long as neu-
ron �2 decides to apply its first rule a → a;0 then �1 always
behaves as in step 1, while �3 always contains two spikes
so it must always apply its forgetting rule a2 → �. The out-
put is obtained soon after �2 decides to apply its second
rule. Assume here at step 2 that �2 applies its second rule
instead: it is closed from step 2 until step 2 + 1 − 1 = 2, that
is, closed for only one step.

Step 3: The spike from �1 to �2 in step 2 is lost since �2
was closed in step 2. Only the forgetting rule a → � of �1 can
be used so it contains no more spikes. Note that the spike
from the opening of �2 here at step 3 can only be used by �1
at the next step 4. Neuron 2 is now open and sends one spike
each to �1 and �3 . Neuron 3 has only one spike from �1 in
step 2 so a → a;1 is applied and �3 closes.

Step 4: neuron 1 applies its forgetting rule, so here both
�1 and �2 contain no spikes. Neuron 3 fires its second spike
to the environment at step t� = 4. Π1 halts since no more
rules can be applied, with the output of this nondeterministic
branch of computation as t� − t = 4 − 1 = 3.

The reader can easily verify that Π1 can generate smaller
or larger numbers depending on the step when �2 decides
to apply its second rule. In this way, we say Π1 computes
or generates all natural numbers starting from 2, that is,
L(Π1) = {k ∣ k ≥ 2}. From the definition in Sect. 2.1 and
the seminal work in [55], we make a quick note: a minor
“bug” in [61] where Π1 appears as Fig. 1 to compute the
set {k� ∣ k� ≥ 1} , that is, all natural numbers starting from
1. A visual representation of Π1 appears later in Fig. 5 of
Sect. 2.5.

2.3 Normal forms

In short, a normal form is a simplifying set of restrictions
for a given machine, model, or system. In language theory,
a well-known normal form is the Chomsky normal form
(in short, CNF) for context-free sets from [29] which says
that instead of writing context-free rules in a large number
of forms, it is enough to use two forms to describe all such
sets. In other words, we maintain the computing power of
context-free grammars to generate context-free sets while
restricting the forms of rules of such grammars. The CNF is
of theoretical and practical use, allowing less complicated
proofs and further results. It is thus of interest to apply nor-
mal forms to other models, certainly to SN P systems.

We set up some basic notations for use in the follow-
ing sections, although a few more are introduced later
when they are more relevant. We note that in the cited
works there is not a standard convention, though there are

151Thinking about spiking neural P systems: some theories, tools, and research topics

many intersections, for the notations that follow. Further
details of the following notations, including the prelimi-
naries of computations in SN P systems, can be found
in tutorials, monographs, surveys as in [61, 80, 84]. We
write as SpikiPj(rulek, consl, forgm, dleyn) the set of numbers
computed by the basic model of SN P systems as defined
in Sect. 2.1. The parameter i ∈ {2, acc} depends on how
the result is obtained: as a number generator the result is
the interval between the first two spikes from the output
neuron, hence the subscript 2; as a number acceptor, the
result is halting the system, given an input as the inter-
val between the first two spikes to the input neuron. The
parameters j, k, l, m, and n give the upper bounds for the
number neurons, rules, consumed spikes, forgetting rules,
and rules with delay, respectively. If the bound is finite but
arbitrary we replace the parameter with the ∗ symbol. A D
is appended at the start of the set of numbers to emphasize
deterministic computation since we assume by default that
computations are nondeterministic.

Even in the seminal paper of SN P systems in [55], we
already have some results on normal forms, though such
results were not labeled as “normal form” in the paper. For
instance, the set of all finite sets of numbers NFIN can be
generated by an SN P system with at most 2 neurons, each
neuron with an unbounded number of rules, each rule con-
suming at most one spike, and without forgetting rules. We
can summarize this result as follows:

Theorem 1 (Ionescu et al 2006 [82])

We use parameters indi and outdj to mean a neuron has an
indegree at most i and an outdegree at most j, respectively.
For the indegree of SN P systems, Theorem 2 is one result
from [81] which limits the indegree of each neuron to at
most two incoming synapses. In the sections that follow, we
omit from writing some parameters such as ind and outd if
such parameters are not the main focus of a work or result.

Theorem 2 (Păun et al 2006 [81])

An early and explicit work on normal forms for SN P sys-
tems is [48]. Results from [48] are about Turing complete-
ness or the characterization of the set of all Turing comput-
able sets of numbers NRE, as follows:

Theorem 3 (Ibarra et al 2007 [48]) The following sets of
numbers are equivalent to NRE:

1. Spik2P∗(rule3, cons4, forg5, dley0, outd∗).

2. DSpik{2,acc}P∗(rule2, cons3, forg2, dley0, outd∗).

3. Spik2P∗(rule3, cons4, forg4, dley0, outd2).

Spik2P1(rule∗, cons1, forg0) = Spik2P2(rule∗, cons∗, forg∗) = NFIN.

Spik2P∗(rule2, cons3, forg1, dley1, ind2, outd2) = NRE

Fig. 1 A screen of Snapse, showing the software interface, four neurons (boxes labeled with 8, 9, 10, 12), synapses (arrows), a spike (yellow cir-
cle between neurons 9 and 10)

152 F. G. C. Cabarle

4. Spik2P∗(rule2, cons3, forg0, dley1, outd2).

5. Spik2P∗(rule2, cons2, forg1, dley2, outd2), a
i for i ≥ 1 or

a+.

Some interesting results in Theorem 3 from [48]
include: removal of delay, for both the nondeterministic
(item 1) and deterministic case (item 2); restricting the
outdegree of each neuron (item 3); removal of forgetting
rules (item 4); lastly, restricting the type of regular expres-
sion (item 5).

Notice that results in Theorem 3 allow only the removal in
a mutually exclusive way for features such as delays, forget-
ting rules, or simplified regular expressions. In [40], some of
these features are combined while maintaining the comput-
ing power of SN P systems. For instance, Theorem 4 com-
bines simplified regular expressions and removal of delays.

Theorem 4 (García-Arnau et al 2009 [40])

using rules of the form a∗∕a → a or ar → a, and as → � for
r, s ≤ 3.

An open problem from [40] asks if more than two features
of the system can be removed simultaneously while maintain
Turing completeness. A positive answer to this open prob-
lem was provided in [71] as Theorem 5.

Theorem 5 (Pan, Păun 2010 [71])

using only the following types of regular expressions:
a(aa)∗, a(aaa)∗, or (a2 ∪ a).

What is surprising about Theorem 5 is how restricted an
SN P system is where rulee

k
 means that each neuron uses at

most k rules and at most e types of regular expressions. The-
orem 5 not only answers an open problem from [40] but also
shows how “simple” the neurons can be to be Turing com-
plete: a neuron only needs at most two rules using exactly
one of three types of regular expressions, and without delays
and forgetting rules. An open problem from [71] is if the
system can maintain its computing power with fewer types
of regular expressions.

Before we proceed to further normal forms for SN P sys-
tems, we make a short digression for some variants of SN
P systems. SN P systems with anti-spikes or ASN P sys-
tems are SN P systems that allow for a second type of spike
known as an anti-spike [72]. The idea of an anti-spike in [72]
is inspired from the inhibitory features of biological neurons.
Using a as the anti-spike symbol, a normal form for ASN P
systems include Theorem 6 (Theorem 1 in [94]).

Spik2P∗(rule3, cons3, forg3, dley0, outd2) = NRE

Spik2P∗(rule
1

2
, cons3, forg0, dley0, outd4) = NRE

Theorem 6 (Song et al 2013 [94])

using categories (a, a), (a, a).

The feature prulek means each neuron uses at most k
“pure” spiking rules of the form E∕bc → b�, and the regular
expression E has L(E) = bc for b, b� ∈ {a, a}. That is, we
simply write pure spiking rules as bc → b′. The feature catl
means there are at most l categories in each neuron, from
a total of four possible categories: (a, a), (a, a), (a, a), (a, a).
For instance, category (a, a) means rules can only consume
anti-spikes and produce spikes.

Another normal form was introduced in [92] for sequen-
tial SN P systems. Sequential SN P systems, as introduced
in [49], are systems where neurons cannot operate in paral-
lel. For instance, in the case of max-sequential mode, only
the neuron with the most number of spikes can apply a
rule: if more than one such neuron exists then one neuron
is nondeterministically chosen to apply its rule. A normal
form (Theorem 3.1) from [92] improves a result in [49]
by proving systems in max-sequential mode are Turing
complete without forgetting rules, each neuron has exactly
one rule, but with the use of delays.

The last variant we consider for now are SN P systems
with (structural) plasticity or SNPSP systems from [17].
SNPSP systems are inspired by the ability of biological
neurons to create new or remove existing synapses. A
parameter introduced in [17] was � ∈ {+,−,±,∓} where �
is used in a new type of rule known as a plasticity rule. For
� = + , this means that a rule can only create new synapse,
up to some number k, while � = ± means a rule can create
new synapses in the present step and delete synapses in the
next step. A normal form from [91] is Theorem 7.

Theorem 7 (Song, Pan 2015 [91])

Theorem 7 has rule4
4
 which means each neuron uses at

most 4 types of regular expressions and at most 4 rules.
Another normal form for SNPSP systems is Theorem 8
from [66]. Normal forms for SNPSP systems under max-
and min-sequential modes, as in [49], are given in [16].

Theorem 8 (Macababayao et al 2019 [66])

where R is the maximum number of subtraction instruc-
tions associated with any register of the simulated register
machine.

Spik2ASNP∗(cat2, prule2, forg0, dley0) = NRE

Spik2SNPSP∗(� ∈ {+,−}, rule4
4
, cons4, forg1, dley0, outd3) = NRE.

Spik2SNPSP∗(� ∈ {±}, rule3
3
, cons4, forg0, dley0, outdR) = NRE

153Thinking about spiking neural P systems: some theories, tools, and research topics

Explicit in the results of Theorem 8 and later results is the
idea of a register machine: actually all the results on Turing
completeness in this work since the seminal paper in [55]
are shown by simulating register machines. In short, regis-
ter machines are Turing complete models which have finite
and rudimentary instructions or programs. Further details
on register machines and how SN P systems and variants
simulate them are from [61, 84]. Theorem 8 uses a single
yet “compound” type for � , unlike the “simple” types in
Theorem 7, with the trade-off that Theorem 8 has smaller
values for other ingredients, including the lack of delays and
forgetting rules.

Now we return to an open problem from [71]: can fewer
than three types of regular expressions allow SN P systems
to be Turing complete? That is, can we improve on Theo-
rem 5? The belief in [71] was in the negative. An early and
positive answer to this open problem comes from improving
Theorem 8 for SNPSP systems and attempting to apply it to
SN P systems, resulting in Theorem 9 from [21].

Theorem 9 (Macababayao et al 2019 [21]) Using only regu-
lar expressions a(aa)∗ or (a2 ∪ a), the following sets of num-
bers are equivalent to NRE :

and

Even more interesting are improvements from [67] which
lowered the values from [21].

Theorem 10 (Macababayao et al 2022 [67]) Using only the
regular expression a(aa)∗, the following sets of numbers are
equivalent to NRE :

and

where R is the maximum number of subtraction instruc-
tions associated with any register of the simulated register
machine.

2.4 Homogeneous systems

Next we look at a notion not too dissimilar to a normal
form: the idea of a homogeneous system. At least in the
context of SN P systems, such a system is homogeneous

Spik2P∗(rule
1

2
, cons3, forg0, dley0, outd4),

Spik2SNPSP∗(� ∈ {±}, rule1
1
, cons4, forg0, dley0, outd4).

Spik2P∗(rule
1

2
, cons3, forg0, dley0, outd3),

DSpikaccP∗(rule
1

1
, cons3, forg0, dley0, outd3),

Spik2SNPSP∗(� ∈ {±}, rule1
1
, cons3, forg0, dley0, outd2R)

if every neuron has the same set of rules. The idea of
homogeneous SN P system was first introduced in [114].
In some sense a homogeneous system is a “restricted” sys-
tem, hence the similarity of the notions of normal forms
and homogeneous systems. From the perspective of com-
puting, a homogeneous system is where processors, or
neurons in the case of SN P systems, are not distinct from
each other. In terms of engineering for instance, this can
mean that replacing a malfunctioning or damaged proces-
sor can be easily done: we simply swap the old processor
with a new processor, since both processors are identical.
Not only in engineering, such homogeneous systems may
also reduce other necessary resources, such as during the
design, manufacture, and maintenance of a single kind of
processor.

From the perspective of the human brain, the neocortex
or “new brain” is visually uniform. A natural question for
the study of the brain is how various functions, such as
perception, language, vision, and so on, arise from such
uniformity. A common answer to this question, though
much details still elude us, is how neurons are connected:
the “size” of each connection, number of connections,
"distance” between connections, and so on. Thus, both
from the computing and biological perspectives, the idea
of homogeneous SN P systems is well-motivated.

An early result is that SN P systems as number genera-
tors can be Turing machines with the same set of seven
rules in every neuron, given by Theorem 11 (Theorem 4.1
from [114]). Since every neuron or processor in the SN
P system has the same set of rules, the “programming”
of the system is focused on the topology or connection
of the system using synapses, rather than the “details” of
each neuron.

Theorem 11 (Zeng et al 2009 [114]) The following sets of
numbers are equivalent to NRE :

and

The weight5 feature in Theorem 11 refers to synapses hav-
ing integer weights of at most 5, to multiply the number of
spikes sent to specific neurons. A way to remove the weight
feature, resulting in “standard” synapses of weight of 1, is
also included in [114]. As expected, removing the synapse
weight increases the number of synapses and outdegree of
the system.

Further results on homogeneous SN P systems com-
bine ideas from results on normal forms, such as removing
delays. In [58] the max-sequential mode is applied to HSN
P systems, resulting in Theorem 12.

Spik2HSNP∗(rule
6

7
, cons7, forg1, dley1, outd3,weight5),

DSpikaccHSNP∗(rule
6

7
, cons7, forg1, dley1, outd3,weight6).

154 F. G. C. Cabarle

Theorem 12 (Jiang et al 2013 [58]) The following sets of
numbers are equivalent to NRE :

and

An interesting result from Theorem 12 using max-sequen-
tial mode, hence the superscript ms, the delay is removed but
values of other ingredients are increased, such as number of
rules. An improvement on another computing parameter is
given in [76] where they improve on [114] by giving “small”
universal systems. We return later to small universal sys-
tems, where the main goal of such works is to reduce the
number of neurons while maintaining Turing completeness.

An interesting extension of Theorem 11 is in [64] where
the entire system is heterogeneous, but parts of the system
are homogeneous. That is, the system is locally homoge-
neous. Specifically, neurons in modules are homogene-
ous, where such modules simulate operations of a register
machine. Since there are three such operations, there are
three sets of rules in [64] summarized in Theorem 13. We
note in Theorem 13 that some of their modules now use
negative weights, unlike previous results where the mini-
mum weight is one: weight−2

5
 means the minimum weight is

-2 while maximum is 5.

Theorem 13 (Liu, Qi 2016 [64])

Before we end this section, we mention more recent
works on homogeneous variants of SN P systems. In [31],
homogeneous SNPSP systems were investigated. Each of the
neurons in the homogeneous SNPSP systems in [31] uses
the same set of 9 rules. In [117], the asynchronous mode
is applied to homogeneous SN P systems. In asynchronous
mode, a second level of nondeterminism is applied: if a neu-
ron can apply a rule the neuron nondeterministically decides
to apply the rule or not. Specifically, local synchronization
is used where the entire system is asynchronous but sets of
neurons operate in a synchronous manner, similar to the idea
of locally homogeneous systems in [64]. Local synchroni-
zation is used since the lack of synchronization makes pro-
gramming the system more difficult, see for instance details
in [24]. Using local synchronization, at most 5 rules are
required to characterize NRE, with trade-offs including an
increase in the outdegree of neurons.

An interesting and recent work on homogeneous SN
P systems is in [33] which introduces H, a homogeniza-
tion algorithm for an arbitrary SN P system Π , such that
H(Π) = Π� where Π� is a homogeneous SN P system

Spikms
2
HSNP∗(rule

8

8
, cons11, forg1, dley0, outd3,weight5),

DSpikms
acc

HSNP∗(rule
8

8
, cons7, forg1, dley0, outd3,weight6).

Spik2LocHSNP∗(rule
3

4
, cons5, forg0, dley0, outd3,weight

−2
5
) = NRE.

computing the same set as Π . Algorithm H requires some
reasonable constraints, such as the lack of delay which is
known to not affect their computational completeness, see
for instance [67]. Using operations such as neuron transla-
tion and subsystem scaling, H introduces modifications in
the number of spikes, rule sets, synapses, and neurons of Π
to produce Π�.

2.5 Visual‑ and web‑based simulators

The practical notion is that of a visual simulator, for now
at least, of SN P systems and some variants. At least one
way to better engage or increase enthusiasm of new and old
researchers is to have tools to allow easy and visual crea-
tion and experimentation of theoretical models. One such
pedagogical tool for use in automata and grammar models
is a well-known tool Java Formal Languages and Autom-
ata Package (in short, JFLAP) see for instance [42]. With
JFLAP, novice and experts can easily and visually interact
with notions from automata and formal languages, such as
a step-by-step transformation of a nondeterministic finite
automaton to a deterministic one or a regular grammar.

For SN P systems, in a similar way, it is useful to have
some examples of solutions to problems: applying notions
such as normal forms from Sect. 2.3 or homogeneous sys-
tems in Sect. 2.4 can improve appreciation and increase
engagement. For instance, an easy access and visual tool
to create or interact with SN P systems generating certain
languages, accepting numbers, or solving small instances
of hard problems. An early attempt for such an easy access
and visual tool is Snapse, see Fig. 1, in [37] which includes
a download link to the tool. Snapse allows a visual and
(quite) easy to access tool to experiment with SN P sys-
tems, with features such as: animations for the sending of
spikes between neurons, pseudorandom mode to simulate
nondeterministic application of rules or guided mode to
allow users to select which rules to apply, some examples
such as a natural number generator, a bit comparator, and a
bit adder. While Snapse was tested in a few platforms, such
as Windows and Linux computers, it’s ease of access (among
other features) can still be improved. Thus, WebSnapse was
introduced in [35], see Fig. 2, with links in [110]. Web-
Snapse is mainly a web browser version of Snapse.

WebSnapse allows an improved ease of access since
its access is not limited to computers running Windows
or Linux. Most modern web browsers, including those
found in laptops, tablets, or mobile phones can be used to
access WebSnapse. Besides the improved ease of access,
WebSnapse includes new features such as the viewing of a
computation history of an SN P system: for each time step,
WebSnapse records the rules applied for each neuron, and
the output of the system. WebSnapse also supports an XML

155Thinking about spiking neural P systems: some theories, tools, and research topics

Fig. 2 A screen of WebSnapse version 1, showing the software interface, eight neurons, synapses, firing of spikes (arrows with broken lines)

Fig. 3 A screen of WebSnapse V2, with some new features: improved
access to edit parts (e.g., nodes or neurons, synapses) of the system; a
slider at the top right, to change the simulation and animation speed;

support for weights on synapse, such as weight of 1 for both synapses
in the screen

156 F. G. C. Cabarle

file format, inspired by one of the formats of the well-known
tool P-Lingua [68].

An improvement is in WebSnapse V2 (that is, version
2) from [30], also shown in Fig. 3. In WebSnapse V2, all
features of version 1 are included, together with further
variants or ingredients, such as multiple input and output
neurons, weights on synapses. WebSnapse V2 also includes
new simulator features, such as increasing or decreasing the
speed of the simulation and animation, improving the ways
to create, remove, or edit parts of the system.

More recently, a significant improvement is WebSnapse
CS (that is, client–server) from [43] and shown in Fig. 4.
Together with another contemporary variant known as Web-
Snapse V3 from [39], WebSnapse CS includes all features
of WebSnapse V2 but with improved efficiency from the
perspective of the user and from the software developer. For
the user: the screen interface can be more intuitive or aligned
toward recent software applications especially for mobile
devices such as phones and tablets; improved ways to add,
edit, or delete neurons, rules, spikes, and synapses using
context-aware gestures or clicks of the computer mouse;
support for LaTeX-like input of rules and regular expres-
sions; support for improved representation of input or out-
put trains of spikes, such as by writing the string 1 08 10 in
the output neuron out in Fig. 4 instead of the explicit string
10000000010 from previous versions; support for light and
dark themes or modes to improve visibility depending on the
screen or device used.

For the developer, WebSnapse CS allows easier exten-
sion for future variants by improving the separation of the

code for the user interface and the “logic” and simulations
of the computation. Also, the CS or client–server part of
WebSnapse CS allows the logic to be computed in a sepa-
rate machine from the machine for the user interface (i.e.,
the computer for viewing the screen): in previous versions
both the simulation and user interface can only be done in
the same machine or computer; with WebSnapse CS it is
possible to use a more powerful computer (e.g., server or
workstation computer) to perform the computations of the
simulation, while a less powerful computer (e.g., laptop or
tablet computer) can be used to view the animations, results.
In this way, larger systems can be simulated compared to
previous versions of WebSnapse, while maintaining ease of
access and visual simulations.

WebSnapse is currently used not only for research but
also for pedagogy in the research group of the author. For
instance, at least in the undergraduate classes CS198 and
CS199 for two semesters at the University of the Philip-
pines Diliman, WebSnapse has been used since 2021 for
some students to learn about SN P systems or variants. In
both classes, undergraduate students are expected to prepare
a technical or research project for the degree. The author
and some colleagues use WebSnapse, as well as require the
software for students focusing on SN P systems or related
systems. Our experience is similar with the JFLAP tool
for automata and formal languages, where WebSnapse
allows improved understanding of SN P systems and their
computations.

Recalling the example Π1 from Sect. 2.2, we see the sys-
tem depicted in WebSnapse in Fig. 5.

Fig. 4 A screen of WebSnapse CS using dark theme or mode; at the
bottom right is a minimap, a small directed graph to represent the
simulated system and its placement in the software canvas; support

for LaTeX-like inputs and outputs; support for client–server architec-
ture or style of simulation

157Thinking about spiking neural P systems: some theories, tools, and research topics

A few more examples of SN P systems in WebSnapse
are the bit adder in Fig. 6 with more details in [30, 45],
and a comparator or sorting “module” in Fig. 7 with more
details in [25, 30]. We do not go here in the details, only
to mention other examples for WebSnapse include addition
(increment), subtraction (decrement) modules simulating

instructions of register machines, and a system solving an
instance of the NP-complete problem Subset Sum from
[62]. The group aims to keep adding more examples to
the list in the WebSnapse page [110], and we welcome the
contributions of other users and researchers.

Fig. 5 The SN P system Π1 from Sect. 2.2, shown with output 1001 = 1021 in the environment node with label env
out

 : spikes represented as sym-
bol “1” are released by neuron 3 at clock tick or step 1 and step 4; in this way the generated output is 4 - 1 = 3 ∈ {k ∣ k ≥ 2}

Fig. 6 An SN P system included in the list of examples in Web-
Snapse: a bit adder which adds the binary numbers 021 = 001 and
031 = 0001, which are the binary strings in reverse for the numbers

410 = 1002 and 810 = 10002; the expected output is the string 03120 =
0 0011 0 with only the digits in bold considered part of the output in
reverse, that is, 11002 = 1210

158 F. G. C. Cabarle

Recently, we provide a tutorial or step-by-step guide in
using WebSnapse and its extensions to learn and work with
SN P systems and some variants: the shorter and online ver-
sion in [110] with revision and extension at [59]. The group
has also prepared some test cases or benchmarks for use by
novices or experts, found in the main WebSnapse page at
[110]. The WebSnapse page also includes links to all main
versions of the software, including the simulators and their
source codes.

3 Some open problems and research topics

What follows is a list of problems or topics which is of
course not meant to be exhaustive. Unlike the previous sec-
tions there is less structure in the next list, for instance, there
is no ordering according to significance, interest, or time
with the membrane computing community. The topics are
presented in varying depth, some more formal, some more
informal or preliminary.

 1. An early and explicit work restricting SN P systems is
[51], though their work is mainly focused on Turing
complete systems or otherwise, with two types of
neurons: bounded neurons consist of only bounded
or finite rules of the form ai∕aj → a;d where the lan-
guage L(ai) is finite; unbounded neurons consist of
only unbounded rules of the form E∕aj → a;d where
language L(E) is an infinite and unary regular set of
expression E. The extension of such neuron and rule

types to systems is a natural one: a bounded (resp.,
unbounded) SN P system is one that consists only of
bounded (resp., unbounded) neurons. The third type,
for instance from [52], are general neurons which can
have bounded and unbounded rules. Most of the results
from Sect. 2.3 and Sect. 2.4, except perhaps [67], do
not focus or even ignore such types of neurons. How
are results from [51, 52] affected, such as trade-offs,
when considering the earlier normal forms such as
Theorem 3 or the more recent and restrictive forms
from Theorem 10?

 Extending results from [51, 52], Sects. 2.3, and 2.4
to other classes of numbers or languages, between the
capabilities of finite automata and the Turing machine
is of interest, not just for theory but for practical appli-
cations also. Such extensions are also suggested in
problems L and K in [82]. A recent attempt on other
classes in the Chomsky hierarchy is [32], but several
problems remain open: what are the effects of applying
normal forms or homogeneous systems on the SNPSP
systems and other variants to “simplify” the construc-
tion? How about a characterization (the work in [32]
was only in one direction) with normal or homogene-
ous forms for context-free and other language classes,
including infinite sequences such as in [38] ?

 2. Some rather “general” issues or interests from, but not
limited to, Sects. 2.3 and 2.4: most if not all results
here mentioned are about generating or accepting
sets of numbers. How about languages applying such
notions to systems accepting or generating languages?

Fig. 7 An SN P system included in the list of examples in WebSnapse: a comparator which compares two inputs numbers written in unary, that
is, comparing the numbers 210 = 11 = 12 and 410 = 14 ; the smaller and larger numbers are stored in neurons min and max, respectively

159Thinking about spiking neural P systems: some theories, tools, and research topics

One early work on SN P systems generating languages
is [26], with a recent work in [74] using homogene-
ous SNPSP systems to generate label languages. The
case of computing strings is interesting: certain “easy”
functions and languages cannot be computed by SN
P systems as transducers [83] and language genera-
tors [26] over a binary alphabet. Can normal forms
or homogeneous systems maintain or reduce further
the power of such systems? SN P systems as various
transducers are given in [50] with recent results in [2,
15]. From the view of theory and applications, it is
interesting to provide trade-offs, normal and homoge-
neous forms for such transducers.

 3. For WebSnapse and similar software for SN P sys-
tems, the following are some natural topics. Since
WebSnapse is open source it is interesting to extend it
to other types of P systems, including P systems with
active membranes: not just for experts but also for
novice researchers, the author suspects it is of inter-
est to have the user define a “small” P system with
active membrane ΠAM . Details of P systems with active
membranes is in [79] and the corresponding chapter
in the [84]. The user can then view the animation of
ΠAM similar to animations in WebSnapse, such that the
polynomial number of cells (with respect to a “small”
instance of a problem) produce an exponential number
of cells. An animation feature, among other features,
perhaps can be used to attract not only researchers but
even more funding: at the least, such features can per-
haps make our work more accessible to laypersons or
researchers of other scientific fields.

 A visual suggestion is provided in Fig. 8. Web-
Snapse and similar software can be used by novice or
experts to easily create, share, and experiment with

their P systems of choice, using laptop computers,
workstations, tablet computers, mobile phones and
other devices. Common file formats can be shared
between simulation software, or even specific formats
for certain applications. For instance in [10], they men-
tion more than one decade of using P systems for con-
trolling robots: perhaps WebSnapse and similar soft-
ware can be extended to design and visualize P systems
for robot controls. Aside from robots, WebSnapse can
be extended to include the use of evolutionary comput-
ing such as genetic algorithms to automatically design
P systems. A survey of evolutionary membrane com-
puting is in [115] with recent works on SN P system
from [23, 44]. For the inclusion of evolutionary SN P
systems in WebSnapse, the animation feature can be
extended so that users can see the changes made by the
genetic algorithm on the neurons, rules, synapses etc of
the system. Perhaps even view the evolution of popula-
tions of SN P systems, from an initial population.

 Other theories on SN P systems and variants, includ-
ing those from Sects. 2.3 and 2.4, can be included
in WebSnapse and other software to make “more tan-
gible” the theories especially for novice researchers.
For instance, a preliminary work on implementing the
homogenization algorithm in [33] is given in [65]. In
this preliminary work, using WebSnapse V2, a user
can click or tap a button which transforms an input
system Π to an equivalent and homogeneous Π� . Our
group also aims to support, among other output for-
mats, to output LaTeX code such that the created sys-
tem in WebSnapse can be exported to a format for use
in preparing LaTeX documents. It is also convenient
if outputs can be produced in matrix or vector forms,

Fig. 8 A visual suggestion for
extending WebSnapse or similar
software, for improved ease of
access and integration of work-
flows, features, tools

160 F. G. C. Cabarle

for ease of use with parallel simulators such as those
in [22, 44, 70].

 Using WebSnapse or similar tools, an interesting
problem is how to setup an easy to access, use, and
“integrated” workflow for researchers and users? An
integrated workflow between users and developers,
including their hardware and software, can perhaps
allow better access to practical applications. That
is, domain and software (hardware) experts working
together in WebSnapse to achieve domain specific
goals. For instance, designing and visualizing the prob-
lem (which may include checking for model errors),
perhaps downloading to specialized circuits, robots,
“wet laboratory”, parallel hardware or software, and so
on, then back to WebSnapse for further evaluations and
analyses. Such integrated workflows can perhaps make
SN P systems and membrane computing accessible
to many more researchers, for practical applications,
see for instance [103]: WebSnapse or other software
tools can (and perhaps must) be extended to work with
hardware tools including parallel accelerators such as
GPUs, FPGAs, robots, and so on.

 For instance, WebSnapse or similar tools can be
used or integrated in the workflow regarding the real
world or practical problem of pattern recognition. For
instance, the first work to use SN P systems with Heb-
bian learning to recognize English letters is [95]. Sys-
tems such as those from [95] help in automating tasks
such as image to text or image to speech.

 Another practical problem where tools such as Web-
Snapse can further help developers, domain experts
and other users include skeletonizing images. Skel-
etonizing images helps reduce the amount of stored
information by removing less useful or important
parts of the images. Work in [96] uses SN P systems
with weights to improve the skeletonizing method of
images.

 4. Several ways to study the properties and computa-
tions of SN P systems and variants include their matrix
representation [3, 113] and formal framework [104,
105]. Similar to other normal forms in informatics, a
usual trade-off for restrictions such as a normal form
or homogeneous system is the increase in the number
of other parameters, such as rules and computation
time. How can we use the matrix representations or
formal framework for SN P systems to compare and
contrast results on Turing completeness, to transfer
results, and so on? Related to this question is how to
use such representation or framework to investigate
further properties of systems under normal forms, prior
to transferring results. A related idea to matrix repre-
sentation (even energy efficiency, more on this later)
is reversibility in the computations of SN P systems as

in [97]. In short, a reversible SN P system is one where
earlier configurations of the system can be obtained
by reversing the order of rules applied in the system.
It is of interest to design normal or homogeneous and
reversible SN P systems, analyzed with matrix repre-
sentation or formal frameworks.

 For instance in [69], it is shown that the lower
bound for a universal SN P system is 4 neurons, using
extended spiking rules which are rules allowing a neu-
ron to fire more than one spike each step. Systems in
[69] require more details than given here, such as a
different way to encode inputs, outputs, and instruc-
tions of register machines compared to results from
Sects. 2.3 and 2.4. As expected, one trade-off from
the lower bound results in [69] is the larger number of
rules for each neuron. Mentioned in [18] is the idea of
Korec simulation technique which assumes “simpler
neurons”, that is with much fewer or simpler types of
rules, compared to “super neurons” such as in [69]
and elsewhere. How can we use results on normal
forms, together with matrix representations, formal
frameworks, to further compare and transfer results
on “small” systems with “super neurons” and systems
using Korec simulation technique from Sects. 2.3
and 2.4?

 Related to the use of normal forms or homogene-
ous systems is that resulting systems have a sparse
adjacency matrix, that is, we have more processors or
neurons than links or synapses. A recent work in [9]
shares some details on the effects of using a “dense”
representation of SN P systems and variants, on the
time and memory performance of parallel processors.
Preliminary experiments of some ideas from [9] is
in [46] with extensions in [47], providing significant
improvements of the dense representation over well-
known representations in GPU computing. On the one
hand, normal forms and homogeneous systems pro-
vide “simple” systems for theoretical investigations.
On the other hand, we may need to modify our exist-
ing approaches for such systems in parallel computing,
circuits, robots, and so on to gain improvements on real
world applications.

 5. Specifically for results on “small” universal systems
such as [18, 69], starting from [75] is to find small uni-
versal systems under normal forms or that are homoge-
neous. The search for such SN P systems and variants
is quite active, for instance the bibliography on SNP
systems as of June 2016 in [63] lists at least 17 cita-
tions dedicated to such small systems. Related to the
Korec simulation technique mentioned in [18] are the
following notions: for small universal systems to use
the rulek parameter in Sect. 2.3 where each neuron has
at most k rules; for comparison or transfer of results

161Thinking about spiking neural P systems: some theories, tools, and research topics

(see again item 3 in this list) a notion such as rule
density, that is, the ratio of the total number rules over
the total number of neurons. Again we go back to the
idea of bio-neurons seemingly “simple” or not “too
complex”. Hence, such a ratio can be a metric to use
in new normal or homogeneous forms, among other
results.

 6. An open problem in [24] is whether asynchronous SN
P systems using only standard spiking rules (that is, at
any step a neuron can fire at most one spike) are Turing
complete. The difficulty in answering this problem led
to features to work around the removal of a global
clock or synchronization, such as local synchroniza-
tion in [117]. Perhaps one way to approach an answer
to this problem is to use normal forms or homogeneous
systems, to restrict the ways the system can perform its
computations.

 Besides the asynchronous feature, another feature
is polarization to remove regular expressions in SN
P systems. SN P systems with polarizations or PSN P
systems were introduced in [111], since even a “regular
oracle” can be too powerful in the following sense: that
is, the ability to evaluate in one time step if a string
of arbitrary length is described by a regular expres-
sion. Thus, PSN P systems only use at most three
kinds of polarizations: positive, negative, and neutral.
Together with the feature to send spikes is the feature
to send such polarities, so that neurons have an addi-
tional information (the polarity) besides the contained
spikes. A normal form for PSN P systems is in [5]
which says that at most 2 polarizations is enough to
achieve Turing completeness. In [111] it is asked how
to “transfer” some of their results to SN P systems with
regular expressions, to further find restricted types of
regular expressions while maintaining the computing
power. In Theorem 10, a single type of regular expres-
sion is the optimal lower bound, with [67] giving some
ideas on some optimizations for “bounded rules”. That
is, certain neurons in the system only serve as “relay
neurons”. Hence, a bounded rule such as a → a is suf-
ficient, instead of an unbounded rule.

 7. Since WebSnapse and similar tools are mainly peda-
gogical tools, they can be integrated or connected to
more performance-specific simulators such as those
in GPUs which are massively parallel processors. For
instance, the CuSNP simulators of SN P systems in
GPUs from [1, 22, 44]. Normal forms and homogene-
ous systems can support such simulators, by perhaps
using a “preprocessing” phase to convert (at least parts)
of an input system to a more restricted system prior
to simulation. A preliminary work to combine ben-
efits of web-based simulations with GPUs is in [102]
with improvements in [70]. Again, some hardware

details such as those investigated in [9] and item 4 in
this list may be considered. When using evolutionary
approaches such as those from [23, 44, 115], restricted
forms of SN P systems can be considered to decrease
the size of the search space for such approaches in
order to find “optimal” populations or chromosomes.

 For pedagogical tools, perhaps the inclusion of
“game playing” or “gamification” can be another
dimension to consider. That is, the inclusion of game
or play elements including, but not limited to: coop-
eration, adversaries, ranking based on a reward sys-
tem such as points or scores. In automata and language
theory, a well-known way to prove certain languages
are not regular or context-free is using an adversarial
style of proving, such as pumping lemmas. Similarly,
from results now or in future for normal or homogene-
ous forms, including ideas from small systems such
as those from [75], how can we apply them to allow
users to “play” with SN P systems or similar systems?
The slider feature in WebSnapse (see Sect. 3 and [43])
allows the increase or decrease of the simulation speed:
combining this feature for instance with evolutionary
approaches such as in [23, 115] can be a form of play
between humans with or versus humans (or machines).

 8. In this work, we mention only a few variants of SN
P systems, but in fact there are many variants so here
we mention a few more. SN P systems with rules on
synapses (RSSN P systems) are an interesting vari-
ant which takes inspiration from the fact that synapses
in brains perform processing instead of simply acting
as a communication channel, more details in [93]. In
fact, a similar and optimal lower bound normal form
for RSSN P systems is also given in [67]. At least for
computing numbers or strings, much can still be inves-
tigated for normal or homogeneous forms for RSSN P
systems.

 A less explored but still interesting variant is spik-
ing neural distributed P systems (SN dP systems) from
[53]. An SN dP system Δ consists of a finite number
of components Π1,Π2,… where each component Πi is
an SN P system. Each Πi are independent in most parts
of their computations, except when they need to com-
municate through special external synapses: the idea
is that the input to system Δ is partitioned and distrib-
uted among its components, so that not one component
has the entire input. Thus, components must commu-
nicate and cooperate to recognize certain languages
using their external synapses. A recent work on SN dP
systems involves homogeneous components, but not
neurons in such components, from [11]. Of interest is
to investigate normal or homogeneous components or
neurons of SN dP systems. For instance, component
Πi may have a normal or homogeneous form different

162 F. G. C. Cabarle

from Πj for i ≠ j. For such normal or homogeneous
systems, it is interesting to show what are their capa-
bilities or limitations.

 A related yet distinct variant of ASN P systems from
[94] are SN P systems with inhibitory synapse (ISN P
systems) with homogeneous results in [98]. Besides
the results in [98], many problems still remain for
ASN P systems, such as: lower or optimal bounds in
the normal or homogeneous forms; can the bounds be
lowered using other features such as other derivation
modes, or using a trade-off such as increase in one
parameter (for instance the number of neurons or rules
in the system) but decrease in another? For RSSN P
systems, [57] provides results on homogeneous syn-
apses. As with other variants, much work remains open
for such systems such as: how to remove delay and/
or forgetting rules; decrease other bounds in the sys-
tem, since synapses which are processors in [57] each
use 8 rules; identify trade-offs when decreasing other
parameters, such as number of rules, neurons, types of
regular expressions. Further results similar to those in
Sects. 2.3 and 2.4 applied to ISN P systems, RSSN P
systems, SN dP systems and other variants are of inter-
est.

 Another variant related to SNPSP systems from [17]
are SN P systems with scheduled synapses (in short,
SSN P systems) in [14]. SNPSP and SSN P systems
are variants focusing mainly on dynamism of synapses,
instead of mainly dynamism of neurons as in most
related works. That is, systems with a dynamic topolo-
gies, inspired not only by dynamism in biological and
spiking neurons, but also by dynamic or time-varying
graphs, networks from maths and computing. Some
normal forms are provided for SSN P systems in [14]
involving features, such as number of rules, delays, and
consumed spikes. In SSN P systems, certain synapses
appear or disappear depending on a schedule: a system
with local schedules defines disjoint sets of neurons,
each with a reference neuron which defines the sched-
ules for a specific set; a system with a global schedule
has only one set of reference neurons. Further details,
topics, and problems on topologically dynamic systems
such as SSN P systems are provided in [14].

 9. Much of the present work and items on this list are
about computing power, but certainly of theoretical
and practical interest is computing efficiency. That is,
the amount of time, space, and other resources is
required to solve problems. For instance, a variant of
SN P systems inspired by neurogenesis in the brain,
that is, the creation of new neurons, are SN P systems
with neuron division and budding from [73]. Division
rules allow creation of neurons in parallel: if a division
rule is applied in neuron �i, then �i is replaced with two

neurons �′
i
 and �′′

i
 such that the incoming and outgoing

synapses of �i are inherited by �′
i
 and �′′

i
 . Budding rules

allow creation of neurons in sequence: if a budding
rule is applied to �j a new neuron �′

j
 is created with a

new synapse from �j to �′
j
 and all outgoing synapses of

�j are transferred to �′
j
 . Systems from [73] were used

to solve the SAT problem in time polynomial in terms
of the input size of the problem.

 A sort of normal form is given in [107] where it is
shown that neuron division suffices to efficiently solve
SAT: that is, neuron budding is not required. Some
interesting problems from or related to [73, 107] are
the following: identification of trade-offs, normal or
homogeneous forms for solving problems; for instance,
division rules can be considered “wasteful” in the
sense that such rules create two neurons instead of
one, so how about trade-offs for using budding rules
only? What are the computing efficiency of systems
from Sect. 2? As in automata and formal language the-
ory, we usually expect that systems under a normal or
homogeneous form incur a “slowdown”, but it remains
interesting to show how much is the slowdown; Aside
from sequential or asynchronous modes from Sect. 2,
further results on restricting SN P systems and variants
using other derivation modes or semantics are interest-
ing. Some of these semantics include: maximally par-
allel mode, exhaustive mode, generalized use of rules,
time or clock-free systems, with more details from [61]
and [6].

 The human brain, as with many examples in biology
at least, seems to be quite “wasteful” in the sense that
from childhood to adulthood some billions of neurons
are created only to be pruned later. Such phenomenon
may be an inspiration for pre-computed resources in
[27] and emphasized again in [82] and elsewhere: an
arbitrarily large number of resources (mainly, neurons
and synapses) exists at the start of the computation,
with some of these neurons later “activated” to effi-
ciently solve problems. Perhaps to make such systems
can become “closer” to biology for instance, by apply-
ing some normal or homogeneous form to them. For
instance, in [56] the PSPACE-complete problem QSAT
is solved in linear time. In [100] a normal form for
regular expressions provides systems which character-
ize the class P, while a polynomial amount of time is
upper bounded by the class PSPACE.

 10. Lastly, we mention some “nearby” areas of similar
inspiration with SN P systems. For instance, in the
area of machine learning, it is of interest to use and
extend SN P systems to recognize images, perform
natural language processing, and more. A recent sur-
vey of efforts to combine machine learning with SN P

163Thinking about spiking neural P systems: some theories, tools, and research topics

systems and variants is [28]. In recent years, advances
in computer vision and natural language processing are
in part due to parallel processors such as GPUs, and
recent variants of artificial neural networks known as
transformers. However, it seems that only exception-
ally large companies or organizations can afford the
training and maintenance of “large” models of natu-
ral languages using transformers and GPUs: the cost
of training and maintaining such models, even with a
large number of expensive GPUs, can be very prohibi-
tive. Such costs are usually in terms of processor hours,
in joules or watts of energy. While many approaches
are considered to reduce the costs of training and main-
tenance of such models, perhaps ideas based on normal
or homogeneous forms, certainly the human brain, can
further reduce the costs.

 Besides such issues on software and hardware, much
of the modern computers today including parallel pro-
cessors are based on the von Neumann architecture.
Creating hardware and software inspired by the brain
is known as neuromorphic computing: unlike the von
Neumann architectures which is inspired by the Turing
machine, a neuromorphic processor can be analog
instead of digital, or use circuit elements other than
silicon transistors. Again we ask how ideas on normal
or homogeneous forms can aid in the design of such
neuromorphic computers, since as late as around the
first half of the twentieth century we know how similar
and different human brains and digital computers can
be [106].

 Other models bearing many similarities to SN P sys-
tems, certainly in the structural or visual sense, include
Boolean circuits and Petri nets. Ideas for Petri nets and
SN P systems are mentioned in problem N in [82], with
latter works such as [13]. Some recent works involving
similar analyses and properties between Petri nets and
SN P systems include [3, 4] including formal verifica-
tion in [41]. Petri nets and Boolean circuits seem to
represent many interesting ideas related to normal or
homogeneous forms, also similar to SN P systems in
[111]. Thus, work between such nets, circuits, SN P
systems and variants, are likely to lead to interesting
or useful ideas. For instance, the feature of probabil-
istic or stochastic computation is well-known in Petri
nets, but can still be further investigated for SN P sys-
tems, with some results in [8, 60, 112]. It is interesting
to include a feature in WebSnapse to convert certain
classes of SN P systems to Petri nets and vice-versa,
including the support of colored spikes inspired by
colored tokens [99].

 In relating SN P systems to Boolean circuits or simi-
lar models, we are likely to have or even require some

normal or homogeneous form, to obtain further results
on topology of SN P systems. What kinds of languages
are computed by such systems with (non)planar and
other types (for instance, kite or hammock, simple,
acyclic) of graphs? How much time and space are
required to solve hard problems using such systems?
Further topics for investigations on SN P systems are
in [85], with a recent book on applications, software,
and hardware of P systems in [116].

4 Final remarks

A survey of results with the length of the present work,
even confined on notions such as those in Sect. 2 is
expected to be incomplete: at least a few previous works
on such notions are likely to be missing in this work. For
instance, at the time of writing the present work, it is likely
that at least some of those mentioned in the list in Sect. 3
are already being investigated even if in preliminary form.
Besides the results in Sect. 2, the problems and topics in
Sect. 3 are mainly informed with the experience of the
author working with SN P systems since around 2011,
together with excellent and earlier lists such as [61, 82, 85,
88]. The present work is a brief survey on specific aspects
of theory and pedagogy of SN P systems, with some recent
surveys including more comprehensive details on theory
(see [61]) and applications (see [36]). It is thus recom-
mended to complement ideas from such recent and com-
prehensive surveys with problems and topics mentioned
in Sect. 3 of the present work. While the research on SN P
systems and variants is quite active, the author and many
others, suspect much is still to come in both theory and
applications of such systems. We end the present work
with the provocative and hopeful last line from [101] by
Alan Turing: “We can only see a short distance ahead, but
we can see plenty there that needs to be done.”

Acknowledgements The author thanks the organizers for the chance to
give an invited talk at 11th Asian Conference on Membrane Computing
2022 (ACMC2022) from 6 to 9 September 2022, held virtually (online)
and organized at the Department of Computer Science, University of
the Philippines Diliman (UPD), Quezon city, Philippines. This talk was
presented simultaneously at a joint event, the 23rd International Con-
ference on Membrane Computing (ICMC) at the University of Trieste,
Italy. The author likewise thanks the ICMC2022 organizers. Author
support provided by the Dean Ruben A. Garcia PCA, and Project No.
222211 ORG from the Office of the Vice Chancellor for Research and
Development, both from UPD, Philippines. The author is also sup-
ported by QUAL21 008 USE project (PAIDI 2020 and FEDER 2014-
2020 funds).

Author contributions Only one author prepared the submitted article.

164 F. G. C. Cabarle

Funding Funding for open access publishing: Universidad de Sevilla/
CBUA.

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Aboy, B. C. D., Bariring, E. J. A., Carandang, J. P., Cabarle, F.
G. C., Cruz, R. T. D. L., Adorna, H. N., & Martínez del Amor,
M. Á. (2019). Optimizations in CuSNP simulator for spiking
neural P systems on cuda gpus. In: 2019 International Confer-
ence on High Performance Computing Simulation (HPCS). (pp.
535–542). https://doi.org/10.1109/HPCS48598.2019.9188174.

 2. Adorna, H. N. (2020). Computing with sn P systems with i/o
mode. Journal of Membrane Computing, 2(4), 230–245.

 3. Adorna, H. N. (2022). Matrix representations of spiking neural
p systems: Revisited. arXiv preprint arXiv: 2211. 15156.

 4. Adorna, H. N. (2022). Properties of SN P system and its configu-
ration graph. arXiv preprint arXiv: 2211. 15159.

 5. Alhazov, A., Freund, R., & Ivanov, S. (6 2016). Spiking neural
P systems with polarizations–two polarizations are sufficient for
universality. In: Bulletin of the International Membrane Comput-
ing Society. (pp. 97–103). No. 1.

 6. Alhazov, A., Freund, R., Ivanov, S., Pan, L., & Song, B. (2020).
Time-freeness and clock-freeness and related concepts in P sys-
tems. Theoretical Computer Science, 805, 127–143.

 7. Aman, B. (2023). Solving subset sum by spiking neural p systems
with astrocytes producing calcium. Natural Computing, 22(1),
3–12.

 8. Aman, B., & Ciobanu, G. (2015). Automated verification of sto-
chastic spiking neural p systems. In: Membrane Computing: 16th
International Conference, CMC 2015, Valencia, Spain, August
17-21, 2015, Revised Selected Papers 16. (pp. 77–91). Springer.

 9. Amor, Martínez-del, Orellana-Martín, M. Á., Pérez-Hurtado,
D. I., Cabarle, F. G. C., & Adorna, H. N. (2021). Simulation of
spiking neural P systems with sparse matrix-vector operations.
Processes, 9(4), 690.

 10. Buiu, C., & Florea, A. G. (2019). Membrane computing models
and robot controller design, current results and challenges. Jour-
nal of Membrane Computing, 1(4), 262–269.

 11. Buño, K. C., Cabarle, F. G. C., & Torres, J. G. Q. (2020). Spiking
neural dP systems: Balance and homogeneity. Philippine Com-
puting Journal, 14(2), 1–10.

 12. Cabarle, F. G. C. (2022). Some thoughts on notions and tools
for investigating SN P systems (extended abstract). In: Pre-pro-
ceedings of the 11th Asian Conference on Membrane Computing,
Quezon City, Philippines. (pp. 1–4).

 13. Cabarle, F. G. C., & Adorna, H. N. (2013). On structures and
behaviors of spiking neural P systems and petri nets. In: Mem-
brane Computing: 13th International Conference, CMC 2012,
Budapest, Hungary, August 28-31, 2012, Revised Selected
Papers 13. (pp. 145–160). Springer.

 14. Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017).
Spiking neural p systems with scheduled synapses. IEEE Trans-
actions on Nanobioscience, 16(8), 792–801.

 15. Cabarle, F. G. C., Adorna, H. N., & Pérez-Jiménez, M. J. (2016).
Notes on spiking neural P systems and finite automata. Natural
Computing, 15, 533–539.

 16. Cabarle, F. G. C., Adorna, H. N., & Pérez-Jiménez, M. J.
(2016). Sequential spiking neural P systems with structural
plasticity based on max/min spike number. Neural Computing
and Applications, 27, 1337–1347.

 17. Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., &
Song, T. (2015). Spiking neural P systems with structural plas-
ticity. Neural Computing and Applications, 26, 1905–1917.

 18. Cabarle, F. G. C., de la Cruz, R. T. A., Adorna, H. N., Dimaano,
M. D., Peña, F. T., & Zeng, X. (2018). Small spiking neural P
systems with structural plasticity. Enjoying Natural Comput-
ing: Essays Dedicated to Mario de Jesús Pérez-Jiménez on the
Occasion of His 70th Birthday (pp. 45–56).

 19. Cabarle, F. G. C., de la Cruz, R. T. A., Cailipan, D. P. P.,
Zhang, D., Liu, X., & Zeng, X. (2019). On solutions and repre-
sentations of spiking neural p systems with rules on synapses.
Information Sciences, 501, 30–49.

 20. Cabarle, F. G.C ., & Dela Cruz, R. T. A. (12 2021). A bibliog-
raphy of normal forms in spiking neural P systems and vari-
ants. In: Bulletin of the International Membrane Computing
Society, No. 12, pp. 89–91.

 21. Cabarle, F. G. C., Macababayao, I. C. H., de la Cruz, R. T. A.,
Adorna, H. N., & Zeng, X. (2019). Notes on improved normal
forms of spiking neural P systems and variants. In: Pre-Proc.
Asian Conference on Membrane Computing, ACMC2019, Xia-
men, China. (pp. 1–8).

 22. Carandang, J. P., Cabarle, F. G. C., Adorna, H. N., Hernan-
dez, N. H. S., & Martínez-del Amor, M. Á. (2019). Handling
non-determinism in spiking neural P systems: Algorithms and
simulations. Fundamenta Informaticae, 164(2–3), 139–155.

 23. Casauay, L. J., Macababayao, I. C., Cabarle, F. G. C., de la
Cruz, R. T., Adorna, H., Zeng, X., & del Amor, M. Á. M.
(2021). A framework for evolving spiking neural P systems.
International Journal of Unconventional Computing, 16, 121–
139. https:// www. oldci typub lishi ng. com/ journ als/ ijuc- home/
ijuc- issue- conte nts/ ijuc- volume- 16- number- 2-3- 2021/.

 24. Cavaliere, M., Ibarra, O. H., Păun, G., Egecioglu, O., Ionescu,
M., & Woodworth, S. (2009). Asynchronous spiking neu-
ral P systems. Theoretical Computer Science, 410(24–25),
2352–2364.

 25. Ceterchi, R., & Tomescu, A. I. (2008). Spiking neural P systems–
a natural model for sorting networks. Proceedings of the Sixth
Brainstorming Week on Membrane Computing, (pp. 93-105).
Sevilla, ETS de Ingeniería Informática, 4-8 de Febrero.

 26. Chen, H., Freund, R., Ionescu, M., Păun, G., & Pérez-Jiménez,
M. J. (2007). On string languages generated by spiking neural P
systems. Fundamenta Informaticae, 75(1–4), 141–162.

 27. Chen, H., Ionescu, M., & Ishdorj, T. O. (2006). On the effi-
ciency of spiking neural P systems. Proceedings of the Fourth
Brainstorming Week on Membrane Computing, Vol. I, 195-
206. Sevilla, ETS de Ingeniería Informática, 30 de Enero-3 de
Febrero.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2211.15156
http://arxiv.org/abs/2211.15159
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-16-number-2-3-2021/
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-16-number-2-3-2021/

165Thinking about spiking neural P systems: some theories, tools, and research topics

 28. Chen, Y., Chen, Y., Zhang, G., Paul, P., Wu, T., Zhang, X., Rong,
H., & Ma, X. (2021). A survey of learning spiking neural P sys-
tems and a novel instance. International Journal of Unconven-
tional Computing, 16.

 29. Chomsky, N. (1959). On certain formal properties of grammars.
Information and Control, 2(2), 137–167.

 30. Cruel, N., Quirim, C., & Cabarle, F. G. C. (September 2022).
Websnapse v2.0: Enhancing and extending the visual and web-
based simulator of spiking neural P systems. In: Pre-proceedings
of the 11th Asian Conference on Membrane Computing, Quezon
City, Philippines, (pp. 146–166).

 31. de la Cruz, R. T., Cabarle, F. G. C., Macababayao, I., Adorna,
H., & Zeng, X. (2021). Homogeneous spiking neural P systems
with structural plasticity. Journal of Membrane Computing, 3,
12. https:// doi. org/ 10. 1007/ s41965- 020- 00067-7. 03.

 32. de la Cruz, R. T. A., Cabarle, F. G. C., & Adorna, H. N. (2019).
Generating context-free languages using spiking neural P sys-
tems with structural plasticity. Journal of Membrane Computing,
1, 161–177.

 33. de la Cruz, R. T. A., Cabarle, F. G. C., & Adorna, H. N. (2024).
Steps toward a homogenization procedure for spiking neural p
systems. Theoretical Computer Science, 981, 114250. https://doi.
org/10.1016/j.tcs.2023.114250. https:// www. scien cedir ect. com/
scien ce/ artic le/ pii/ S0304 39752 30056 37.

 34. Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019).
Membrane computing and image processing: A short survey.
Journal of Membrane Computing, 1, 58–73.

 35. Dupaya, A. G. S., Galano, A. C. A. P., Cabarle, F. G. C., De La
Cruz, R. T., Ballesteros, K. J., & Lazo, P. P. L. (2022). A web-
based visual simulator for spiking neural P systems. Journal of
Membrane Computing, 4(1), 21–40.

 36. Fan, S., Paul, P., Wu, T., Rong, H., & Zhang, G. (2020). On appli-
cations of spiking neural p systems. Applied Sciences, 10(20),
7011.

 37. Fernandez, A. D. C., Fresco, R. M., Cabarle, F. G. C., de la Cruz,
R. T. A., Macababayao, I. C. H., Ballesteros, K. J., & Adorna, H.
N. (2020). Snapse: A visual tool for spiking neural P systems.
Processes, 9(1), 72.

 38. Freund, R., & Oswald, M. (2008). Regular �-languages defined
by finite extended spiking neural P systems. Fundamenta Infor-
maticae, 83(1–2), 65–73.

 39. Gallos, L., Sotto, J. L., Cabarle, F. G. C., & Adorna, H. N. (2024).
Websnapse v3: Optimization of the web-based simulator of spik-
ing neural p system using matrix representation, webassembly
and other tools. In: Proceedings of the Workshop on Computa-
tion: Theory and Practice (WCTP 2023). (pp. 415–433). Atlantis
Press. https://doi.org/10.2991/978-94-6463-388-7_25.

 40. García-Arnau, M., Pérez, D., Rodríguez-Patón, A., & Sosík, P.
(2009). Spiking neural P systems: Stronger normal forms. Inter-
national Journal of Unconventional Computing, 5, 411–425. 01.

 41. Gheorghe, M., Lefticaru, R., Konur, S., Niculescu, I. M., &
Adorna, H. N. (2021). Spiking neural p systems: Matrix repre-
sentation and formal verification. Journal of Membrane Comput-
ing, 3(2), 133–148.

 42. Gramond, E., & Rodger, S. H. (1999). Using jflap to interact with
theorems in automata theory. In: The proceedings of the thirtieth
SIGCSE technical symposium on Computer science education.
(pp. 336–340).

 43. Gulapa, M., Luzada, J. S., Cabarle, F. G. C., Adorna, H. N.,
Buño, K., & Ko, D. (2024). Websnapse reloaded: The next-gen-
eration spiking neural p system visual simulator using client-
server architecture. In: Proceedings of the Workshop on Com-
putation: Theory and Practice (WCTP 2023). (pp. 434–461).
Atlantis Press. https://doi.org/10.2991/978-94-6463-388-7_26.

 44. Gungon, R. V., Hernandez, K. K. M., Cabarle, F. G. C., De la
Cruz, R. T. A., Adorna, H. N., Martínez-del Amor, M. Á.,

Orellana-Martín, D., & Pérez-Hurtado, I. (2022). GPU imple-
mentation of evolving spiking neural P systems. Neurocomput-
ing, 503, 140–161.

 45. Gutiérrez Naranjo, M. Á., & Leporati, A. (2009). Performing
arithmetic operations with spiking neural P systems. In Proceed-
ings of the Seventh Brainstorming Week on Membrane Comput-
ing, vol. I, 181-198. Sevilla, ETS de Ingeniería Informática, 2-6
de Febrero, 2009.

 46. Hernández-Tello, J., Martínez-Del-Amor, M. Á., Orellana-Mar-
tín, D., & Cabarle, F. G. (2021). Sparse matrix representation of
spiking neural p systems on gpus. In: Vaszil, G., Zandron, C.,
Zhang, G. (eds.) Proc. International Conference on Membrane
Computing (ICMC 2021), Chengdu, China and Debrecen, Hun-
gary, 25 to 26 August 2021 (Online). (pp. 316–322).

 47. Hernández-Tello, J., Martínez-Del-Amor, M.Á., Orellana-Martín,
D., Cabarle, F. G. C. (submitted) sparse spiking neural-like mem-
brane systems on graphics processing units.

 48. Ibarra, O. H., Păun, A., Păun, G., Rodríguez-Patón, A., Sosík,
P., & Woodworth, S. (2007). Normal forms for spiking neural
P systems. Theoretical Computer Science, 372(2–3), 196–217.

 49. Ibarra, O. H., Păun, A., & Rodríguez-Patón, A. (2009). Sequen-
tial SNP systems based on min/max spike number. Theoretical
Computer Science, 410(30–32), 2982–2991.

 50. Ibarra, O. H., Pérez-Jiménez, M. J., & Yokomori, T. (2010).
On spiking neural P systems. Natural Computing, 9, 475–491.

 51. Ibarra, O. H., & Woodworth, S. (2006). Characterizations of
some restricted spiking neural P systems. In H. J. Hoogeboom,
G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane Com-
puting (pp. 424–442). Berlin Heidelberg: Springer.

 52. Ibarra, O. H., & Woodworth, S. (2008). Characterizations of
some classes of spiking neural P systems. Natural Computing,
7, 499–517.

 53. Ionescu, M., Păun, G., Pérez-Jiménez, M. J., & Yokomori, T.
(2011). Spiking neural dP systems. Fundamenta Informaticae,
111(4), 423–436.

 54. international membrane computing society (imcs), http:// imcs.
org. cn/.

 55. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural
P systems. Fundamenta informaticae, 71(2, 3), 279–308.

 56. Ishdorj, T. O., Leporati, A., Pan, L., Zeng, X., & Zhang, X.
(2010). Deterministic solutions to qsat and q3sat by spiking
neural p systems with pre-computed resources. Theoretical
Computer Science, 411(25), 2345–2358.

 57. Jiang, K., Chen, W., Zhang, Y., & Pan, L. (2016). Spiking
neural P systems with homogeneous neurons and synapses.
Neurocomputing, 171, 1548–1555.

 58. Jiang, K., Song, T., Chen, W., & Pan, L. (2013). Homogeneous
spiking neural P systems working in sequential mode induced
by maximum spike number. International Journal of Computer
Mathematics, 90(4), 831–844.

 59. Ko, D., Cabarle, F. G. C., & De L. Cruz, R. T. (2023). Web-
Snapse tutorial: a hands-on approach for web and visual simu-
lations of spiking neural P systems. In: Bulletin of the Interna-
tional Membrane Computing Society. (vol. 16, pp. 137–153)
(to appear).

 60. Lazo, P. P. L., Cabarle, F. G. C., Adorna, H. N., & Yap, J. M.
C. (2021). A return to stochasticity and probability in spik-
ing neural P systems. Journal of Membrane Computing, 3(2),
149–161.

 61. Leporati, A., Mauri, G., & Zandron, C. (2022). Spiking neural P
systems: Main ideas and results. Natural Computing, 1–21.

 62. Leporati, A., Mauri, G., Zandron, C., Păun, G., & Pérez-Jiménez,
M. J. (2009). Uniform solutions to sat and subset sum by spiking
neural P systems. Natural Computing, 8(4), 681–702.

https://doi.org/10.1007/s41965-020-00067-7
https://www.sciencedirect.com/science/article/pii/S0304397523005637
https://www.sciencedirect.com/science/article/pii/S0304397523005637
http://imcs.org.cn/
http://imcs.org.cn/

166 F. G. C. Cabarle

 63. Linqiang, Pan, Tingfang Wu, Z. Z. (6 2016). A bibliography of
spiking neural P systems. In: Bulletin of the International Mem-
brane Computing Society. (pp. 63–78). No. 1.

 64. Liu, M., & Qi, F. (2016). Inhomogeneous weighted spiking neu-
ral P systems with local homogeneous. In: 2016 8th International
Conference on Information Technology in Medicine and Educa-
tion (ITME). (pp. 209–213). IEEE.

 65. Llanto, T., Amador, J., Cabarle, F. G. C., De L. Cruz, R. T., &
Ko, D. (2023). Analyses and implementation of a homogenisa-
tion algorithm for spiking neural P systems in the WebSnapse
Tool. In: Bulletin of the International Membrane Computing
Society. (vol. 16, pp. 113–136).

 66. Macababayao, I. C. H., Cabarle, F. G. C., de la Cruz, R. T. A.,
Adorna, H. N., & Zeng, X. (2019). An improved normal form
for spiking neural P systems with structural plasticity. In: Păun,
G. (ed.) Proceedings of the 20th International Conference on
Membrane Computing, CMC20. (pp. 429–438). Bibliostar.

 67. Macababayao, I. C. H., Cabarle, F. G. C., de la Cruz, R. T. A.,
& Zeng, X. (2022). Normal forms for spiking neural P systems
and some of its variants. Information Sciences. https:// doi. org/
10. 1016/j. ins. 2022. 03. 002

 68. Macías-Ramos, L. F., Pérez-Hurtado, I., García-Quismondo,
M., Valencia-Cabrera, L., Pérez-Jiménez, M. J., & Riscos-
Núñez, A. (2012). A P-lingua based simulator for spiking neu-
ral P systems. In: Membrane Computing: 12th International
Conference, CMC 2011, Fontainebleau, France, August 23-26,
2011, Revised Selected Papers 12. (pp. 257–281). Springer.

 69. Neary, T. (2015). Three small universal spiking neural P sys-
tems. Theoretical Computer Science, 567, 2–20.

 70. Odasco, A. N. L., Rey, M. L. M., & Cabarle, F. G. C. (2023).
Improving gpu web simulations of spiking neural p sys-
tems. Journal of Membrane Computing, 1–16. https://doi.
org/10.1007/s41965-023-00128-7

 71. Pan, L., & Păun, Gheorghe. (2010). Spiking neural P systems:
An improved normal form. Theoretical Computer Science, 411,
906–918. https:// doi. org/ 10. 1016/j. tcs. 2009. 11. 010. 02.

 72. Pan, L., & Păun, G. (2009). Spiking neural P systems with anti-
spikes. International Journal of Computers Communications
& Control, 4(3), 273–282.

 73. Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2011). Spiking
neural P systems with neuron division and budding. Science
China Information Sciences, 54, 1596–1607.

 74. Paul, P., & Ghosh, S. (2022). On label languages of homoge-
neous variant of SNPSSP (HSNPSSP). In: 2022 IEEE 12th
Annual Computing and Communication Workshop and Confer-
ence (CCWC). (pp. 0421–0427). IEEE.

 75. Păun, A., & Păun, G. (2007). Small universal spiking neural P
systems. BioSystems, 90(1), 48–60.

 76. Păun, A., & Sosik, P. (2014). Three universal homogeneous
spiking neural P systems using max spike. Fundamenta Infor-
maticae, 134(1–2), 167–182.

 77. Păun, G. (1998). Computing with membranes. In Tech. Rep.
208 Turku Centre for Computer Science, Turku, Finland.

 78. Păun, G. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61(1), 108–143.

 79. Păun, G. (2001). P systems with active membranes: Attacking
NP-complete problems. Journal of Automata, Languages and
Combinatorics, 6(1), 75–90.

 80. Păun, G. (2007). Spiking neural P systems: A tutorial. Bulletin
of the European Association for Theoretical Computer Science,
91, 145–159.

 81. Păun, G., Pérez Jiménez, M. d. J., & Salomaa, A. (2006).
Bounding the indegree of spiking neural P systems. TUCS
Technical Report, 273 (2006).

 82. Păun, G., & Pérez-Jiménez, M. J. (2009). Spiking neural P
systems. recent results, research topics. In: Condon, A., Harel,

D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic
Bioprocesses, (pp. 273–291). Springer, Berlin Heidelberg.

 83. Păun, G., Perez-Jimenez, M. J., & Rozenberg, G. (2007).
Computing morphisms by spiking neural P systems. Interna-
tional Journal of Foundations of Computer Science, 18(06),
1371–1382.

 84. Păun, G., Rozenberg, G., & Salomaa, A. (eds.). (2010). The
oxford handbook of membrane computing. Oxford Univeristy
Press.

 85. Păun, G., Wu, T., & Zhang, Z. (2016). Open problems, research
topics, recent results on numerical and spiking neural P sys-
tems (the “curtea de arges 2015 series”). In: Bulletin of the
International Membrane Computing Society. (pp. 79–95).
No. 1.

 86. P systems web page, http:// ppage. psyst ems. eu/.
 87. Rong, H., Duan, Y., & Zhang, G. (2022). A bibliometric analy-

sis of membrane computing (1998–2019). Journal of Mem-
brane Computing, 1–31.

 88. Rong, H., Wu, T., Pan, L., & Zhang, G. (2018). Spiking neural P
systems: Theoretical results and applications. In: Enjoying Natu-
ral Computing, (pp. 256–268). Springer.

 89. Rozenberg, G., Bäck, T., & Kok, J. N. (2012). Handbook of natu-
ral computing. Springer.

 90. Song, B., Li, K., Orellana-Martín, D., Pérez-Jiménez, M. J., &
Pérez-Hurtado, I. (2021). A survey of nature-inspired computing:
Membrane computing. ACM Computing Surveys (CSUR), 54(1),
1–31.

 91. Song, T., & Pan, L. (2015). A normal form of spiking neural
P systems with structural plasticity. International Journal of
Swarm Intelligence, 1, 344. https:// doi. org/ 10. 1504/ IJSI. 2015.
072889. 01.

 92. Song, T., Pan, L., Jiang, K., Song, B., & Chen, W. (2013). Nor-
mal forms for some classes of sequential spiking neural P sys-
tems. IEEE Transactions on NanoBioscience, 12, 255–264.

 93. Song, T., Pan, L., & Păun, G. (2014). Spiking neural P systems
with rules on synapses. Theoretical Computer Science, 529,
82–95.

 94. Song, T., Pan, L., Wang, J., Ventak, I., Subramanian, K., &
Abdullah, R. (2012). Normal forms of spiking neural P systems
with anti-spikes. IEEE Transactions on Nanobioscience, 11(4),
352–359.

 95. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. D., & Rodríguez-
Patón, A. (2019). Spiking neural p systems with learning func-
tions. IEEE Transactions on Nanobioscience, 18(2), 176–190.

 96. Song, T., Pang, S., Hao, S., Rodríguez-Patón, A., & Zheng, P.
(2019). A parallel image skeletonizing method using spiking
neural p systems with weights. Neural Processing Letters, 50,
1485–1502.

 97. Song, T., Shi, X., & Xu, J. (2013). Reversible spiking neural P
systems. Frontiers of Computer Science, 7, 350–358.

 98. Song, T., & Wang, X. (2015). Homogenous spiking neural P
systems with inhibitory synapses. Neural Processing Letters, 42,
199–214.

 99. Song, T., Zeng, X., Zheng, P., Jiang, M., & Rodriguez-Paton,
A. (2018). A parallel workflow pattern modeling using spiking
neural p systems with colored spikes. IEEE Transactions on
Nanobioscience, 17(4), 474–484.

 100. Sosík, P., Rodríguez-Patón, A., & Ciencialová, L. (2011). Poly-
nomial complexity classes in spiking neural p systems. In: Mem-
brane Computing: 11th International Conference, CMC 2010,
Jena, Germany, August 24-27, 2010. Revised Selected Papers
11. (pp. 348–360). Springer.

 101. Turing, A. M. (1950). I.– computing machinery and intelligence.
Mind, LIX(236), 433–460. https:// doi. org/ 10. 1093/ mind/ LIX.
236. 433. 10.

https://doi.org/10.1016/j.ins.2022.03.002
https://doi.org/10.1016/j.ins.2022.03.002
https://doi.org/10.1016/j.tcs.2009.11.010
http://ppage.psystems.eu/
https://doi.org/10.1504/IJSI.2015.072889
https://doi.org/10.1504/IJSI.2015.072889
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433

167Thinking about spiking neural P systems: some theories, tools, and research topics

 102. Valdez, A. A. M., Wee, F., Odasco, A. N. L., Rey, M. L. M., &
Cabarle, F. G. C. (2023). Gpu simulations of spiking neural p
systems on modern web browsers. Natural Computing, 22(1),
171–180.

 103. Valencia-Cabrera, L., Pérez-Hurtado, I., & Martínez-del Amor,
M. Á. (2020). Simulation challenges in membrane computing.
Journal of Membrane Computing, 2(4), 392–402.

 104. Verlan, S., Freund, R., Alhazov, A., Ivanov, S., & Pan, L. (2020).
A formal framework for spiking neural p systems. Journal of
Membrane Computing, 2(4), 355–368.

 105. Verlan, S., & Zhang, G. (2022). A tutorial on the formal frame-
work for spiking neural P systems. Natural Computing 1–14.

 106. Von Neumann, J., & Kurzweil, R. (2012). The computer and the
brain. Yale University Press.

 107. Wang, J., Hoogeboom, H. J., & Pan, L. (2011). Spiking neural
P systems with neuron division. In: Gheorghe, M., Hinze, T.,
Gheorghe Păun, Rozenberg, G., Salomaa, A. (eds.) Membrane
Computing. pp. 361–376. Springer Berlin Heidelberg, Berlin,
Heidelberg.

 108. Wang, L., Liu, X., Sun, M., & Zhao, Y. (2023). Evolution-com-
munication spiking neural p systems with energy request rules.
Neural Networks, 164, 476–488. https:// doi. org/ 10. 1016/j. neunet.
2023. 05. 007

 109. Wang, T., Wei, X., Huang, T., Wang, J., Peng, H., Pérez-Jiménez,
M. J., & Valencia-Cabrera, L. (2019). Modeling fault propagation
paths in power systems: A new framework based on event SNP
systems with neurotransmitter concentration. IEEE Access, 7,
12798–12808. https:// doi. org/ 10. 1109/ ACCESS. 2019. 28927 97

 110. websnapse page, https:// aclab. dcs. upd. edu. ph/ produ ctions/ softw
are/ websn apse.

 111. Wu, T., Păun, A., Zhang, Z., & Pan, L. (2017). Spiking neural p
systems with polarizations. IEEE Transactions on Neural Net-
works and Learning Systems, 29(8), 3349–3360.

 112. Xu, Z., Cavaliere, M., An, P., Vrudhula, S., & Cao, Y. (2014).
The stochastic loss of spikes in spiking neural P systems: Design
and implementation of reliable arithmetic circuits. Fundamenta
Informaticae, 134(1–2), 183–200.

 113. Zeng, X., Adorna, H., Martínez-del Amor, M.Á., Pan, L., &
Pérez-Jiménez, M. J. (2011). Matrix representation of spiking
neural P systems. In: Membrane Computing: 11th International

Conference, CMC 2010, Jena, Germany, August 24-27, 2010.
Revised Selected Papers 11. (pp. 377–391). Springer.

 114. Zeng, X., Zhang, X., & Pan, L. (2009). Homogeneous spiking
neural P systems. Fundamenta Informaticae, 97(1–2), 275–294.

 115. Zhang, G., Gheorghe, M., Pan, L., & Pérez-Jiménez, M. J.
(2014). Evolutionary membrane computing: A comprehensive
survey and new results. Information Sciences, 279, 528–551.

 116. Zhang, G., Pérez-Jiménez, M. J., Riscos-Núñez, A., Verlan, S.,
Konur, S., Hinze, T., & Gheorghe, M. (2021). Membrane com-
puting models: implementations (Vol. 10). Springer.

 117. Zhang, L., & Xu, F. (2022). Asynchronous homogenous spiking
neural P systems with local rule synchronization. Theoretical
Computer Science, 926, 51–61.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

F r a n c i s G e o r g e C .
Cabarle received his PhD in
Computer Science in 2015 from
the University of the Philippines
Diliman, where he is currently
an associate professor. He was a
visiting researcher with the
Research Group of Natural Com-
puting (RGNC) from 2014 to
2015, then headed by Prof.
Mario de J. Pérez Jiménez, at the
Universityof Seville, Spain. He
performed postdoctoral work in
2016 to 2019 with Prof. Xiangxi-
ang Zeng et al at Xiamen Uni-
versity, China, and from 2023 to

2024 with the RGNC now headed by Prof. Agustín Riscos Núñez. His
research interests include the intersections of natural computing, com-
putability, and parallel computing.

https://doi.org/10.1016/j.neunet.2023.05.007
https://doi.org/10.1016/j.neunet.2023.05.007
https://doi.org/10.1109/ACCESS.2019.2892797
https://aclab.dcs.upd.edu.ph/productions/software/websnapse
https://aclab.dcs.upd.edu.ph/productions/software/websnapse

	Thinking about spiking neural P systems: some theories, tools, and research topics
	Abstract
	1 Introduction
	2 SN P stories: definitions and main notions
	2.1 SN P systems: the basic model
	2.2 An example: generating numbers
	2.3 Normal forms
	2.4 Homogeneous systems
	2.5 Visual- and web-based simulators

	3 Some open problems and research topics
	4 Final remarks
	Acknowledgements
	References

