
Vol.:(0123456789)1 3

Journal of Membrane Computing (2023) 5:205–220
https://doi.org/10.1007/s41965-023-00128-7

RESEARCH PAPER

Improving GPU web simulations of spiking neural P systems

Ayla Nikki L. Odasco1 · Matthew Lemuel M. Rey1 · Francis George C. Cabarle1

Received: 1 March 2023 / Accepted: 17 August 2023 / Published online: 15 September 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023

Abstract
The utilization of a parallel processor such as the graphics processing unit (GPU) is only natural for the simulation of spiking
neural P systems (SN P systems) because of their inherent parallel nature. A recent work, created an SN P system simulator,
GPUSnapse, that both utilizes GPU and runs on modern web browsers by exploiting the Web Graphics Library (WebGL)
which creates shaders to generate textures that corresponds to SN P system simulation algorithms. Matrix representation
operations were used in GPUSnapse. In GPUSnapse, when working with large matrices a common concern is sparse matri-
ces. Sparse matrices are known to downgrade the performance of the simulation because of wasting memory and time due
to performing redundant operations. In this work we extend GPUSnapse by: (a) using optimized sparse matrix operations to
reduce the memory used in simulations and, (b) increase the number of neurons that can be handled by the simulator due to
better memory usage. We also identify the limitations of GPUSnapse in terms of the size of each benchmark system that it
can handle. We present two algorithms: deterministic and non-deterministic algorithms, which we use to compare the per-
formance and memory requirements of the previous GPUSnapse and our present work. We also analyzed the performance
between GPU and CPU implementations of all algorithms involved. Our results include up to 22× and 1.97× speedup using
CPU and GPU, respectively, compared to the previous work. We also observed up to 30% reduction in memory usage with
our work. Lastly, we identify some bottlenecks in our work and recommendations for improvements.

Keywords SN P system · GPUSnapse · WebGL

1 Introduction

Spiking neural P systems (in short, SN P systems) are a
class of neural-like P systems which are parallel computing
devices inspired by how neurons function and communicate
[13]. The computing power (what problems can be solved)
and efficiency (how much resources are required) of SN P
systems and variants are active areas of investigation: on
computing power see for instance [13, 21] with recent works
such as [2, 16, 25]; on efficiency, see for instance [15, 23]
with recent works in [3, 5, 32]. Works on practical applica-
tions using SN P systems and variants are also active espe-
cially in the last several years such as [27, 33] with recent
surveys in [8, 14].

To better understand and investigate SN P systems, in
[34] they were represented using vectors, matrices, and

linear algebra operations. Ideas from [34] form the basis of
our simulators, including the support for SN P systems with
delays in [7]. Due to the parallel nature of SN P systems, the
use of parallel computing devices such as graphics process-
ing units or GPUs is a natural approach. With GPUs, large
accelerations or speedups can be obtained when performing
algebraic operations such as those used in the simulation of
SN P systems using matrix representations.

However, GPUs have some caveats compared to CPUs.
Best performance is achieved when GPU threads are exe-
cuted in a synchronized manner and accessed data from
memory are contiguous [19]. A problem arises for some
large matrices with many zero elements. For instance,
graphs with more nodes than edges have matrices with more
zeroes than ones in their adjacency matrices. Such graphs
are known to have sparse matrices which can degrade the
performance of simulations: memory and time can be wasted
on performing redundant or unnecessary operations, espe-
cially on zero elements [18].

In this work, we extend the work in [29] by using opti-
mized sparse matrix vector operations introduced in [1, 18]

 * Francis George C. Cabarle
 fccabarle@up.edu.ph

1 Department of Computer Science, University
of the Philippines Diliman, 1101 Quezon City, Philippines

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-023-00128-7&domain=pdf

206 A. N. L. Odasco et al.

1 3

to reduce memory requirements on GPUSnapse. In this
way, we obtain a performance increase and we can simulate
larger instances of SN P systems. We present two algorithms
(deterministic and non-deterministic), each tested with a SN
P system suitable to test sparse matrices: bitonic network
SN P systems also used in [7] and non-uniform solutions to
Subset Sum from [15].

The novelty of our GPUSnapse work in [29] and our
present work compared to our previous works focusing on
CUDA GPUs (see for instance [1, 6, 7]) is a trade-off: our
works with CUDA GPUs are mainly focused on accelerated
performance or massive parallelism due to the use of both
software and hardware by NVIDIA (company manufacturing
CUDA GPUs); in comparison, GPUSnapse and our present
work allow for some parallelism and acceleration even if a
computer does not have a GPU, or has an NVIDIA GPU but
is not CUDA (that is, the GPU is not general programmable).

Not all computers have GPUs manufactured by NVIDIA
(especially since NVIDIA GPUs are powerful but can be
quite expensive) and not all GPUs by NVIDIA support
CUDA programming. Thus, our present work allows us to
still simulate SN P systems using nonCUDA GPUs. Com-
pared to our previous work in [29] and extended in [30],
results from the present work include: up to 22× and 1.97×
speedup using CPU and GPU, respectively; up to 30%
reduction in memory usage, allowing us to simulate larger
systems.

The paper is structured as follows: Sect. 2 provides the
formal definition of SN P systems, the matrix representa-
tions (regular and optimized sparse) and some GPU termi-
nologies that would be used in the discussion of the results
of this work. Section 3 discusses the different simulators and
how they compare to one another and the extension done in
this work. It also contains more in-depth discussions about
the techniques used in GPUSnapse and how WebGL was
used for the simulation of the SN P Systems. Section 4 pre-
sents the technology, and simulation architecture and algo-
rithms used in this work. Section 5 contains the tests done
including the setups and the current working limitations of
the work in terms of input sizes for both algorithms. This
section also discusses the time and space analysis of the
results from tests. Lastly, in Sect. 6 we state the conclusions
of this work and future work recommendations.

2 Preliminaries

2.1 Spiking neural P systems

SN P Systems are formally defined in [13] as follows:

Definition 1 A spiking neural P system of degree m ≥ 1 is a
construct of the form

where:

(1) O = a is the singleton alphabet (a is called spike);
(2) �i,… �m are neurons of the form �i = (ni,Ri), 1 ≤ i ≤ m ,

where:

(a) ni ≥ 0 is the initial number of spikes contained in
�i,

(b) Ri is a finite set of rules of the forms: (i)
E∕ac → ap;d , where E is a regular expression over
a and c ≥ p ≥ 1, d ≥ 0 ; (ii)as → � , for s ≥ 1 , with
the restriction that for each rule E∕ac → ap;d of
type (1) from Ri , we have as ∉ L(E);

(3) syn ⊆ {1, 2,…m} × {1, 2,…m} with i ≠ j for all
(i, j) ∈ syn , 1 ≤ i, j ≤ m;

(4) in, out ∈ {1, 2,…m} indicate the input and the output
neurons, respectively.

Elaborating on the set of rules of 2b, 2(b)i are known as
firing rules. If the number of spikes n present in a neuron
satisfies an ∈ L(E), n ≥ c , c spikes are consumed and n − c
spikes are left in the neuron while p spikes will be fired by
the neuron to all connected neurons after a delay of d time
units. While during the d times units of delay, the neuron is
considered to be closed and cannot receive further spikes.
All spikes sent to this neuron during this time period is con-
sidered to be lost. Consequently, during the delay period,
this neuron cannot also apply new rules or fire spikes. In
the case that multiple rules are satisfied by n, the rules are
chosen non-deterministic manner however only one rule will
be active at a given time. 2(b)(ii) are known as forgetting
rules. If the number of spikes present in the neuron n = s
then n spikes are removed from the neuron hence the name
forgetting rule.

In our work in the following sections, we only use sys-
tems without delays, that is d is always set to zero.

2.2 Matrix representation of SN P systems

SN P Systems have been represented as various discrete
structures. A particularly relevant representation is through
matrices as matrices are a well researched topic utilized
across scientific and computing disciplines [28]. The matrix
representation for a restricted SN P System with no delays
from [34] are defined as follows:

Definition 2 (Configuration vectors) Let � be an SN P sys-
tem with m neurons, the vector C0 = ⟨n1, n2,… nm⟩ is called
the initial configuration vector of � , where ni is the amount

� = (O, �i,… �m, syn, in, out)

207Improving GPU web simulations of spiking neural P systems

1 3

of the initial spikes present in neuron �i , i = 1, 2,…m before
a computation starts.

For the example in Fig. 1, we have the configuration
vector C0 = ⟨2, 1, 1⟩.

Definition 3 (Spiking vectors) Let � be an SN P system with
m neurons and n rules, and Ck = ⟨n(k)

1
, n

(k)

2
,… , n(k)

m
⟩ be the kth

configuration vector of � . Assume a total order t ∶ 1,… , n
is given for all the n rules, so the rules can be referred as
r1,… , rn . A spiking vector s(k) is defined as follows:

where:

For the example in Fig. 1, because the system is non-
deterministic we have the spiking vectors s0 = ⟨1, 0, 1, 1, 0⟩
and s0 = ⟨0, 1, 1, 1, 0⟩.

Definition 4 (Spiking transition matrix) Let � be an SN P
system with m neurons and n rules, and t ∶ 1,… , n be a total
order given for all the n rules, A spiking transition matrix of
the system � , M� is defined as follows:

where:

For the example in Fig. 1, we have the spiking transition
matrix as follows:

s(k) = ⟨r(k)
1
, r

(k)

2
,… , r(k)

n
⟩,

r
(k)

i
=

{
1 if the regular expression Ei of rule ri is satisfied by the number of spikes n

(k)

j
(rule ri is in neuron �j) and rule ri is chosen and applied;

0 otherwise.

M� = [aij]n×m,

aij =

⎧
⎪
⎨
⎪
⎩

−c if rule ri is in neuron �j and it is applied consuming c spikes;

p if rule ri is in neuron �s(s ≠ j and (s, j) ∈ syn) and it is applied producing p spikes;

0 if rule ri is in neuron �s(s ≠ j and (s, j) ∉ syn).

Definition 5 (Optimized sparse matrix representation)
Let � be an SN P system with m neurons and n rules, and
t ∶ 1,… , n be a total order given for all the n rules. An opti-
mized sparse matrix representation of the system � rede-
fines the spiking vector s(k) to contain only m positions, one
per neuron, and states which rule is selected. The spiking
vector s(k) is now defined as follows:

M� =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−1 1 1

−2 1 1

1 − 1 1

0 0 − 1

0 0 − 2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

where m(k)

i
∈ t is the selected rule for the neuron �i.

In addition to the spiking vector, the optimized sparse
matrix representation also replaces the the spiking transition
matrix with the synapse matrix Sy� . The synapse matrix
Sy� is defined as follows:

where:

s(k) = ⟨m(k)

1
,m

(k)

2
,… ,m(k)

m
⟩,

Sy� = [aij]m×m,

2.3 More on the optimized sparse matrix
representation

A typical matrix representation of an SN P system that is
not fully connected leads to sparse matrices or matrices with
more zeroes than nonzero values. Sparse matrices slow down
computation because a majority of memory and computing

aij =

⎧
⎪
⎨
⎪
⎩

−1 if i = j and thus neuron �i = �j;

0 if neuron �i is not connected to �j;

j if neuron �i is connected to �j.

a
a → a
a2 → λ

3
a2

a2/a → a
a2 → a

1

a
a → a

2

Fig. 1 An SN P system � that generates the set ℕ − {1}

208 A. N. L. Odasco et al.

1 3

time is dedicated to processing zeroes. Two approaches have
been suggested by [20] for sparsity in matrices representing
SN P systems. The first approach uses the ELL format and
with the main idea to assign a thread to each rule one per
column of the spiking vector Sk and one per column of M�

s
 .

The second optimized approach separates the synapses from
the rule information. This is what we will be using and it is
described as follows in [20]:

– Rule information. Using a CSR-like format, rules of the
form E∕ac → ap (also forgetting rules are included, assum-
ing p = 0) can be represented by a double array storing
the values c and p (also the regular expression, but this is
required only to select a spiking vector, and hence is out of
scope of this work). A pointer array is employed to relate,
for each neuron, the subset of rules that it is associated
with and this is called the neuron-rule map vector.

– Synapse matrix, Sy� . It has a column per neuron i, and
a row for every neuron j such that (i, j) ∈ Syn (there is
a synapse). That is, every element of the matrix cor-
responds to a synapse or null, given that the number
of rows equals to the maximum output degree in the
neurons of the SN P system � , and padding is required.

– Spiking vector is modified, containing only m positions, one
per neuron, and stating which rule 0 ≤ r ≤ n is selected.

2.4 Graphics processing unit (GPU)

Graphics processing units (GPUs) are compute units
designed to perform rendering of 3D or 3-dimensional
visual effects on a 2D or 2-dimensional screen [24]. Graph-
ics workloads are highly parallel, which in turn makes the
GPUs also suitable for other general purpose parallel work-
loads [11]. In GPU programming models, we refer to the
CPU and its memory as the host while the term device is
used denote the GPU and its own memory [12]. Parallel
programs ran on the GPU are referred to as kernels. The
kernels are concurrently executed on threads which are the
basic unit of a GPU that can run a single function [11].

3 Related works

Much work has been done in finding problems that can be
solved using SN P system models. Recent examples are
methods of fault diagnosis in power systems [31, 33] and
visual cryptography [22]. However, we note that P systems
are yet to be faithfully implemented in vivo, in vitro, or
even in silico, thus developing simulators on electronic
computers are necessary to validate P systems [4, 17]. Sev-
eral simulators and representations developed for SN P
Systems are discussed in the following sections to analyze
how they compare to each other.

3.1 CuSNP

CuSNP is a project which involves both sequential (CPU) and
parallel (GPU) simulators for SN P systems with delays [7].
For the sequential simulator, it used C++ implementation
while for the parallel simulator, it utilized CUDA.

The matrix representation defined in [34] was modified
to achieve an up to 50× speed up in a 512-input general-
ized sorting network over CPU only implementations. How-
ever, there are some downsides in using matrix representa-
tions in simulating SN P systems. Matrix representation of
SN P systems with a low-connectivity-degree graph lead
to sparse matrices, in other words, containing more zeros
than nonzero values. Sparse matrices downgrades the per-
formance of the simulators since it would waste memory
and time [18]. Follow up research on CuSNP utilized sparse
matrix representations from [18] to reduce the memory foot-
print of the simulator which allowed simulations of larger
SN P systems than was previously supported [1].

3.2 WebSnapse

WebSnapse is a web-based SN P system simulator that aims to
provide visualization of SN P systems for building and running
computations [10]. It used the matrix representation extension
discussed in [7] to account for SN P systems with delays.

Since the current configuration of WebSnapse is saved
into local storage, the number of time steps that an SN P sys-
tem simulation can run is limited by the amount of local stor-
age available, which varies based on the web browser that the
user is working on. This means that the number of rules, neu-
rons, spikes and length of characters consumed by the rules
will considerably impact the amount of data stored. Further
work considered by the authors to improve the performance
of the simulations would be the integration with a GPU simu-
lator running on a web browser [29]. Additionally, a current
work in progress of the extension of WebSnapse that have
additional features and is more user-friendly, is being devel-
oped in parallel with this work (extension of GPUSnapse)
and it was a great help in understanding the simulation of
SN P Systems. Using it also helped to check the validity of
our tests, further discussions of this can be found in Sect. 5.1.

3.3 GPUSnapse

Simulators like CuSNP use CUDA as a platform to make
performant SN P system simulations but with the limitation
of being restricted to only computers with CUDA capable
GPUs while web based simulators such as WebSnapse are
more accessible but only use CPUs which do not fully utilize
the parallelized nature of SN P systems. GPUSnapse aims
to create a web simulator that harnesses GPUs with the aim
of providing better performance than current CPU based

209Improving GPU web simulations of spiking neural P systems

1 3

web simulators and making it more accessible than tradi-
tional native simulators by exploiting the WebGL framework
which is designed to render graphics on the browser [29].

Two algorithms were used: the algorithm defined in [4]
which simulate non-deterministic SN P systems without
delays and a modified algorithm from [7] which simulate
deterministic SN P systems with delays. In the first men-
tioned algorithm, the web based GPU simulator was able
to achieve an up to 2 × speedup compared to CPU based
simulations while in the second algorithm, GPU simulations
were slower than CPU simulations due to overhead on the
browser and WebGL texture computations.

To utilize the WebGL framework in implementing the
GPU algorithms, GPUSnapse used the GPU.js framework.
GPU.js is a JavaScript library for General Purpose comput-
ing on GPUs (GPGPU) that can run in both websites and
in Node.js. It serves as the bridge between code written in
JavaScript to GPU specific code by transpiling JavaScript
functions into shader language used by the GPU [26].

A kernel in GPU.js is a special function that runs on the
GPU in parallel using WebGL. The key method in GPU.
js is the gpu.createKernel() method that creates a kernel
and takes in as arguments the kernel configuration such as
output format and most importantly, the operations we will
be running on the GPU. The kernel function acts as a loop
and exposes this.thread.x and this.thread.y which we use to
determine on which matrix element are we operating on.

Using GPU.js, three kernels were implemented using the
gpu.createKernel() method which all ran on the GPU. The
kernel multSpikingTransition [30] takes in the Spiking Vector
generated from the current configuration vector and the rules
and performs a parallel matrix multiplication in the GPU to
get the transition net gain vector. The kernel columnarAdd
adds the current configuration and the transition net gain vec-
tor from multSpikingTransition to get the next configuration
vector. To avoid wasting time on host to device data transfers,
a combined kernel [30] was created that takes in the results of
multSpikingTransition kernel directly to columnarAdd which
keeps the computations entirely in the GPU to avoid the over-
head present when transferring data from CPU host to GPU
device and vice versa.

To better visualize the kernel functions, the kernel schema
is presented in Fig. 2 [30]. The creation of the kernels start
by the call to getConfigGPU(). All the kernel functions are
inside it. We call on the compute function which uses the
method, gpu.combineKernels(), to lessen the performance
penalty of utilizing two kernels. Inside this compute func-
tion, the columnarAdd kernel is called and lastly, the mult-
SpikingTransition kernel is called to be passed as a param-
eter to columnarAdd. For further details on the kernel usage,
the source code of GPUSnapse can be viewed at https://
github. com/ Secre tmapp er/ gpusn apse.

The laptop computers used in the experiments from [29,
30] are no longer available for this present work. Instead, the
present work compares the implementation from [29, 30] to
our present work using another set of computers.

4 Optimized sparse GPUSnapse

The following section discusses the development of the opti-
mized GPUSnapse that uses sparse matrix representation.
The source code can be accessed at https:// github. com/ accel
threat/ sparse- optim ized- gpusn apse. The optimized GPUS-
napse still uses GPU.js as its way of utilizing the GPU for
matrix computations for SN P systems on the web. GPU.js is
a JavaScript library that uses WebGL to access the GPU for
General Purpose computing [26]. This is done by transpiling
regular JavaScript functions into shader language than can be
ran by WebGL to produce a matrix result.

4.1 Architecture

Figure 3 shows the main architecture of the Optimized GPUS-
napse and the boundaries between CPU and GPU. The func-
tion, getConfigGPU(), takes six inputs in optimized sparse
representation: config, spikingVector (spikingMatrix for non-
deterministic), ruleVector, synapseMatrix, neuronRuleM-
apVector, and ruleExpVector. By utilizing the kernel function
detailed in algorithm 1 it produces the next configuration.
This configuration goes out of the GPU back into the CPU to
the function, generateSpikingVector(), (generateSpikingMa-
trix() for non-deterministic) to produce the next spiking vector

Fig. 2 GPUSnapse kernel schema [30]

https://github.com/Secretmapper/gpusnapse
https://github.com/Secretmapper/gpusnapse
https://github.com/accelthreat/sparse-optimized-gpusnapse
https://github.com/accelthreat/sparse-optimized-gpusnapse

210 A. N. L. Odasco et al.

1 3

(spiking matrix for non-deterministic). It is in these parts that
we encountered problems in optimizing the algorithm to
eliminate the device-host-device transfers which incurs a sig-
nificant performance penalty: runtime is slower, but memory
used is reduced (more details later). In the process of optimiz-
ing these parts, library issues were encountered concerning
the generation of spiking vectors inside the GPU directly. At
present we are not able to find a solution for such issues due
to limited experience and documentation on GPU.js.

4.2 GPU algorithm

We present the two algorithms: deterministic and non-deter-
ministic, both without support for delays, and both utilize
optimized sparse matrix representation from [19].

Algorithm 2 shows the deterministic algorithm. Note the
symbols: SN P System � , initial configuration vector C0 ,
rule vector Ru� , rule expression vector rExpV (this is just
the regular expressions for the rules), synapse matrix Sy� ,
neuron-rule map vector nmV, and spiking vector Sk for the kth
configuration vector. First, the algorithm starts with getting
inputs from the generation of the benchmark SN P systems.
For the deterministic algorithm in this work, the benchmark
used is the bitonic network sorting SN P System. The func-
tion getFinalConfigOptimized is then called and this helps
in the end-to-end computation of the configuration vectors.
Inside, the spiking vectors are computed and passed on to the

loop. The while loop would go on until the input maximum
run, maxRun, is reached and the spiking vector computation
is finished. Inside the loop, the function, getConfigGPUOp-
timized() (see Algorithm 1) is called and the spiking vectors
and the last computed configuration vector is passed on as
parameters (along with the original rule vector and synapse
matrix) to compute for the next configuration. After the while
loop, the last configuration vector is returned.

Algorithm 1 Optimized Deterministic Algorithm

Input: C0, RuΠ , rExpV SyΠ , nmV , and Sk

Output: Last configuration vector of the SN P System Π

1: Get inputs C0, RuΠ , rExpV , SyΠ , and nmV generated from benchmark SN P
Systems

2: function getFinalConfigOptimized(C0, nmV , rExpV , RuΠ , maxRun) �
Call to a function

3: Sk ← generateOptimizedSpikingV ector(C0, nmV, rExpV) � compute for the
spiking vector

4: iteration ← 0 � initialize iteration number
5: while iteration ≤ maxRun and isComputationNotDone(Sk)
6: nextConfig ← getConfigGPUOptimized � compute for the next config

vector
7: Sk ← generateOptimizedSpikingV ector � compute for the Sk of the

computed nextConfig
8: end while
9: return Ck

10: end function

We discuss further the kernel functions in getConfig-
GPUOptimized(). It is divided into three sub-functions.
The first one is getSubConfig which takes in as inputs
spiking vector sV, rule vector rV, and synapse matrix sM.
At line 5, it gets j, the index of rule that is activated from
the spiking vector and in the following line prematurely
terminates the function if j is not a valid rule index. At
line 9, it extracts the tuple [c, p] from the rule vector
which contains information on how much spikes are con-
sumed and produced for the given neuron. From lines
10 to 16 is the main logic of the function. The function
checks if thread.x = thread.y which implies that the cur-
rent neuron is the one consuming the spike, we return −c
to indicate this change. If thread.x ≠ thread.y , the func-
tion checks using the synapse matrix if the neuron is
connected. If the neuron is connected, then we return p
to indicate that this neuron has received p spikes from the

211Improving GPU web simulations of spiking neural P systems

1 3

neuron that used this rule. If the above two cases are met,
then the neuron the function is currently on is not the
neuron that used this rule nor a connected neuron, there-
fore the current neuron is unaffected and we return 0.

The second function columnarAdd sums up a 2D
matrix’s rows per column with a specified initial vector
in parallel. This is used to combine the changes to each
neuron made by different rules to produce the next con-
figuration vector.

Algorithm 2 getConfigGPUOptimized
1: function getConfigGPUOptimized(Ck, Sk, RuΠ , SyΠ)
2: configMatrixLength ← Ck.length
3: function getSubConfig(Sk, RuΠ , SyΠ)
4: PAD ← −1
5: j ← Sk[this.thread.y]
6: if j = PAD then
7: return 0
8: end if
9: [c, p] = RuΠ [j]
10: if this.thread.x = this.thread.y then
11: return −c
12: else if SyΠ [this.thread.x][this.thread.y] �= PAD then
13: return p
14: else
15: return 0
16: end if
17: end function
18: function columnarAdd(newConfig, oldConfig)
19: sum ← oldConfig[this.thread.x]
20: for i = 0, 1, . . . , configMatrixLength do
21: sum ← sum+ newConfig[i][this.thread.x]
22: end for
23: return sum
24: end function
25: function combineConfigs(getSubConfig, Ck)
26: return columnarAdd(getSubConfig(Sk, RuΠ , SyΠ), Ck)
27: end function
28: return combineConfigs(Ck, Sk, RuΠ , SyΠ)
29: end function

Fig. 3 Optimized sparse GPUS-
napse architecture

212 A. N. L. Odasco et al.

1 3

For the non-deterministic algorithm (see Algorithm 3),
it has a similar structure as Algorithm 2 except that the
CPU implementation uses a for loop to compute for each
possible spiking vector for a given configuration. Com-
pared to the GPU implementation, which is made to be
parallel and computes and returns a spiking matrix SMk
consisting of all the possible spiking vectors already. The
vectors and techniques used for the generation of the spik-
ing matrix and the configuration vectors are from [6], such
as the 1D array, Q. This array holds all the configuration
vectors computed for each spiking matrix, and that is why
we have the marker indices, start and end, to mark the cur-
rent batch of configuration vectors. For all the computed

configuration vectors, the computation widens as it gets
each of its corresponding spiking matrices. The loop goes
on until the iterations reach 5, as the benchmark SN P
systems, the non-uniform solution to subset sum, is sure
to stop at 5 steps. After the while loop, we return the last
batch of configuration vectors which are all the possible
last configurations of the SN P system.

The function getConfigGPUOptimized_nd() is similar
to Algorithm 1, except this time for the non-deterministic
algorithm, the input SMk is 2D instead of Sk which is 1D.
Thus, the getSubConfig outputs a 3D matrix and the func-
tion columnarAdd accesses this 3D matrix. The overall out-
put of the function is a 2D matrix of configuration vectors.

Algorithm 3 Optimized Non-Deterministic Algorithm

Input: C0, RuΠ , rExpV SyΠ , nmV , and SMk

Output: Last configuration vectors of the SN P System Π

1: Get inputs C0, RuΠ , rExpV , SyΠ , and nmV generated from benchmark SN P
Systems

2: function getFinalConfigOptimized nd(C0, nmV , rExpV , RuΠ , maxRun) �
Call to a function

3: iteration ← 0 � initialize iteration number
4: Q ← [] � initialize Q
5: SMk ← [] � initialize spiking matrix
6: Insert C0 to Q
7: start ← 0 � mark the indices
8: end ← length(Q)
9: while iteration ≤ 5 � benchmark SN P system is sure to end in 5 steps
10: for starting = start to end-1 do do � for each config vector, compute for the

spiking matrix
11: Ck ← Q[starting]
12: SMk ← generateSpikingMatrix Sparse(Ck, nmV, rExpV)
13: if GPU then
14: Q ← ConcatQwithgetConfigGPUOptimized nd � store all computed

configs to Q
15: else
16: for k=0 to length(SMk) do
17: nextConfig ← getConfigCPUOptimized

� compute for the next config vector
18: Insert nextConfig to Q � per computed config vector, store it to Q
19: end for
20: end if
21: end for
22: start ← end � update the indices for the newer batch of config vectors
23: end ← length(Q)
24: iteration ← iteration+ 1
25: end while
26: return Q[start...end]
27: end function

213Improving GPU web simulations of spiking neural P systems

1 3

5 Experiments and results

To perform our experiments for testing we used two com-
puter setups:

– Setup 1: CPU: Ryzen 5 2600, GPU: Geforce GTX 1070
(discrete).

– Setup 2: CPU: Intel(R) Core i5-1135G7, GPU: Intel
Iris Xe graphics (integrated).

5.1 Test inputs

For testing the deterministic algorithm we used the bitonic
sorting network system and its inputs from [7] as our
benchmark. For each bitonic sorting network size from 2

to 64, the tests were ran 5 times to get the mean runtime.
For non-deterministic algorithm, we used the non-uni-
form solution to subset sum from [15] as our benchmark.
Although the uniform solution to subset sum works for
the non-deterministic algorithm as well, we feel that the
non-uniform solution was suitable as our benchmark since
the non-uniform solution is better able to maximise the
resources of the GPU for parallel computations. For each
subset size from 3 to 9, we randomly chose values from 50
to 100 as our elements to our subset. We did this by run-
ning our python generator program, Subset_Generator.py,
which generates a txt file for each subset size which we use
as our input to our main program. Each input txt file were
also ran 5 times to get the mean runtime. The runtimes
were measured by getting the difference between two calls
of performance.now() function. Both the test setups were
ran on the unoptimized and optimized algorithms. The
unoptimized algorithm is based from [29] while the opti-
mized algorithm was previously discussed on Sect. 4.2.

The algorithms compute end-to-end configurations of
the benchmark SN P Systems. It is also important to note
that before we moved on to run and test bigger sizes, the
validity of the resulting last configuration vector/s were
checked first. The work from [9] which is an extension of
WebSnapse version 1 in [10] (can be found here: https://
nccru el. github. io/ websn apse_ exten ded/) greatly helped in
understanding the basics of our chosen benchmark SN P
systems. XML files of smaller systems were first created
and outputs of the configurations were compared with the
output of our extended GPUSnapse to check the configu-
ration correctness of our program. We made a bitonic SN
P system of size 2 and 4, and a non-uniform solution SN
P system of subset size 3, for understanding the basics.

0
10

20
30 0

20

400

1,000

neurons
rules

m
em

or
y

unoptimized

optimized

Fig. 4 3D graph of deterministic algorithm memory Requirements

0
50

100
150

2000

2000

1

2

·105

neurons
rules

m
em

or
y

unoptimized

optimized

Fig. 5 3D graph of non-deterministic algorithm memory Require-
ments

2 4 8 16 32 64
0

0.25

0.5

0.75

1

1.25
·104

Bitonic Network Size

M
em

or
y(
10

00
)

unoptimized
optimized

Fig. 6 Estimated memory use of unoptimized versus optimized deter-
ministic algorithm

https://nccruel.github.io/websnapse_extended/
https://nccruel.github.io/websnapse_extended/

214 A. N. L. Odasco et al.

1 3

All of these can be found in our github repository: https://
github. com/ accel threat/ sparse- optim ized- gpusn apse

The tests currently works well within the sizes men-
tioned earlier for their respective algorithms. This is
because of being limited by the supported maximum
WebGL texture size of the browser that was used for the
testing which is Google Chrome, 16,384 × 163,84. Future
work recommendation for this is discussed in Sect. 6.

5.2 Estimating memory requirements

The memory was estimated using a function derived from
the array and matrix sizes generated by our code. This is
because measuring memory directly introduces a lot of
variability because of the way chrome introduces metadata
for array items. For an SN P system with m neurons and
n rules:

U n o p t i m i z e d d e t e r m i n i s t i c a l g o r i t h m :
Memory(m, n) = m + 3n + mn.

O p t i m i z e d d e t e r m i n i s t i c (A l g o r i t h m 2) :
Memory(m, n) = m2

+ 3m + 2n.

Unopt imized non-de te r min i s t i c a lgo r i t hm:
Memory(m, n, subsetsize) = m + 2n + mn + (2subsetsizen)

Optimized non-determinist ic (Algor i thm 3):
Memory(m, n) = 2m + 2n + m2

+ (2subsetsizem).

The 3D graph of the memory equations are shown in
Figs. 4 and 5. For the non-deterministic algorithm, the
subset size used for graphing is 9 since this brings about
the maximum difference in memory requirements between
the unoptimized and optimized algorithms. As we can see,
from both of the 3D graphs, the memory requirements for

the optimized algorithm shows a proportional growth as
the number of neurons and rules increase. Meanwhile, the
unoptimized algorithm have high memory requirements
despite having low number of neurons.

5.3 Results

First, we present the plot of the memory requirements of
the unoptimized vs the optimized algorithm based on the
values of our inputs for each input size (bitonic network size
and subset size). The results are shown in Figs. 6 and 7. On
both figures, unoptimized algorithm shows higher memory
requirements than the optimized algorithm. Comparing the
result in the deterministic algorithms to the non-determin-
istic, the former shows consistent growth for each bitonic
network size while the latter have peaks and dips. This is
because from the definition of the non-uniform solution
to subset sum from [15], the number of neurons and rules
depends on the values of the subset, and from the discussion
in Sect. 5.1, it was mentioned that the values for each subset
size were randomly chosen. Certain input sets of size 6 (that
is, with 6 elements) may have elements with smaller values
than other input sets of size 5. The chosen values for each
subset can be seen in our repository in the file, readme_sub-
setsum_samples.txt.

Next, we present the results from the performance tests.
Various tests were done to compare the performance of the
algorithms (unoptimized vs optimized) between the two set-
ups and the two processors (CPU vs GPU). We discuss first
the deterministic algorithms.

Figures 8 and 9 show the runtimes of the unoptimized
vs optimized algorithm using CPU on Setups 1 and 2,
respectively.

3 4 5 6 7 8 9

2

4

6

8
·104

Subset Size

M
em

or
y(
10

00
0)

unoptimized
optimized

Fig. 7 Estimated memory use of unoptimized versus optimized non-
deterministic algorithm

24 8 16 32 64
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Bitonic Network Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized CPU
optimized CPU

Fig. 8 Running time of unoptimized CPU versus optimized CPU on
setup 1 (deterministic)

https://github.com/accelthreat/sparse-optimized-gpusnapse
https://github.com/accelthreat/sparse-optimized-gpusnapse

215Improving GPU web simulations of spiking neural P systems

1 3

As we can see, for both setups the unoptimized CPU
shows a significant increase around bitonic network size 16
and ends with a large difference in runtime in bitonic net-
work size 64. A similar trend can be seen in Figs. 10 and 11
for setups 1 and 2, respectively, where the unoptimized algo-
rithm has significant higher runtimes than the optimized.

Both of the setups show a similar trend, except that setup
2 shows higher numbers for the GPU tests compared to setup
1 because the former uses an integrated graphics while the
latter uses a discrete graphics card.

Lastly, we compare all the results that we have into one
graph shown in Figs. 12 and 13 for the two setups. For
both setups we see that the optimized algorithm shows bet-
ter performance. Notice that the GPU performance for the
optimized is slower than the CPU. This would be further
discussed after the non-deterministic results are presented
in the next paragraph.

For the non-deterministic results. Figures 14 and 15 show
the runtimes of the unoptimized vs optimized algorithm
using CPU on setups 1 and 2, respectively.

2 4 8 16 32 64
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Bitonic Network Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized CPU
optimized CPU

Fig. 9 Running time of unoptimized CPU versus optimized CPU on
setup 2 (deterministic)

2 4 8 16 32 64
0

1,000

2,000

3,000

4,000

5,000

6,000

Bitonic Network Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized GPU
optimized GPU

Fig. 10 Running time of unoptimized GPU versus optimized GPU on
setup 1 (deterministic)

2 4 8 16 32 64
0

0.5

1

1.5

2
·104

Bitonic Network Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized GPU
optimized GPU

Fig. 11 Running time of unoptimized GPU versus optimized GPU on
setup 2 (deterministic)

2 4 8 16 32 64
0

0.25

0.5

0.75

1
·104

Bitonic Network Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized CPU
unoptimized GPU
optimized CPU
optimized GPU

Fig. 12 All running times on setup 1 (deterministic)

216 A. N. L. Odasco et al.

1 3

For both of the setups Tables 1 and 2, we can see that
the optimized CPU performed better than the unoptimized.
We especially see bigger differences in their performance as
the subset size increase. Now for the GPUs, the results are
shown in Figs. 16 and 17 for setups 1 and 2, respectively.
For both of the setups, the same trend can be seen where
the unoptimized GPU performs better than the optimized
GPU. This is because for the unoptimized non-deterministic
GPU implementation, it uses a single kernel unlike in the
unoptimized deterministic GPU implementation. This is to
take into account the 2D spiking matrix which consists of

all the possible spiking vectors per configuration vector.
Meanwhile, the optimized GPU uses two kernels and uses
the combineKernels() method to lessen the cost of having
multiple kernels. However, the cost is still significant and it
shows in the results. To demonstrate this cost we ran a test
that creates a single, empty kernel. We ran the program a
total of 45 times and got its average. The creation of a single,
empty kernel costs around 26 ms (milliseconds). Note that
this does not mean that the creation of any kernel only takes

2 4 8 16 32 64
0

0.5

1

1.5

2
·104

Bitonic Network Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized CPU
unoptimized GPU
optimized CPU
optimized GPU

Fig. 13 All running times on setup 2 (deterministic)

3 4 5 6 7 8 9
0

100

200

300

400

500

Subset Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized CPU
optimized CPU

Fig. 14 Running time of unoptimized CPU versus optimized CPU on
setup 1 (non-deterministic)

3 4 5 6 7 8 9
0

100

200

300

400

Subset Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized CPU
optimized CPU

Fig. 15 Running time of unoptimized CPU versus optimized CPU on
setup 2 (non-deterministic)

3 4 5 6 7 8 9
0

0.5

1

1.5
·105

Subset Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized GPU
optimized GPU

Fig. 16 Running time of unoptimized GPU versus optimized GPU on
setup 1 (non-deterministic)

217Improving GPU web simulations of spiking neural P systems

1 3

26 ms as this is an empty kernel and does not contain any
computation.

For the CPUs vs GPUs, from the results mentioned above,
we see consistent trends that the CPUs perform better. This

is because of the usage of multiple kernels and the host-
to-device transfers that happens when we compute for the
spiking vectors (for deterministic) and spiking matrices (for
non-deterministic). We were not able to measure accurately

Table 1 Summary of results for
setup 1

Network size Setup 1: CPU: Ryzen 5 2600, GPU: Geforce GTX 1070

CPU time (ms) GPU time (ms) Memory

Unoptimized Optimized Unoptimized Optimized Unoptimized Optimized

2 1.2 0.96 1456.94 1698.2 60 66
4 3.48 1.09 710.14 679 1144 940
8 13.16 5.19 2976.12 2416.2 13,800 11,384
16 70.88 12.46 1326.48 1426.4 152,208 114,800
32 940 38.90 2321.48 2272.6 1,370,112 989,792
64 8702.56 380.96 5948.36 4803.4 10,758,272 7,589,568

Table 2 Summary of results for
setup 2

Network size Setup 2: CPU: Intel(R) Core i5-1135G7, GPU: Intel®Iris®Xe graphics

CPU time (ms) GPU time (ms) Memory

Unoptimized Optimized Unoptimized Optimized Unoptimized Optimized

2 1.32 1.44 1942.08 1755.48 60 66
4 8.60 1.34 615.32 635.42 1144 940
8 27.10 9.96 1072.10 992.64 13,800 11,384
16 102.84 16.80 1379.96 1237.26 152,208 114,800
32 1279.26 72.84 2596.92 2438.48 1,370,112 989,792
64 5366.68 395.48 15394.56 7810.42 10,758,272 7,589,568

3 4 5 6 7 8 9
0

1

2

3

4

5
·104

Subset Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

unoptimized GPU
optimized GPU

Fig. 17 Running time of unoptimized GPU versus optimized GPU on
setup 2 (non-deterministic)

3 4 5 6 7 8 9
0

0.25

0.5

0.75

1

1.25
·104

Subset Size

R
un

ni
ng

ti
m
e
(m

ill
is
ec
on

ds
)

one configuration
two configurations

Fig. 18 Measurement of host-to-device transfer by configuration steps

218 A. N. L. Odasco et al.

1 3

the cost for host-to-device transfers: at present this is a limi-
tation of GPU.js, that is, we know of no tool to accurately
measure this using GPU.js, unlike in CUDA. However, we
confirm these claims by performing tests for a single SN P
system configuration only vs two configurations and see how
much they differ in terms of runtimes.

The configurations mentioned here are the same configu-
ration vectors defined in Definition 2. For more context, a
configuration means getting the resulting number of spikes
for each neuron after executing an applicable rule per neu-
ron. For non-deterministic SN P systems, a configuration
can have different results because it will vary per the choice
of the rule to execute.

For this test, one algorithm and setup are enough just
to see the difference. For each subset size, the program
ran 5 times to get their average runtimes. We did this test
for the optimized non-deterministic GPU implementation
on setup 2. The results can be seen in Fig. 18. As we
can see, the performance of the computation for a single
configuration is consistently between 100–200 ms for all
subset sizes. This single configuration computation does
not have much host-to-device transfers as it only has to
access the GPU to compute for the next configuration
once, and return the result. The spiking matrix is also
computed only once, thus, the consistency of the runtimes
across the subset sizes. Meanwhile for the computation of
two configuration vectors, we have to wait for the com-
putation of the spiking matrix each time, and the data
is transferred between host-to-device twice. Future work
recommendation for this is mentioned in Sect. 6.

6 Final remarks

In this paper, we extended the GPUSnapse program to take
advantage of optimized sparse matrix representation to
reduce memory consumption and running time. We imple-
mented 4 algorithms that simulate deterministic and non-
deterministic SN P systems for both CPU and GPU using
the optimized representation. From our tests we were able
to observe an up to 1.97× speedup of GPU runtime and a
22× speedup of CPU runtime using the optimized repre-
sentation for deterministic SN P systems. We also observed
an up to 30% reduction in estimated memory usage for the
optimized deterministic algorithms. For the non-determin-
istic algorithms, we were able to observe a 6.64× speedup
of CPU runtime and an up to 24% reduction in estimated
memory usage for the optimized algorithms. For the GPU
implementation, the optimized algorithm shows promise
already considering that it accesses and outputs a 3D matrix
to compute for all the possible last configuration vectors. Its

performance can be further improved by considering imple-
menting it in a single kernel only. Note that, the performance
of all the GPU implementations would benefit if all of them
can be done in a single kernel. Since the algorithms pre-
sented in this work do not support delays, it may be extended
to support delays for future work.

The simulation runtimes can still be improved in the future
by minimizing device to host transfers, that is, reducing much
overhead when processing the next configuration from a previ-
ous one. A better way of general purpose GPU programming
in the web can be explored. Our current approach with GPU.
js to exploit the graphics-focused WebGL introduces plenty
of overhead which negatively impacts the runtime. In terms of
limitations on texture sizes, this can be improved by exploring
different implementations where the arrays would not reach the
maximum supported texture size while accommodating bigger
benchmark sizes. The work can also be improved by exploring
better and newer technologies. WebGPU is one candidate to
replace WebGL, as it is purposely built to help web develop-
ers to use for general computing. It was announced in 2021
that WebGPU was available for developers to test and give
feedback. But as of February 2023, it is still in trial and not
available to most web browsers.

We see our works in [29, 30] and in the present work
as hybrids or bridges between our WebSnapse web-based
and visual simulators in [9, 10], and our general purpose,
accelerated/massively parallel CUDA simulators in [1, 6,
7]. That is, our present work runs in the web browser (like
WebSnapse but unlike our performance or acceleration-
focused CUDA simulators) and can perform some compu-
tations in the GPU (like our CUDA simulators and unlike
WebSnapse). In this way our present work is a bridge or
step towards combining (in the future) the benefits of web-
based and visual simulators such as WebSnapse, and our
performance/acceleration-focused CUDA simulators. Other
limitations of our present work which we aim to work on:
include other variants of SN P systems; more efficient repre-
sentations and simulations to increase the sizes of the simu-
lated systems. In [6] for instance, even with powerful CUDA
GPUs we were only able to simulate subsets of size up to
7, since deterministic simulations for solving Subset Sum
require massive amount of memory.

Acknowledgements F.G.C Cabarle is supported by the Dean Ruben A.
Garcia PCA, and Project No. 222211 ORG from the Office of the Vice
Chancellor for Research and Development, both from the University
of the Philippines Diliman.

Data availability Data and source code used in our experiments are
available publicly at https:// github. com/ accel threat/ sparse- optim ized-
gpusn apse, which we reference in Section 4. Optimized sparse GPUS-
napse, and Section 5,1 Test inputs.

https://github.com/accelthreat/sparse-optimized-gpusnapse
https://github.com/accelthreat/sparse-optimized-gpusnapse

219Improving GPU web simulations of spiking neural P systems

1 3

References

 1. Aboy, B. C. D., Bariring, E. J. A., Carandang, J. P., Cabarle, F.
G. C., Cruz, R. T. D. L., Adorna, H. N., & Martínez del Amor,
M. Á. (2019). Optimizations in cusnp simulator for spiking neu-
ral p systems on cuda gpus. In 2019 international conference on
high performance computing simulation (HPCS) (pp. 535–542).
https:// doi. org/ 10. 1109/ HPCS4 8598. 2019. 91881 74

 2. Alhazov, A., Freund, R., & Ivanov, S. (2016). Spiking neural P
systems with polarizations–two polarizations are sufficient for uni-
versality. In Bulletin of the International Membrane Computing
Society (No. 1, pp. 97–103).

 3. Aman, B. (2023). Solving subset sum by spiking neural p systems
with astrocytes producing calcium. Natural Computing, 22(1),
3–12.

 4. Cabarle, F. G. C., Adorna, H. N., Martínez del Amor, M. Á., &
Pérez Jiménez, M. D. J. (2012). Improving gpu simulations of
spiking neural p systems. Romanian Journal of Information Sci-
ence and Technology, 15(1), 5–20.

 5. Cabarle, F. G. C., de la Cruz, R. T. A., Cailipan, D. P. P., Zhang,
D., Liu, X., & Zeng, X. (2019). On solutions and representations
of spiking neural p systems with rules on synapses. Information
Sciences, 501, 30–49.

 6. Carandang, J. P., Cabarle, F. G. C., Adorna, H. N., Hernandez, N.
H. S., & Martínez-del Amor, M. Á. (2019). Handling non-deter-
minism in spiking neural p systems: Algorithms and simulations.
Fundamenta Informaticae, 164(2–3), 139–155.

 7. Carandang, J. P., Villaflores, J. M. B., Cabarle, F. G. C., Adorna,
H. N., & Martínez del Amor, M. Á. (2017). Cusnp: Spiking neural
p systems simulators in cuda. Romanian Journal of Information
Science and Technology (ROMJIST), 20(1), 57–70.

 8. Chen, Y., Chen, Y., Zhang, G., Paul, P., Wu, T., Zhang, X., Rong,
H., & Ma, X. (2021). A survey of learning spiking neural P sys-
tems and a novel instance. International Journal of Unconven-
tional Computing, 16.

 9. Cruel, N., Quirim, C., & Cabarle, F. G. C. (2022). Websnapse
v2.0: Enhancing and extending the visual and web-based simula-
tor of spiking neural P systems. In Pre-proceedings of the 11th
Asian conference on membrane computing, Quezon City, Philip-
pines (pp. 146–166).

 10. Dupaya, A. G. S., Galano, A. C. A. P., Cabarle, F. G. C.,
De La Cruz, R. T., Ballesteros, K. J., & Lazo, P. P. L. (2022). A
web-based visual simulator for spiking neural p systems (Vol. 4,
pp. 21–40). Springer.

 11. Garland, M. (2011). NVIDIA GPU (pp. 1339–1345). Springer US.
 12. Harris, M. (2012). An easy introduction to cuda c and c++.
 13. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural p

systems. Fundamenta Informaticae, 71(2, 3), 279–308.
 14. Leporati, A., Mauri, G., & Zandron, C. (2022). Spiking neural

P systems: Main ideas and results. Natural Computing, 21(4),
629–49.

 15. Leporati, A., Mauri, G., Zandron, C., Păun, G., & Pérez-Jiménez,
M. J. (2009). Uniform solutions to sat and subset sum by spiking
neural P systems. Natural Computing, 8(4), 681–702.

 16. Macababayao, I. C. H., Cabarle, F. G. C., de la Cruz, R. T. A.,
& Zeng, X. (2022). Normal forms for spiking neural P systems
and some of its variants. Information Sciences. https:// doi. org/ 10.
1016/j. ins. 2022. 03. 002

 17. Martínez-del Amor, M. A., García-Quismondo, M., Macías-Ramos,
L. F., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez,
M. J. (2015). Simulating p systems on gpu devices: A survey.
Fundamenta Informaticae, 136, 269–284. https:// doi. org/ 10. 3233/
FI- 2015- 1157

 18. Martínez del Amor, M. Á., Orellana Martín, D., Cabarle, F. G. C.,
Pérez Jiménez, M. d. J., & Adorna, H. N. (2017). Sparse-matrix
representation of spiking neural p systems for gpus. In BWMC
2017: 15th brainstorming week on membrane computing (pp.
161–170).

 19. Martínez-del Amor, M. Á., Orellana-Martín, D., Pérez-Hurtado,
I., Cabarle, F. G. C., & Adorna, H. N. (2021). Simulation of spik-
ing neural p systems with sparse matrix-vector operations. Pro-
cesses, 9(4), 690.

 20. Martínez del Amor, M. Á., Orellana-Martín, D., Pérez-Hurtado,
I., Cabarle, F., & Adorna, H. (2021). Simulation of spiking neural
p systems with sparse matrix-vector operations. Processes, 9, 690.
https:// doi. org/ 10. 3390/ pr904 0690

 21. Neary, T. (2015). Three small universal spiking neural P systems.
Theoretical Computer Science, 567, 2–20.

 22. Olvera-Martinez, L., Jimenez-Borgonio, T., Frias-Carmona, T.,
Abarca-Rodriguez, M., Diaz-Rodriguez, C., Cedillo-Hernandez,
M., Nakano-Miyatake, M., & Perez-Meana, H. (2021). First sn p
visual cryptographic circuit with astrocyte control of structural
plasticity for security applications. Neurocomputing, 457, 67–73.
https:// doi. org/ 10. 1016/j. neucom. 2021. 05. 057

 23. Pan, L., Păun, Gh., & Pérez-Jiménez, M. J. (2011). Spiking neu-
ral P systems with neuron division and budding. Science China
Information Sciences, 54, 1596–1607.

 24. Parker, M. (2017). Chapter 29—Implementation with gpus. In M.
Parker (Ed.), Digital signal processing (Vol. 101, 2nd edn., pp.
387–393). Newnes.

 25. Paul, P., & Ghosh, S. (2022) On label languages of homogene-
ous variant of SNPSSP (HSNPSSP). In 2022 IEEE 12th annual
computing and communication workshop and conference (CCWC)
(pp. 0421–0427). IEEE.

 26. Plummer, Jr, R. L., & Cheah, E. (2016). Gpu.js. https:// github.
com/ gpujs/ gpu. js, Accessed 13 June 2022.

 27. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. D., & Rodríguez-
Patón, A. (2019). Spiking neural p systems with learning func-
tions. IEEE Transactions on Nanobioscience, 18(2), 176–190.

 28. Stoll, M. (2020). A literature survey of matrix methods for data
science. GAMM-Mitteilungen. https:// doi. org/ 10. 1002/ gamm.
20200 0013

 29. Valdez, A., Wee, F., Cabarle, F. G. C., & Martínez del Amor, M.
(2021). Gpu simulations of spiking neural p systems on modern
web browsers. In G. Vaszil, C. Zandron, & G. Zhang (Eds.), Pro-
ceedings of ICMC 2021, international conference on membrane
computing (pp. 400–412).

 30. Valdez, A. A. M., Wee, F., Odasco, A. N. L., Rey, M. L. M.,
& Cabarle, F. G. C. (2022). Gpu simulations of spiking neural
p systems on modern web browsers. Natural Computing, 22(1),
171–80.

 31. Wang, J., Peng, H., Tu, M., Pèrez-Jimènez, J. M., & Shi, P. (2016).
A fault diagnosis method of power systems based on an improved
adaptive fuzzy spiking neural p systems and pso algorithms. Chi-
nese Journal of Electronics, 25, 320–327.

 32. Wang, L., Liu, X., Sun, M., & Zhao, Y. (2023). Evolution-com-
munication spiking neural p systems with energy request rules.
Neural Networks, 164, 476–488. https:// doi. org/ 10. 1016/j. neunet.
2023. 05. 007

 33. Wang, T., Wei, X., Huang, T., Wang, J., Peng, H., Pérez-Jiménez,
M. J., & Valencia-Cabrera, L. (2019). Modeling fault propaga-
tion paths in power systems: A new framework based on event
snp systems with neurotransmitter concentration. IEEE Access,
7, 12798–12808. https:// doi. org/ 10. 1109/ ACCESS. 2019. 28927 97

 34. Zeng, X., Adorna, H., Martínez-del Amor, M.Á., Pan, L., & Pérez-
Jiménez, M. J. (2010). Matrix representation of spiking neural p

https://doi.org/10.1109/HPCS48598.2019.9188174
https://doi.org/10.1016/j.ins.2022.03.002
https://doi.org/10.1016/j.ins.2022.03.002
https://doi.org/10.3233/FI-2015-1157
https://doi.org/10.3233/FI-2015-1157
https://doi.org/10.3390/pr9040690
https://doi.org/10.1016/j.neucom.2021.05.057
https://github.com/gpujs/gpu.js
https://github.com/gpujs/gpu.js
https://doi.org/10.1002/gamm.202000013
https://doi.org/10.1002/gamm.202000013
https://doi.org/10.1016/j.neunet.2023.05.007
https://doi.org/10.1016/j.neunet.2023.05.007
https://doi.org/10.1109/ACCESS.2019.2892797

220 A. N. L. Odasco et al.

1 3

systems. In International conference on membrane computing (pp.
377–391). Springer.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Ayla Nikki L. Odasco received a
B.Sc. in computer science from
the University of the Philippines
Diliman, in Quezon City, Philip-
pines (working with the Algo-
rithms and Complexity labora-
tory of the Department of
Computer Science). Research
interests of Ayla include GPU
computing, web technologies,
and spiking neural P systems.

Matthew Lemuel M. Rey received a B.Sc. in computer science from
the University of the Philippines Diliman, in Quezon City, Philip-
pines (working with the Algorithms and Complexity laboratory of
the Department of Computer Science). Research interests of Mat-
thew include GPU computing, web technologies, and spiking neural
P systems.

Francis George C. Cabarle
received a Ph.D. in Computer
Science in 2015 from the Uni-
versity of the Philippines Dili-
man, where he is currently an
associate professor. He was a
visiting researcher with the
Research Group of Natural Com-
puting from 2014 to 2015, then
headed by Prof. Mario de J.
Pérez Jiménez, at the University
of Seville, in Spain. From 2016
to 2019, FGCC performed post-
doctoral work with Prof. Xiangx-
iang Zeng et al. at Xiamen Uni-
versity, in China. His research

interests include the intersections of bio-inspired computing, comput-
ability, and parallel computing.

	Improving GPU web simulations of spiking neural P systems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Spiking neural P systems
	2.2 Matrix representation of SN P systems
	2.3 More on the optimized sparse matrix representation
	2.4 Graphics processing unit (GPU)

	3 Related works
	3.1 CuSNP
	3.2 WebSnapse
	3.3 GPUSnapse

	4 Optimized sparse GPUSnapse
	4.1 Architecture
	4.2 GPU algorithm

	5 Experiments and results
	5.1 Test inputs
	5.2 Estimating memory requirements
	5.3 Results

	6 Final remarks
	Acknowledgements
	References

