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Abstract
This article presents the Haskell implementations of spiking neural P systems and of two variants subsequently introduced 
in the literature, namely the spiking neural P systems with inhibitory rules and spiking neural P systems with structural 
plasticity. These implementations are obtained using their operational semantics in which the involved configurations use 
continuations. For each variant, the formal syntax is presented, together with the semantics given accurately by the Haskell 
implementation.
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1 Introduction

Spiking neural P systems represent a class of distributed 
and parallel neural-like computing models inspired from the 
way in which neurons process information and communicate 
by means of spikes. Spiking neural P systems are a variant 
of neural-like P systems, incorporating the idea of spiking 
neurons into membrane computing [20]. Inspired by various 
biological phenomena and computing models, several vari-
ants of spiking neural P systems have been proposed, includ-
ing spiking neural P systems with inhibitory rules [22, 33] 
and spiking neural P systems with structural plasticity [4], 
among others.

The idea of implementing (in silico) the evolution of 
various classes of P systems is old in the framework of 
membrane computing, some implementations (for the basic 
variants of P systems) being presented for the first time 
more than 20 years ago [2, 3, 5]. In this paper we present 
implementations for the general spiking neural P systems 

and for two variants, namely for spiking neural P systems 
with inhibitory rules and for spiking neural P systems with 
structural plasticity. The novel aspects of these implementa-
tions come from the fact that they are derived from an opera-
tional semantics in which the configurations use continua-
tions. More exactly, for each implementation it is presented 
a formal syntax and an operational semantics designed with 
continuations, semantics translated then in the functional 
programming language Haskell (http:// haske ll. org/). We aim 
to develop a rigorous design and verification approach appli-
cable to a wide class of spiking neural P systems.

Using a terminology specific to programming languages 
semantics, we study three languages named L�

snp
 , Lir

snp
 and 

L
sp
snp

 . The language L�

snp
 is used to describe the structure and 

behaviour of spiking neural P systems as presented in the 
original paper [15]. The languages Lir

snp
 and Lsp

snp
 are vari-

ants of L�

snp
 , incorporating constructions specific to spiking 

neural P systems with inhibitory rules [22, 33] and with 
structural plasticity [4], respectively. We present semantic 
interpreters for these three languages, using Haskell as an 
implementation tool. These interpreters provide a sound 
simulation and verification support for the variants of spik-
ing neural P systems under investigation.

The rest of the paper is organized as follows. Sections 2, 
3 and 4 present the formal syntax and semantic interpreters 
for the languages L�

snp
 , Lir

snp
 and Lsp

snp
 , respectively. Section 5 

presents some concluding remarks.
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This is a revised and distinct version of a paper [10] pre-
sented at the 23rd Conference on Membrane Computing 
(CMC’22). The differences between this version and the 
(unpublished) conference version come from several parts 
which are revised and improved, and a more concise way of 
presenting the whole approach.

2  Spiking neural P systems

This section introduces a language called L�

snp
 , a language 

based on the ��� calculus [8] and the language presented 
in [7]. L�

snp
 is used to describe the structure and behaviour 

of spiking neural P systems [15]. The constructions of L�

snp
 

are called ’statements’ and ’programs’, and we use the term 
’execution’ to describe their behaviour. Following the mono-
graph [11], in the sequel we use a terminology that is spe-
cific to programming languages.

Remark 1 For the formal aspects we use the same notation 
as in [7, 8]. We write (a ∈)A to introduce a set A with typi-
cal element a ranging over A. If A is a set, we denote by |A| 
the cardinal number of A, and by Pfin(A) the powerset of all 
finite subsets of A. For a countable set (a ∈)A , we denote 
by [A] the set of all finite multisets of elements of type A; [A] 
is defined formally as in [7], and m ∈ [A] is given by enu-
merating its elements between square brackets ‘[’ and ‘]’ (in 
particular, we represent the empty multiset by [ ] ). A multiset 
can be seen as an unordered list, i.e., a collection in which 
repetition of elements is taken into account. For example, 
[a1, a1, a2] = [a1, a2, a1] = [a2, a1, a1] is the multiset where 
the element a1 occurs twice, and the element a2 occurs once. 
A multiset m can be presented using the multiplicities in 
the form m = [a

i1
1
,… , a

in
n ] , where ij is the multiplicity (the 

number of occurrences) of element aj in the multiset m. For 
example, [a1, a1, a2] = [a2

1
, a1

2
] . The operations used over 

multisets (namely multiset sum ’ ⊎ ’, submultiset ’⊆ ’, mul-
tiset difference ’ ⧵ ’ and multiset equality ’ = ’) are formally 
defined in [7, 8]. Given a regular expression E, we denote by 
L(E) the language associated with E. For a multiset w ∈ [A] 
and E a regular expression over the same set A, we use the 
notation w ∈ L(E) to express that there is a permutation 
of multiset w that is an element of the language L(E). The 
reader may consult [25] for a comprehensive presentation of 
formal languages theory.

2.1  Syntax of L˛

snp

The syntax of the language L�

snp
 is presented in Definition 2 

by using BNF. Given a countable alphabet (a ∈)O of spikes 
(or objects) and a set (N ∈)Nn of neuron names, we define 

(w ∈)W = [O] as the set of all finite multisets over O , and 
(� ∈)Ξ = Pfin(Nn) as the set of all finite subsets of Nn.

Definition 2 (Syntax of L�

snp
 ) 

(a) ( S t a t e m e n t s )        s(∈ S) ∶∶ = e ∣ s ∥ s 
where     e(∈ ES) ∶∶ = a ∣ ��� � a ∣ ���� �

(b) (Ru les )                 rs(∈ Rs) ∶∶ = r� ∣ r, rs 
where     r(∈ Rule) ∶∶ = E∕w → s;� ∣ w → � with E 
a regular expression over O , and � ≥ 0, � ∈ ℕ

(c) (Neuron declarations)         D(∈ NDs) ∶∶ = d ∣ d,D 
where d(∈ ND) ∶∶ = ������N { rs ∣ � }

(d) (Programs)   �(∈ L
�

snp
) ∶∶ = D, s

A statement s ∈ S is either an elementary statement 
e ∈ ES or a parallel composition of two statements s1 ∥ s2 . 
An elementary statement e is either a spike a ∈ O , or a 
send statement ��� � a (with � ∈ Ξ and a ∈ O ), or an ini-
tialization statement ���� � (with � ∈ Ξ ). A neuron declara-
tion is a construct ������N { rs ∣ � } , where N ∈ Nn is the 
name of the neuron, rs ∈ Rs is a list of rules, and � ∈ Ξ 
is a finite set of neuron names indicating the neurons that 
are adjacent (neighbouring) to neuron with name N. An 
empty set of neuron names is denoted by {} . An element 
D ∈ NDs is called a declaration. Note that a declaration 
D = ������N0 { rs0 ∣ �0 };⋯ ; ������Nn { rsn ∣ �n }  i s 
valid only if all neuron names N0,… ,Nn occurring in D 
are pairwise distinct, and Ni ∉ �i for i = 0,… , n . Also, the 
name of the first neuron in any valid declaration D ∈ NDs 
must be N0 (name N0 is reserved). An element rs ∈ Rs is a 
list of rules; a rule r ∈ Rule is either a firing rule (also called 
a spiking rule) E∕w → s;� or a forgetting rule w → � . A 
firing rule is a construct E∕w → s;� , where E is a regular 
expression over O , w ∈ W  is a multiset of spikes, s ∈ S is a 
statement and � is a natural number denoting a time interval. 
A forgetting rule is a construct w → � , where w ∈ W  . The 
multiset w ∈ W  occurring in the left-hand side of a firing or 
a forgetting rule must be nonempty: w ≠ [ ] . Also, for a list of 
rules rs ∈ Rs to be valid, the condition ¬(w� ∈ L(E)) , where ¬ 
is the logical negation operator, must be satisfied for any pair 
of firing and forgetting rules E∕w → s;� and w′

→ � . Usu-
ally, we omit the element r� (denoting an empty list) occur-
ring at the end of a non-empty list of rules rs = r1,… , rj, r� 
( rs ∈ Rs ), and write rs as rs = r1,… , rj . Excepting minor 
differences in notation, the syntax of programs, declarations 
and rules is the same as in [7].

Let (� ∈)S0 be given by � ∶∶ = a ∣ � ∥ � , where a ∈ O 
is spike. Clearly, S0 ⊆ S . A statement s ∈ S0(⊆ S) denotes a 
multiset of spikes that is executed in the context of a neu-
ron and can be transmitted to the neighbouring neurons. 
For example, the L�

snp
 statement (a1 ∥ a1) ∥ (a3 ∥ (a2 ∥ a3)) 

denotes the multiset of spikes [a1, a1, a2, a3, a3] = [a2
1
, a2, a

2

3
] . 
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Let ms ∶ S0 → [O] be given by: ms(a) = [a] and 
ms(𝜍1 ∥ 𝜍2) = ms(𝜍1) ⊎ ms(𝜍2) , where ⊎ is the multiset sum 
operation [1, 8]. The multiset of spikes denoted by a state-
ment s ∈ S0 (∈ S) is ms(s) (we recall that W = [O] ). A state-
ment may also contain send statements ��� � a and initializa-
tion statements ���� � . A statement ��� � a specifies a spike 
transmission operation with target indication � [20]. A state-
ment ���� � specifies an initialization operation. The language 
L
�

snp
 incorporates the initialization mechanism described in 

[8]; this mechanism has no counterpart in the original model 
of spiking neural P systems [15].

As in the original model of spiking neural P systems [15], 
a neuron may be either open or closed. An open neuron 
accepts (can receive) spikes. A closed neuron does not 
accept (cannot receive) spikes. Any elementary statement 
is executed in the context of a neuron. When a spike a is 
executed in the context of a neuron ������N { rsN ∣ �N } , the 
spike  a is transmitted to all open neurons with names in the 
set �N . The set �N contains the names of all neurons that are 
adjacent (neighbouring) with neuron N; they represent the 
default destination for the spikes that are executed in the 
context of neuron N.

As in SNP calculus [8], a neuron may be active or idle. 
Idle neurons cannot interact with other neurons, and cannot 
store spikes; only active neurons can send, receive and store 
spikes. Upon system start up, only a single neuron is active 
(namely the neuron with name N0 ). All other neurons are 
idle and must be initialized using the initialization state-
ments ���� � and send statements ��� � a . Once initialized, a 
neuron becomes active, and never returns to the idle state. 
Note that we use the notions of open neuron and closed neu-
ron to refer only to neurons that are active (i.e., neurons that 
were initialized previously).

The statements ���� � and ��� � a are the L�

snp
 counter-

parts for the initialization spike primitive and the selec-
tive spike primitive from the SNP calculus [8]. The effect 
of executing a statement ���� � in the context of a neuron 
������N { rsN ∣ �N } is to initialize the neurons (which were 
not initialized previously) with names in the set �N ∩ � as 
open neurons containing each an empty multiset of spikes 
[ ] ( �N ∩ � is the set theoretic intersection of �N and � ). 
Note that the execution of a statement ���� � has no effect 
(is inoperative) whenever all the neurons with names in set 
�N ∩ � are active (were initialized previously). The effect 
of executing a statement ��� � a in the context of a neuron 
������N { rsN ∣ �N } depends on the status of the receiving 
neurons: each neuron that was not initialized previously (i.e., 
each idle neuron) with name in the set �N ∩ � is initialized 
as an open neuron containing the multiset of spikes [a],1 and 

each (active and) open neuron with name in the set �N ∩ � 
receives and adds the spike a to the multiset of spikes that 
it stores. In each step, all spikes are executed and transmit-
ted concurrently (in a single time unit). Note that only the 
execution of an initialization statement ���� � or a send state-
ments ��� � a has initialization effects; the execution of a 
spike a ∈ O has no initialization effect. In each execution 
step, all initialization operations (associated with the execu-
tion of statements ���� � or ��� � a ) are performed before the 
transmission of spikes. Thus, all the spikes transmitted to 
open neurons (initialized in the present step or in any previ-
ous execution step) surely reach their destinations.

The execution of an L�

snp
 program � = (D, s) begins by 

executing the statement s in the context of neuron N0 ; the 
neuron with name N0 is automatically initialized as an open 
neuron containing an empty multiset of spikes [ ] upon sys-
tem start up.2 All other neurons are idle in the initial state. 
In the original model of spiking neural P systems [15], the 
initial state is part of the system specification and there is 
no initialization mechanism. By contrast, the SNP calculus 
provides primitives which can be used for initialization pur-
poses. The initialization mechanism of L�

snp
 is based on the 

SNP calculus [8]. The statement s can be used to initialize 
the whole system using initialization statements ���� � and 
send statements ��� � a . If the neuron with name N0 is con-
nected directly with all other neurons in the system, then the 
initialization operation can be performed in a single com-
putation step (one time unit) [8]. In all subsequent steps, the 
evaluation of an L�

snp
 statement s is caused by the execution 

of a firing rule E∕w → s;� with statement s occurring on the 
right-hand side. As in the original model of spiking neural 
P systems [15] and as in [8–10], the execution of an L�

snp
 

program proceeds synchronously assuming a global clock to 
measure time, and each neuron is a nondeterministic sequen-
tial machine which executes at most one rule in each step.

A firing rule is a construct E∕w → s;� corresponding to 
the variant of extended rules with multiple types of spikes 
[16, 21]. The execution of a firing rule r = E∕w → s;� occur-
ring in the list rsN of a neuron ������N { rsN ∣ �N } currently 
open and storing a multiset of spikes wN is triggered when 
the following conditions are satisfied: wN ∈ L(E) and w is 
a submultiset of wN , w ⊆ wN (see Remark 1, where nota-
tions wN ∈ L(E) and w ⊆ wN are explained). As in [8–10, 
15], we say that the neuron fires (executes or applies) the 
rule r whenever the execution of a rule r = E∕w → s;� is 
triggered, and the effects of executing rule r are the follow-
ing: the multiset of spikes w is consumed (only the multiset 
wN ⧵ w remains in neuron N), and the execution of state-
ment s is triggered after �(≥ 0) time units. If � = 0 , then the 

1 [a] is the multiset containing only (one occurrence of) the spike a.
2 The neuron name N0 is reserved (as name of the first neuron in any 
valid D ∈ NDs).
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statement s is executed in the same computation step (the 
same time unit). If 𝜗 > 0 , then the statement s is temporar-
ily suspended; it will be executed after exactly � time units. 
When the statement s is executed (after exactly � time units) 
we say that the neuron spikes, meaning that the spikes con-
tained in statement s are executed in the context of neuron 
N and transmitted to the neighbouring neurons (as explained 
above). As in the original model [15], the neuron changes 
its status from open to closed whenever it fires; the neuron 
remains closed (i.e., it does not accept spikes) in the whole 
time interval between firing and spiking. After exactly � time 
units, the neuron executes statement s and it becomes open 
(meaning that it accepts spikes) again.

A forgetting rule is a construct w → � , where w ∈ W 
is a multiset of spikes. A forgetting rule w → � can only 
be executed by a neuron containing exactly the multiset of 
spikes w; as the effect of executing a forgetting rule, all the 
spikes are removed from the neuron. This means that imme-
diately after executing a forgetting rule, the neuron contains 
an empty multiset of spikes [ ].

Example 3 We consider two L�

snp
 programs ��

0
 and ��

1
 ; ��

0
 is 

a toy program to illustrate how we handle nondeterministic 
behaviour, and ��

1
 is based on the spiking neural P system 

Π1 presented in [15, Section 5, Figure 2]. In the sequel, we 
write a firing rule E∕[ai] → s;� with L(E) = {ai} in its sim-
pler form [ai] → s;� (notation [ai] is explained in Remark 
1). Also, the notation si is defined as follows: s1 = s and 
si+1 = s ∥ si , for s ∈ S and i ∈ ℕ , i > 0 . 

(1) The program ��
0
∈ L

�

snp
 is given by ��

0
= (D�

0
, s�

0
) , where 

statement s�
0
∈ S is s�

0
= ��� {N1} a ∥ ���� {N2} , and 

declaration D�
0
∈ NDs is given by:

D�
0
= ������N0 { r� ∣ {N1,N2} },

𝗇𝖾𝗎𝗋𝗈𝗇N1 { [a] → 𝗌𝗇𝖽 {N2} a1 ;0, 
 [a] → 𝗌𝗇𝖽 {N2} a2 ;0 ∣ {N0,N2}},

             𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a1] → a2
1
;2, [a2] → a2

2
;2 ∣ {N0} }.

   After the initialization step (in which the state-
ment s�

0
 is executed) neuron N1 contains the multiset of 

spikes [a] , and neurons N0 and N2 are empty (contain-
ing each the multiset [ ] ). In this state, neuron N1 can 
select either of the spiking rules [a] → 𝗌𝗇𝖽 {N2} a1 ;0 or 
[a] → 𝗌𝗇𝖽 {N2} a2 ;0 , and so it transmits to neuron N2 
either the spike a1 or the spike a2 (in a nondeterministic 
manner). Although neuron N1 is connected by outgoing 
synapses to both neurons N0 and N2 , it transmits spikes 
only to neuron N2 (using selective send operations 
��� {N2} a1 or ��� {N2} a2 ). In the next step neuron N2 
fires. If neuron N2 received the spike a1 , it will use the 
rule [a1] → a2

1
;2 . If neuron N2 received the spike a2 , it 

will use the rule [a2] → a2
2
;2 In each case, neuron N2 

remains in the closed status for the next two steps. After 
exactly two steps, neuron N2 produces spikes which 
are transmitted to neuron N0 and the system reaches 
a halting configuration. The semantics of this simple 
nondeterministic program ��

0
 can be described as a col-

lection containing two alternative execution traces.
(2) We also consider an example taken from the literature, 

namely the spiking neural P system Π1 presented in [15, 
Section 5, Figure 2], whose specification is given with 
respect to a natural number n > 0 which is a parameter 
of the model. The system Π1 consists of three neurons. 
In the initial state, the three neurons contain 2n−1 spikes, 
0 spikes and 1 spike, respectively. In [15], it is used the 
convention that the result of a computation performed 
by a spiking neural P system is the time interval (num-
ber of steps) elapsed between the first two spikes pro-
duced by the output neuron. Following this convention, 
the spiking neural P system Π1 computes the number 
3n + 2 (for further explanations, see [15]). Here we pre-
sent an L�

snp
 program ��

1
 which implements the spiking 

neural P system Π1 . Let n ∈ ℕ, n > 0 . The L�

snp
 program 

��
1
 is given by (D�

1
, s�

1
) , where the statement s�

1
 is given 

by s�
1
= ( ��� {N1} a )

2n−1 ∥ ���� {N2} ∥ ��� {N3} a , and 
declaration D�

1
 is given by

D�
1
= ������N0 { r� ∣ {N1,N2,N3} },

         𝗇𝖾𝗎𝗋𝗈𝗇N1 { a
+∕[a] → a;2 ∣ {N2} },

         𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a
n] → a;1 ∣ {N3} },

         𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a] → a;0 ∣ {N0} }.

   In the original model of spiking neural P systems [15], 
it is used the notion of an environment. Although the 
notion of an environment is not articulated in our paper, 
we use the neuron with the (reserved) name N0 to play 
the role of the environment (as in [8–10]). In this way, the 
neuron with name N0 receives the spikes produced by the 
output neuron. The three neurons N1 , N2 and N3 imple-
ment the corresponding neurons from the spiking neural P 
system Π1 given in [15, Section 5, Figure 2], and N3 is the 
output neuron. The L�

snp
 program ��

1
 implements faithfully 

the spiking neural P system Π1 presented in [15].

2.2  Semantic interpreter for L˛

snp
 working with all 

possible traces

We present a semantic interpreter for L�

snp
 derived from an 

operational semantics [24]. The interpreter is implemented in 
Haskell, and can be found in the public repository [34] as file 
jmc23-snp0.hs. Essentially, the semantic interpreter is 
based on the operational semantics of ��� calculus presented 
in [8]; the differences are mentioned in Remark 4.
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In general, formal semantics assign meanings taken from 
some mathematical domains of interpretation to syntactic 
language constructions. In this article, the syntax, the con-
figurations of the operational semantics and the semantic 
domains are implemented using Haskell type declarations.

The Haskell types Obj and Nn implement the sets O and 
Nn of spikes (or objects) and neuron names, respectively. 
Also, the types W and Xi implement the sets W  and Ξ of 
finite multisets over O and of finite sets of neuron names Nn , 
respectively. We model sets and multisets as Haskell lists.

type Obj = String
data Nn = Nn String
type W = [Obj]
type Xi = [Nn]

The abstract syntax of language L�

snp
 of Definition 1 can 

be implemented as:

data S = ES ES | Par S S
data ES = Aspike Obj | Snd Xi Obj | Init Xi

The types S and ES implement the classes S of statements 
and ES of elementary statements, respectively.

data Rule = Rfire (RExp Obj) W S Int | Rforget W
type Rs = [Rule]

The type Rule implements the class Rule of rules, using 
the type constructor RExp to represent regular expressions 
over spikes (or objects) of type Obj. A straightforward 
Haskell implementation of type RExp of regular expres-
sions (with associated operators) is available at [34]. The 
same type RExp is employed in the implementation of each 
semantic interpreter presented in this paper. The type Rs 
implements the class Rs of lists of rules.

type ND = (Nn,Rs,Xi)
type NDs = [ND]
type Prg = (NDs,S)

The types ND and NDs implement the class ND of neuron 
declarations and the class NDs of declarations, respectively. 
The type Prg implements the class Prg of programs pre-
sented in Definition 2.

All languages studied in this paper are concurrent and 
nondeterministic. Nondeterministic behaviour is imple-
mented in two different ways for each of the three lan-
guages L�

snp
 , Lir

snp
 and Lsp

snp
 presented in this article. For 

each language, we provide both an implementation which 
produces all possible execution traces based on the con-
cept of a linear time powerdomain [11], and an imple-
mentation where nondeterministic behaviour is simulated 
using a (pseudo) random number generator to choose an 
arbitrary execution trace.

type R = P
type P = [Q]
data Q = Epsilon | Q Omega Q
type Omega = [OS]
data OS = OSO Nn W | OSC Nn W

In this and all subsequent sections, we implement 
nondeterministic behaviour using the type R. The imple-
mentation given in this subsection produces all possible 
execution traces; here, the type R is defined as a synonym 
for the type P which implements the concept of a linear 
time powerdomain [11] whose elements are collections of 
sequences of observables. We use the elements of types 
Omega, Q and P to implement observables, sequences of 
observables (modelling execution traces), and collections 
of sequences of observables (modelling collections of exe-
cution traces), respectively. An observable of type Omega 
is a list (implementing a set) of elements of type OS.

An element of type OS describes the current observ-
able state of a neuron (an element of type OS is actually 
obtained based on information extracted from an element 
of type NS which describes the complete state of a neu-
ron). An element of type OS is a construct of the form 
(OSO nn w) or (OSC nn w), where nn is a neuron 
name and w is a multiset of spikes currently stored by the 
neuron with name nn. The constructs (OSO nn w) and 
(OSC nn w) describe the current observable state of an 
open neuron and of a closed neuron, respectively.

A sequence of observables of type Q is implemented as a 
list of observables (Epsilon is the empty list of observa-
bles). A collection of sequences of observables of type P is 
a list (implementing a set) of sequences of observables. As 
in the original model [15], time is measured by considering 
a global clock. As in [8], time information is implicit in our 
implementation, being given by the number of steps in each 
sequence of observables of type Q.
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fprefr :: Omega -> R -> R
fprefr = fpref
bignedr :: [R] -> R
bignedr = bigned
re :: R
re = [Epsilon]

fpref :: Omega -> P -> P
fpref omega p = [ Q omega q | q <- p ]
bigned :: [P] -> P
bigned = bigunion
bigunion :: Eq a => [[a]] -> [a]
bigunion [] = []
bigunion (x : xs) = x ‘union‘ (bigunion xs)

To manipulate elements of type R, we use the opera-
tor fprefr and the n-ary operator bignedr handling 
observable prefixing and nondeterministic choice opera-
tions, respectively. The value re is used for computation 
termination.

In this subsection, R is a type synonym for P and the oper-
ators fprefr and bignedr behave the same as functions 
fpref and bigned, respectively. The mapping fpref 
prefixes an observable to each element in a collection of 
sequences of observables. The mapping bigned imple-
ments nondeterministic choice based on the standard set 
union operator union. To simplify the presentation, in the 
Haskell code we omit the Eq instance declarations needed 
in the definition of polymorphic functions such as the set 
union operator union. For nondeterministic programs, the 
implementation presented in this subsection produces all 
possible execution traces.

All the semantic interpreters presented in this article are 
designed with continuations for concurrency [6, 30]. As in 
[8], we employ two different classes of continuations: syn-
chronous continuations and asynchronous continuations.3

data Conf = Cres H Cont U | Kres K
type Cont = (F,K)
data F = Fe | F H
data H = H (S,Xi) | Hpar H H
type K = [(Nn,NS)]
data NS = NSopen W | NSclosed W Int W (S,Xi)
type U = [A]
data A = At Obj Xi | AtI Obj XiInit | AtInit XiInit
data XiInit = XiInit Xi

The type Conf implements the class of configurations 
that are used in the transition relation for the operational 

semantics of L�

snp
 . The types F and K implement the classes 

of synchronous continuations and asynchronous continua-
tions, respectively. We also use the term continuation to refer 
to any pair (f,k) of type Cont, where f is a synchronous 
continuation of type F and k is an asynchronous continua-
tion of type K. A configuration of type Conf is either a con-
struct (Kres k) or a construct of the form (Cres h (f,k) 
u), where f::F is a synchronous continuation, k::K is an 
asynchronous continuation, h and u are elements of types 
H and U, respectively.

A synchronous continuation of type F is either the empty 
synchronous continuation Fe or a construct (F h) with h 
a value of type H. An element of type H is either a construct 
(H (s,xi)) with s a statement of type S and xi a set of 
neuron names of type Xi, or a construct of the form (Hpar 
h1 h2) which is used to represent a parallel composition of 
the values h1 and h2 of type H. A construct of the form (H 
(s,xi)) is used to execute statement s in a context where 
the neuron names in the set xi represent the destination for 
the spikes contained in the statement s.

An asynchronous continuation of type K is a set of pairs 
of the form (nn,ns), where nn is a neuron name of 
type Nn and ns is a value of type NS. A value of type NS 
describes the (current) state of a neuron which can be open 
or closed. The state of an open neuron is described by a 
construct of the form (NSopen w), where w is the multi-
set of spikes that is currently stored in the neuron. The state 
of a closed neuron is described by a construct of the form 
(NSclosed w vartheta wr (s,xi)), where w is 
the multiset of spikes (of type W) that is currently stored in 
the neuron, vartheta is a (positive) integer number (of 
type Int) representing a time interval4, wr represents the 
multiset of spikes that remain in the neuron when the neuron 
moves to the open status, and (s,xi) is a computation that 
is activated when the neuron moves to the open status.

sOmega :: NDs -> K -> Omega
sOmega nds k = [ aux nn s | nn <- nns, (nn’,s) <- k, nn’==nn ]

where nns = [ nn | (nn,_,_) <- nds ]
aux :: Nn -> NS -> OS
aux nn (NSopen w) = OSO nn w
aux nn (NSclosed w _ _ _) = OSC nn w

The mapping (sOmega nds k) extracts from the 
asynchronous continuation k the information that is pro-
duced as an observable element of type Omega (which is a 
synonym for the type [OS]). To obtain a readable output, 
the mapping (sOmega nds k) yields the list of elements 
of type OS describing the current observable state of all 

3 In [8], both an operational semantics and a denotational semantics 
for ��� calculus are presented; it is used the term resumption as an 
operational counterpart of the term continuation; in this article we 
use (only) the term continuation.

4 vartheta decreases by 1 with each clock tick, and becomes 0 
when the neuron moves to the open status.
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neurons in the order in which neurons occur in the declara-
tion nds::NDs.

An element of type A is called an action. Values of type 
U are lists of elements of type A, implementing multisets 
of actions. Actions of the form (At a xi), (AtI a 
xiInit) and (AtInit xiInit) correspond to ele-
mentary statements of the form (Aspike a), (Snd xi1 
a) and (Init xi), respectively. The elements of type Xi 
are sets (implemented as lists) of neuron names. We also use 
the type XiInit; its elements are constructs (XiInit 
xi), where xi:Xi and the data constructor XiInit car-
ries an initialization indication. The correspondence between 
elementary statements and actions is computed by the fol-
lowing mapping act:

act :: ES -> Xi -> A
act (Aspike a) xi = At a xi
act (Snd xi1 a) xi = AtI a (XiInit (xi1 ‘intersect‘ xi))
act (Init xi1) xi = AtInit (XiInit (xi1 ‘intersect‘ xi))

The mapping (act e xi) receives as arguments an 
elementary statement e::ES and a set of neuron names 
xi:Xi representing the set of neurons adjacent to the neu-
ron which executes the elementary statement e. An action 
(At a xi) describes the execution of an elementary spike 
(Aspike a) with destination given by the set of neuron 
names xi. The definition of mapping act indicates that 
send statements (Snd xi1 a) and initialization state-
ments (Init xi1)5 have an initialization effect upon the 
neurons with names in the set (xi1 ‘intersect‘ xi), 
as explained in Sect. 2.1 (the expression (xi1 ‘inter-
sect‘ xi)  computes the set theoretic intersection 
between the sets xi1 and xi). We recall that immediately 
after initialization, a neuron is open (i.e., it accepts spikes). 
When executed in the context of a particular neuron whose 
neighbours are the neurons that have names in a given set 
xi, a send statement (Snd xi1 a) also transmits the 
spike a to all open neurons with names in the set (xi1 
‘intersect‘ xi).

The behaviour of L�

snp
 programs is specified based on 

a transition relation designed in the style of operational 
semantics [24]. The transition relation connects each 
L
�

snp
 configuration of type Conf to a set of pairs of type 

[(Omega,K)], where type Omega implements the set 
of observables and type K implements the class of asyn-
chronous continuations (the transition relation is designed 
with continuations for concurrency [6, 30]). We recall that 
a construct of the form (Kres k) is a configuration, 
where k::K is an asynchronous continuation. The class of 

asynchronous continuations is a subset of the class of con-
figurations. For any L�

snp
 program (nds,s) with nds a 

declaration and s a statement, the definition of the transition 
relation also depends on the declaration nds::NDs.

tr :: Conf -> NDs -> [(Omega,K)]
tr (Cres (H (ES e, xi)) (Fe,k) u) nds =

let u2 = [act e xi] ‘summs‘ u
k1 = initk u2 k
k2 = sndk u2 k1
obs = sOmega nds k2

in [(obs,k2)]
tr (Cres (H (ES e, xi)) (F h,k) u) nds =

tr (Cres h (Fe,k) ([(act e xi)] ‘summs‘ u)) nds
tr (Cres (H (Par s1 s2,xi)) (f,k) u) nds =

(tr (Cres (H (s1,xi)) (parf (F (H (s2,xi))) f,k) u) nds) ‘union‘
(tr (Cres (H (s2,xi)) (parf (F (H (s1,xi))) f,k) u) nds)

tr (Cres (Hpar h1 h2) (f,k) u) nds =
(tr (Cres h1 (parf (F h2) f,k) u) nds) ‘union‘
(tr (Cres h2 (parf (F h1) f,k) u) nds)

tr (Kres k) nds =
case sfun nds k of

[] -> []
scheds -> bigunion ([ tr (Cres h (Fe,k’) []) nds

| (h,k’) <- scheds ])

The transition relation for L�

snp
 is implemented as a function  

tr of type  tr :: Conf -> NDs -> [(Omega,K)]. 
Essentially, the function (tr t nds) yields the successor 
set (see [11]) for configuration t. When using synchronous 
continuations to capture the synchronized functioning that is 
specific to spiking neural P systems, the synchronization 
involves the components h::H, f::F and u::U for a con-
figuration of the form (Cres h (f,k) u).

The definition of the transition relation tr consists of five 
equations. The first one describes the configuration (Cres 
(H (ES e, xi)) (Fe,k) u), where e::ES is an 
elementary statement executed in the context of a neuron 
whose neighbours are the neurons with names in the set 
xi:Xi, with respect to the empty synchronous continua-
tion Fe, an asynchronous continuation k::K and a multi-
set of actions u::U. The implementations of the auxiliary 
mappings summs, initk and sndk are available in the 
public repository [34] in the file jmc23-snp0.hs; the 
function summs implements the multiset sum operation, 
while the mappings initk and sndk implement initiali-
zation and spike transmission operations, respectively. In 
the first equation of function tr, u2::U is the multiset 
obtained by adding the action (act e xi) to the multi-
set u, k1::K is the asynchronous continuation obtained by 
executing the initialization actions contained in the multiset 
u2 on the asynchronous continuation k, and k2::K is the 
asynchronous continuation obtained by executing the spike 
transmission actions contained in the multiset u2 on the 
asynchronous continuation k1. The mapping (sOmega 
nds k2) extracts from the asynchronous continuation k2 
the information that is produced as an observable element 
obs. Thus, the first equation of function tr implements the 
transition from configuration (Cres (H (ES e, xi)) 

5 The constructs (Snd xi1 a) and (Init xi1) implement ele-
mentary statements of the form ��� �1 a and ���� �1 given in Definition 
2.
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(Fe,k) u) to configuration k2 with observable obs; in 
this case, function tr yields a singleton set given by the 
list [(obs,k2)].

The second equation of function tr describes the execu-
tion of an elementary statement e::ES with respect to a 
nonempty synchronous continuation (F h), an asynchro-
nous continuation k::K and a multiset of actions u::U. 
According to this equation, configurations (Cres (H 
(ES e, xi)) (F h,k) u) and (Cres h (Fe,k) 
([(act e xi)] ‘summs‘ u)) behave the same.

The third equation and the fourth equation of function tr 
handle the parallel execution of the statements and of the 
synchronous continuations, respectively. The operator parf 
models parallel composition over the class of synchronous 
continuations.

parf :: F -> F -> F
parf Fe f = f
parf f Fe = f
parf (F h1) (F h2) = F (Hpar h1 h2)

The fifth equation evaluates a configuration (Kres k) 
using the scheduler function sfun, where k::K is an asyn-
chronous continuation. The type of the scheduler function 
sfun is NDs -> K -> [(H,K)]. The scheduler function 
applies the rules contained in declaration in a nondetermin-
istic sequential manner, as indicated in [15]. Hence, the 
scheduler function (sfun nds k)  receives as arguments 
a declaration nds::NDs and an asynchronous continuation 
k::K, and yields a list of type [(H,K)]. It yields the 
empty list [] when the system reaches a halting configura-
tion; otherwise, it yields a nonempty list. The implementa-
tion of the scheduler function sfun is available at [34] in 
file jmc23-snp0.hs.

Remark 4 The design of the semantic interpreter presented 
in this subsection is essentially based on the operational 
semantics of ��� calculus [8]. However, there are certain 
differences. In [8], the nondeterministic behaviour is mod-
elled using a linear time powerdomain. In this article, we 
provide two alternative implementations for nondetermin-
ism: in this subsection we use the type P to implement a 
linear time powerdomain, and in Sect. 2.3 the nondetermin-
istic behaviour is simulated using a (pseudo)random number 
generator. Excepting the interpretation of nondeterminism, 
the other differences are minor.

As in [8], we define the operational semantics function 
osem for the language L�

snp
 as the fixed point of a higher-

order function. Since Haskell features lazy evaluation, one 
can define the fixed point combinator as follows:

fix :: (a -> a) -> a
fix f = f (fix f)

We define the operational semantics function 
osem :: Conf -> R (mapping a configuration of type 
Conf to a final value of type R) as the fixed point of the 
higher-order function psiD defined by:

psiD :: NDs -> (Conf -> R) -> (Conf -> R)
psiD nds phi t =

if hlt nds t then re
else bignedr [ fprefr omega (phi (Kres k))

| (omega,k) <- tr t nds ]
osem :: Conf -> R
osem = fix (psiD nds)

The predicate (hlt nds t) yields ���� when the 
system reaches a halting configuration (in which no rule 
can be applied, although the neurons are open). The imple-
mentation for hlt :: NDs -> Conf -> Bool is available 
at [34].

opsem :: Prg -> R
opsem (nds,s) = osem (Cres (H (s,xi0)) (Fe,k0) [])

where k0 :: K
k0 = [(Nn "n0",NSopen [])]
xi0 = xizero nds
xizero :: NDs -> Xi
xizero ((nn0,rules0,xi0):_) = xi0

The initial asynchronous continuation k0::K occur-
ring in the definition of function opsem contains a sin-
gle active neuron named (Nn “n0”); this name (Nn 
“n0”) implements the (reserved) neuron name N0.

We present the main components of the semantic inter-
preters and illustrate how nondeterministic behaviour 
is handled. First, we present an implementation of the 
L
�

snp
 program ��

0
 described in Example 3(1). The Haskell 

implementation of L�

snp
 program ��

0
 is stored in variable 

pi0a::Prg of the file jmc23-snp0.hs. Running the 
L
�

snp
 program ��

0
 with (opsem pi0a), we get:
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opsem pi0a ⇒

[[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a1"])] .
[("n0",[]),("n1",[]),<"n2",["a1"]>] .
[("n0",[]),("n1",[]),<"n2",["a1"]>] .
[("n0",["a1","a1"]),("n1",[]),("n2",[])]],

[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a2"])] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",["a2","a2"]),("n1",[]),("n2",[])]]

The yield of the semantic interpreter is a value of type R 
(which in this subsection is a synonym for type P). The type P 
implements a linear time powerdomain. A value of type P 
is a list (implementing a set) of sequences of observables, 
representing execution traces (hence the order in which execu-
tion traces are displayed is not important). In this example 
there are two alternative execution traces. For each execution 
trace, the observables are displayed in chronological order. We 
recall that an observable of type Omega is a set (implemented 
as a list) of elements of type OS. For instance, [[(“n0”,[]
),(“n1”,[“a”]),(“n2”,[])] is the first observable 
occurring in each execution trace. Each observable shows the 
name, the content and the open/closed status for all active 
neurons. The observable state of an open neuron is displayed 
between round brackets ‘(’ and ‘)’; the observable state of a 
closed neuron is displayed between angle brackets ‘‘<’’ and 
‘‘>’’. For example, in each of the two execution traces dis-
played above, neuron with name (Nn “n2”) is closed for 
two time units (in steps 3 and 4).

We also provide an implementation of the L�

snp
 program 

��
1
 presented in Example 3(2). The source code is contained 

in the file jmc23-snp0.hs (available at [34]), where the 
Haskell implementation for the L�

snp
 program ��

1
 is stored in 

the variable pi1a::Prg (the variable pi1a::Prg imple-
ments the program ��

1
 for n = 2 ). Running this program with 

(opsem pi1a), the reader can observe that the program 
��
1
 is deterministic (it produces a single execution trace), the 

output neuron N1 spikes twice (in steps 2 and 10), and the 
spikes are received by the neuron with name N0 ( N0 plays 
the role of the environment). The number computed by the 
L
�

snp
 program ��

1
 is 10 − 2 =8 and 8=3n + 2 (because n=2), 

which coincides with the result predicted in [15].
opsem pi1a ⇒

[[[("n0",[]),("n1",["a","a","a"]),("n2",[]),("n3",["a"])] .
[("n0",["a"]),<"n1",["a","a","a"]>,("n2",[]),("n3",[])] .
[("n0",["a"]),<"n1",["a","a","a"]>,("n2",[]),("n3",[])] .
[("n0",["a"]),("n1",["a","a"]),("n2",["a"]),("n3",[])] .
[("n0",["a"]),<"n1",["a","a"]>,("n2",["a"]),("n3",[])] .
[("n0",["a"]),<"n1",["a","a"]>,("n2",["a"]),("n3",[])] .
[("n0",["a"]),("n1",["a"]),("n2",["a","a"]),("n3",[])] .
[("n0",["a"]),<"n1",["a"]>,<"n2",["a","a"]>,("n3",[])] .
[("n0",["a"]),<"n1",["a"]>,("n2",[]),("n3",["a"])] .
[("n0",["a","a"]),("n1",[]),("n2",["a"]),("n3",[])]]]

2.3  Interpreter for L˛

snp
 based on random choice

The semantic interpreter presented in Sect. 2.2 implements 
an operational semantics for the language L�

snp
 modelling 

nondeterministic behaviour based on the type P, which 
implements a linear time powerdomain [11]. Since the 
length of execution traces may be infinite, a direct imple-
mentation based on a powerdomain is in general intractable, 
and can be used for executing only toy L�

snp
 programs. In 

this subsection, we consider an alternative implementation 
option in which nondeterministic behaviour is simulated 
using a (pseudo) random number generator. For any given 
L
�

snp
 program, the implementation presented now generates 

incrementally a single execution trace (randomly selected). 
Since Haskell features lazy evaluation, this new implementa-
tion can be used to execute non-terminating L�

snp
 programs. 

In random trace semantics, our interpreter can be used to test 
nondeterministic and non-terminating programs.

Starting from the implementation given in Sect. 2.2 and 
using the features provided by the Haskell library System.
Random, we obtain the semantic interpreter presented in 
this subsection with some simple modifications. We use the 
type Rand of random number generators given by Sys-
tem.Random.StdGen. We also use function System.
Random.next to extract a value from the random number 
generator. For nondeterministic L�

snp
 programs, the imple-

mentation presented now can produce different outputs at 
each different execution. To obtain this new version of our 
semantic interpreter, it is enough to redefine the type R and 
the associated operators as follows:

type R = Rand -> (Q,Rand)

fprefr :: Omega -> R -> R
fprefr omega r =

\rand -> let (q,rand’) = r rand in (Q omega q,rand’)
bignedr :: [R] -> R
bignedr rs = \nr -> let (nr’,rand’) = System.Random.next nr

in (rs !! (nr’ ‘mod‘ (length rs))) rand’
re :: R
re = \rand -> (Epsilon,rand)

No other modifications are required in the Haskell code 
(all other type and function definitions remain as in previous 
Sect. 2.2). However, to test this new version of our semantic 
interpreter, it is convenient to define the function tstRnd 
given below, which receives as argument a program of type 
Prg and can produce different random traces at different 
executions.

tstRnd :: Prg -> IO()
tstRnd prg =

do rand0 <- System.Random.newStdGen
print (fst (opsem prg rand0))
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This new version of our semantic interpreter is available 
online at [34] in the file jmc23-snp0-rnd.hs, where 
program ��

0
 is stored in variable pi0a : : Prg. Among the 

programs presented in Example 3, only ��
0
 is nondeterminis-

tic. Since the program ��
0
 is nondeterministic, by running this 

program ��
0
 in random trace semantics we can obtain different 

outputs for different executions. However, since in this simple 
example there are only two possible different execution traces, 
two out of the three experiments presented here (the first one 
and the third one) happen to produce same output:

tstRnd pi0a ⇒

[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a2"])] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",["a2","a2"]),("n1",[]),("n2",[])]]

tstRnd pi0a⇒
[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a1"])] .
[("n0",[]),("n1",[]),<"n2",["a1"]>] .
[("n0",[]),("n1",[]),<"n2",["a1"]>] .
[("n0",["a1","a1"]),("n1",[]),("n2",[])]]

tstRnd pi0a⇒
[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a2"])] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",["a2","a2"]),("n1",[]),("n2",[])]]

3  Spiking neural P systems with inhibitory 
rules

In this section we study a language named Lir
snp

 . This lan-
guage Lir

snp
 extends the language L�

snp
 with constructions 

specific to spiking neural P systems with inhibitory rules 
[22, 33]. Following [33], we consider spiking and inhibi-
tory rules with time delays. Since the main ingredients 
were introduced in Sect. 2, in this section and in Sect. 4 
we adopt a more concise style.

The syntax of language Lir
snp

 is presented in Definition 5. 
The sets (a ∈)O , (N ∈)Nn , (w ∈)W  and (� ∈)Ξ and the syn-
tactic classes of statements (s ∈)S and elementary state-
ments (e ∈)ES are as in Sect. 2. On the other hand, the 
class of rules (r ∈)Rule is different. However, the classes of 
lists of rules (rs ∈)Rs , neuron declarations (d ∈)ND , decla-
rations (D ∈)NDs and programs (� ∈)Lir

snp
 are defined as in 

Sect. 2. The language Lir
snp

 supports the same initialization 

mechanism like the language L�

snp
 (based on the statements 

��� � a and ���� � explained in Sect. 2.1).

Definition 5 (Syntax of Lir
snp

 ) 

(a) ( S t a t e m e n t s )        s(∈ S) ∶∶ = e ∣ s ∥ s 
where    e(∈ ES) ∶∶ = a ∣ ��� � a ∣ ���� �

(b) (Rules) rs(∈ Rs) ∶∶ = r� ∣ r, rs with     r(∈ Rule) ∶∶ =

E∕w → s;� ∣ (E, �)∕w → s;� ∣ E∕w → � 
�(∈ Iota) ∶∶ = (E,N) ∣ �, �  
where E and E are regular expressions over O , and 
� ≥ 0, � ∈ ℕ.

(c) (Neuron declarations)      D(∈ NDs) ∶∶ = d ∣ d,D 
where d(∈ ND) ∶∶ = ������N { rs ∣ � }

(d) (Programs)   �(∈ L
ir
snp

) ∶∶ = D, s

Spiking rules of the form E∕w → s;� remain as in 
Sect.  2. E∕w → � is a particular kind of spiking rule, 
where no statement and no time delay indication occur in 
the right-hand side. Such a rule can be applied by a neu-
ron N in case the neuron currently contains the multiset 
wN of spikes, wN ∈ L(E) (notation presented in Remark 
1), and w ⊆ wN . In this case, the multiset w is consumed 
immediately (without any delay), and only the multiset 
wN ⧵ w remains in the neuron. In the particular case when 
L(E) = {ai} and w = [ai] , we write such a rule in the sim-
pler form [ai] → � ; such a rule [ai] → � behaves like a sim-
ple forgetting rule presented in Sect. 2.

Specific to the language Lir
snp

 are the inhibitory rules. 
These inhibitory rules have the form (E, �)∕w → s;� , 
where E is a regular expression over O , w ∈ W  is a mul-
tiset, s ∈ S is an Lir

snp
 statement and � ∈ ℕ is a natural 

number indicating a time delay interval. If E is a regu-
lar expression over O , then E is an indication that E is 
used as an inhibitory regular expression [22]. The com-
ponent � ∈ Iota of an inhibitory rule (E, �)∕w → s;� is a 
list of pairs (Ej,Nj) , where Ej is an (inhibitory) regular 
expression and Nj is a neuron name. Considering a neuron 
with name N that currently stores the multiset of spikes 
wN and that contains in its list of rules an inhibitory rule 
r = (E, (E1,N1),… , (Em,Nm))∕w → s;�  ,  r ∈ Rule  ,  t he 
neurons with names N1,… ,Nm are inhibitory neurons.6 
Assuming that neurons N1,… ,Nm currently contain the 
multisets of spikes w1,… ,wm , the firing condition for the 
inhibitory rule r in neuron N is7

(w ∈ L(E)) ∧ (¬(w1 ∈ L(E1))) ∧⋯ ∧ (¬(wm ∈ L(Em))) ∧ (w ⊆ wN).

6 A spiking neural P system with inhibitory rules can be represented 
as a graph with inhibitory arcs [22]. For each j = 1,… ,m , there is an 
arc between neurons Nj and N corresponding to an inhibitory synapse.
7 ¬ is the logical negation operator; the notations were presented in 
Remark 1.
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I f  t h e  f i r i n g  c o n d i t i o n  o f  t h e  r u l e 
r = (E, (E1,N1),… , (Em,Nm))∕w → s;� is satisfied and 
� = 0 , then the neuron with name N fires, the multiset w 
is consumed, and the execution of statement s is triggered 
(the neuron produces spikes) immediately. If 𝜗 > 0 , then 
the statement s is suspended for the next � time units, and 
the execution of statement s is triggered after exactly � time 
units. In each case, the spikes produced by the execution 
of statement s are transmitted to the neighbouring neurons. 
Moreover, rules are selected and applied in nondeterministic 
manner by each neuron, with all neurons working concur-
rently, as in any spiking neural P systems [15, 22].

Example 6 We consider two Lir
snp

 programs �ir
1

 and �ir
2

 
based on [22, 33], respectively. In each case, the result 
computed by the system is considered to be the spike train 
(the sequence of zeros and ones) obtained by observing the 
behaviour of the output neuron, writing 1 when the output 
neuron spikes, and 0 otherwise. 

(1) T h e  p r o g r a m  �ir
1
∈ L

ir
snp

 i s  �ir
1
= (Dir

1
, sir

1
)  , 

w h e r e  t h e  s t a t e m e n t  sir
1

 i s  g i v e n 
by      sir

1
= ( ��� {N1} a )

2 ∥ ( ��� {N2} a )
2 ∥ ���� {N3} , 

and the declaration Dir
1
∈ NDs is given by

Dir
1
= ������N0 { r� ∣ {N1,N2,N3} },

         𝗇𝖾𝗎𝗋𝗈𝗇N1 { a
+∕[a] → a;0 ∣ {N3} },

         𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a] → �, (a+, (aa+,N1))∕[a] → a;0 ∣ {N3} },

         𝗇𝖾𝗎𝗋𝗈𝗇N3 { a
+∕[a] → a;0 ∣ {N0} }.

   The Lir
snp

 program �ir
1

 implements the spiking neural 
P system with inhibitory rules presented in [22, Sec-
tion 2.2, Figure 2]. This illustrative example consists 
of three neurons �1, �2 and �3 implemented in our pro-
gram �ir

1
 by the neurons N1,N2 and N3 , respectively. 

The statement sir
1
 produces the initial configuration in 

which the neuron N1 contains 2 spikes, neuron N2 con-
tains 2 spikes and neurons N3 is empty ( N3 is the out-
put neuron). In our implementation, neuron N0 (which 
is automatically initialized upon system start up as an 
open and empty neuron) plays the role of the environ-
ment, receiving the spikes produced by the output 
neuron N3 (more explanations are given in Example 
3). The example presented in [22] can generate two 
different spike trains, namely: 0111 and 01111. Our 
L
ir
snp

 program �ir
1

 captures accurately this behaviour; the 
behaviour is illustrated by the experiments presented in 
Sect. 3.1.

(2) T h e  p r o g r a m  �ir
2
∈ L

ir
snp

 i s  �ir
2
= (Dir

2
, sir

2
)  , 

w h e r e  t h e  s t a t e m e n t  sir
2

 i s  g i ve n  by 

sir2 = ( ��� {N1} a )2 ∥ ( ��� {N2} a )2 ∥ ( ��� {N3} a )3 ∥ ���� {Nout}

���� {Nout} , and the declaration Dir
2
∈ NDs is given by

Dir
2
= ������N0 { r� ∣ {N1,N2,N3,Nout} },

𝗇𝖾𝗎𝗋𝗈𝗇N1 { [a
2] → a2;0, [a2] → a2;1, [a] → �

∣ {N2,N3,Nout} },

𝗇𝖾𝗎𝗋𝗈𝗇N2 { (a
2, ((a2)+,N3))∕[a

2] → a2;0,

(a2, (a3,N3))∕[a
2] → a;0 ∣ {N1,Nout} },

𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a
4] → �, a3∕[a2] → �, [a2] → � ∣ {} },

𝗇𝖾𝗎𝗋𝗈𝗇Nout { [a
4] → �, [a2] → a;0, [a] → a;0 ∣ {N3,N0} }.

   The Lir
snp

 program �ir
2

 implements the spiking neural 
P system with inhibitory rules presented in [33, Sec-
tion 3.2, Figure 3]. This illustrative example consist of 
four neurons �1, �2, �3 and �out implemented in our pro-
gram �ir

2
 by neurons N1,N2,N3 and Nout , respectively. 

The statement sir
2

 produces the initial configuration 
in which the neuron N1 contains 2 spikes, neuron N2 
contains 2 spikes, neurons N3 contains 3 spikes and 
neuron Nout is empty ( Nout is the output neuron). Neu-
ron N0 plays the role of the environment, receiving the 
spikes produced by Nout . The example presented in [33] 
generates the language L(0+1110) ; at each execution, 
in a nondeterministic manner, it can produce a spike 
train described by the regular expression 0+1110 . Our 
L
ir
snp

 program �ir
2

 captures accurately this behaviour; the 
behaviour is illustrated by the experiments presented 
in Sect. 3.2. It is worth noting that program �ir

2
 can be 

executed using only our interpreter based on random 
choice.

3.1  Interpreter for Lir
snp

 working with all possible 
traces

An interpreter for the language Lir
snp

 (similar to the one pre-
sented in Sect. 2) is available online in the public reposi-
tory [34] as file jmc23-snp-ird.hs. The interpreters 
presented in Sect. 2.2 and in this subsection are similar; 
both work in all possible traces semantics, where type R 
is a synonym with the type P. Only the definitions that are 
specific to language Lir

snp
 are discussed below.

data Rule = Rfire (RExp Obj) W S Int
| Rforgetre (RExp Obj) W
| Rin (RExp Obj) [(RExp Obj,Nn)] W S Int

The type Rule implements the class Rule of rules 
given in Definition 5. Specific to language Lir

snp
 are the 

inhibitory rules of the form (E, �)∕w → s;� ; they are imple-
mented using the construction (Rin re rens w s 
vartheta), where re is a regular expression of type 
(RExp Obj), rens is a list of pairs of type [(RExp 
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Obj,Nn)] (which implements the syntactic class Iota 
of Definition 5), w::W is a multiset of spikes, s::S is 
a statement and vartheta::Int is a positive integer 
number representing a time interval.

The definitions of the scheduler function sfun and 
predicate hlt (which verifies whether the system reached 
a halting configuration) depend on the rules that are spe-
cific to spiking neural P systems with inhibitory rules. 
Hence, the implementations of the scheduler function 
sfun and of the predicate hlt are also specific to the 
interpreter for the language Lir

snp
 . The complete implemen-

tation of the semantic interpreter for Lir
snp

 is available at 
[34] in the file jmc23-snp-ird.hs, where the Haskell 
implementations of Lir

snp
 programs �ir

1
 and �ir

2
 (presented in 

Example 6) are stored in the variables pi1ir and pi2ir, 
respectively. Only the program �ir

1
 can be verified using 

our semantic interpreter in all possible traces semantics.
Running the program �ir

1
 with (opsem pi1ir) gen-

erates the output below:
opsem pi1ir ⇒

[[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",[])] .
[("n0",[]),("n1",["a"]),("n2",["a","a"]),("n3",["a"])] .
[("n0",["a"]),("n1",[]),("n2",["a"]),("n3",["a","a"])] .
[("n0",["a","a"]),("n1",[]),("n2",[]),("n3",["a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",[])]],

[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",[])] .
[("n0",[]),("n1",["a"]),("n2",["a","a"]),("n3",["a"])] .
[("n0",["a"]),("n1",[]),("n2",["a"]),("n3",["a","a"])] .
[("n0",["a","a"]),("n1",[]),("n2",[]),("n3",["a","a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",["a"])] .
[("n0",["a","a","a","a"]),("n1",[]),("n2",[]),("n3",[])]]]

As explained in Example 6(1), the program �ir
1

 imple-
ments the example presented in [22]. In this experiment, our 
interpreter produces as output a value of type P (i.e., a set of 
execution traces) comprising two execution traces. We recall 
that in our implementation the spikes produced by the out-
put neuron are received by the neuron with name N0 (imple-
mented by (Nn “n0”)) which models the environment. In 
this example, neuron N3 is the output neuron (implemented by 

(Nn “n3”)). In the first step of the both execution traces, 
the output neuron N3 does not produce spikes (and N0 does 
not receive spikes); after that, the output neuron spikes in each 
of the following steps. Thus, the first execution produces the 
spike train 0111, and the second execution produces the spike 
train 01111; both confirm the result predicted in [22].

3.2  Interpreter for Lir
snp

 based on random choice

Starting from the interpreter presented in Sect. 3.1, we obtain 
an interpreter working in random trace semantics using the 
implementation of type R presented in Sect. 2.3. No other 
modification is needed. The semantic interpreter for the lan-
guage Lir

snp
 working in random trace semantics can simulate 

the behaviour of the example of spiking neural P system with 
inhibitory rules presented in [33, Section 3.2, Figure 3]. At 
each execution, it can produce in a nondeterministic manner 
a spike train described by the regular expression 0+1110 (as 
explained in Example 6(2)). Since there is an infinite number 
of possible alternative execution traces, this example can be 
verified only using our interpreter based on random choice.

The illustrative example of spiking neural P system with 
inhibitory rules presented in [33] is implemented by the Lir

snp
 

program �ir
2

 (introduced in Example 6(2)). The semantic inter-
preter for the language Lir

snp
 working in random trace semantics 

is available at [34] in the file jmc23-snp-ird-rnd.hs, 
where the Haskell implementation of the program �ir

2
 is stored 

in the variable pi2ir. The following experiments show three 
executions of the program �ir

2
 using random trace semantics. 

In the experiments presented below, the output neuron Nout 
(implemented by (Nn “out”)) spikes in steps m,m + 1 
and m + 2 , where m = 8 , m = 2 and m = 5 , respectively. The 
spikes emitted by Nout are received by the neuron N0 (imple-
mented by (Nn “n0”)); in step m + 3 , no spike is emitted 
by the output neuron and execution terminates. Thus, the pro-
gram �ir

2
 always produces a spike train described by the regular 

expression 0+1110 , confirming the result predicted in [33].

tstRnd pi2ir⇒

[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",[])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),<"n1",["a","a"]>,("n2",[]),("n3",["a"]),("out",["a","a"])] .
[("n0",["a"]),("n1",[]),("n2",["a","a"]),("n3",["a","a","a","a"]),("out",["a","a"])] .
[("n0",["a","a"]),("n1",["a"]),("n2",[]),("n3",["a"]),("out",["a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",["a","a"]),("out",[])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",[]),("out",[])]]
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tstRnd pi2ir⇒

[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",[])] .
[("n0",[]),<"n1",["a","a"]>,("n2",[]),("n3",["a"]),("out",["a","a"])] .
[("n0",["a"]),("n1",[]),("n2",["a","a"]),("n3",["a","a","a","a"]),("out",["a","a"])] .
[("n0",["a","a"]),("n1",["a"]),("n2",[]),("n3",["a"]),("out",["a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",["a","a"]),("out",[])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",[]),("out",[])]]

tstRnd pi2ir⇒

[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",[])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),<"n1",["a","a"]>,("n2",[]),("n3",["a"]),("out",["a","a"])] .
[("n0",["a"]),("n1",[]),("n2",["a","a"]),("n3",["a","a","a","a"]),("out",["a","a"])] .
[("n0",["a","a"]),("n1",["a"]),("n2",[]),("n3",["a"]),("out",["a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",["a","a"]),("out",[])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",[]),("out",[])]]

4  Spiking neural P systems with structural 
plasticity

This section introduces a language named Lsp
snp

 . The lan-
guage Lsp

snp
 is a variant of the language L�

snp
 (presented in 

Sect. 2), incorporating constructions specific to spiking neu-
ral P systems with structural plasticity [4]. The syntax of 
language Lsp

snp
 is presented in Definition 7. The sets (a ∈)O , 

(N ∈)Nn , (w ∈)W  and (� ∈)Ξ and the classes of statements 
(s ∈)S and elementary statements (e ∈)ES are as in Sect. 2. 
Only the class of rules (r ∈)Rule is different. However, the 
lists of rules (rs ∈)Rs , neuron declarations (d ∈)ND , decla-
rations (D ∈)NDs and programs (� ∈)Lir

snp
 are defined as in 

Sect. 2.

Definition 7 (Syntax of Lsp
snp

 ) 

(a) ( S t a t e m e n t s )        s(∈ S) ∶∶ = e ∣ s ∥ s 
where     e(∈ ES) ∶∶ = a ∣ ��� � a ∣ ���� �

(b) (Ru les )                 rs(∈ Rs) ∶∶ = r� ∣ r, rs 
w h e r e           r(∈ Rule) ∶∶ = E∕w → s ∣ � 
�(∈ PR) ∶∶ = E∕w → (��)�s ∣ E∕w → (−�) w i th 
E a regular expression over O , � ∈ {+,±,∓} , and 
� ≥ 1,� ∈ ℕ

(c) (Neuron declarations)      D(∈ NDs) ∶∶ = d ∣ d,D 
where d(∈ ND) ∶∶ = ������N { rs ∣ � }

(d) (Programs)   �(∈ L
sp
snp

) ∶∶ = D, s

The language Lsp
snp

 supports the same initialization mecha-
nism like the language L�

snp
 in Sect. 2. We recall that the neuron 

with name N0 is automatically initialized upon system start up, 
and all other neurons must be initialized explicitly by using 

statements ��� � a and ���� � (Sect. 2.1). Before initialization, 
a neuron is idle; immediately after initialization, each neuron 
becomes active. An active neuron can be open or closed, but it 
never moves to an idle state. The connections between active 
neurons are given by the declarations of neurons. Let Ni be a 
neuron given by a declaration ������Ni { rsi ∣ �i } ; the set �i 
contains the names of all neurons that are adjacent with neuron 
Ni and represent the destination for the spikes that are emitted 
by neuron Ni . Once the neuron becomes active, there is an 
outgoing synapse between neuron Ni and each neuron with 
name Nj ∈ �i that is also active. We write Ni ↦ Nj to express 
that there is a synapse connecting neuron Ni to neuron Nj . Let 
pres(Ni) = {Nj ∣ Ni ↦ Nj} be the set of neuron names having 
the neuron with name Ni as their presynaptic neuron [4].

As in [4], the rules in language Lsp
snp

 are without delays; 
moreover, we do not use forgetting rules. A rule of the form 
E∕w → s is a spiking rule. When executed by a neuron cur-
rently containing the multiset wN of spikes, a spiking rule 
E∕w → s fires if w ⊆ wN (i.e., w is a submultiset of wN ) and 
wN ∈ L(E) . Unlike in previous sections, when such a rule is 
applied, the execution of statement s is always triggered (and 
the neuron produces spikes) immediately, without delay.

Rules � ∈ PR of the form � = E∕w → (��)�s and 
� = E∕w → (−�) are called plasticity rules; they are specific 
to the language Lsp

snp
 which is based on the model of spiking 

neural P systems with structural plasticity presented in [4]. 
There is a single syntactic construction in [4] for plastic-
ity rules, with � ∈ {+,−,±,∓} . When a neuron with name 
N executing a plasticity rule with � ∈ {+,±,∓} is attached 
to a neuron with name Nj using a synapse (during synapse 
creation), it also transmits one spike to neuron with name 
Nj . On the other hand, if the neuron executes a plasticity rule 
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with �=−, then no spike is transmitted between neurons. 
In this article, the spikes emitted by a neuron are specified 
by means of statements s ∈ S ; we use two different syntac-
tic constructions for plasticity rules: E∕w → (��)�s (when 
� ∈ {+,±,∓} ) and E∕w → (−�) . A plasticity rule can be 
applied by a neuron with name N which currently contains 
wN spikes whenever w ⊆ wN and wN ∈ L(E) . If the plasticity 
rule is applied, then the multiset of spikes w is consumed, 
i.e., only the multiset wN⧵w remains in the neuron. In addi-
tion, a plasticity rule � ∈ PR can create or delete synapses.

No synapse is created or deleted when a rule of the form 
� = E∕w → (��)�s with � = + and (� ⧵ pres(N)) = � is 
applied,8 or when a rule � of the form � = E∕w → (−�) with 
pres(N) = � is applied.

If a plasticity rule � of the form � = E∕w → (��)�s 
with � = + is applied, then there are two possibilities: if 
|� ⧵ pres(N)| ≤ � , then it is created a synapse to each neuron 
with name Nj ∈ (� ⧵ pres(N)) ; if |𝜉 ⧵ pres(N)| > 𝜇 , then it is 
selected nondeterministically a subset of (� ⧵ pres(N)) con-
taining � neurons, and a synapse is created to each selected 
neuron.

If a plasticity rule � of the form � = E∕w → (−�) is 
applied, then we have two alternatives: if |pres(N)| ≤ � , then 
all synapses in pres(N) are erased; if |pres(N)| > 𝜇 , then it 
is selected in a nondeterministic manner a subset of pres(N) 
containing � neurons, and all synapses to the selected neu-
rons are removed.

If a plasticity rule � of the form � = E∕w → (��)�s 
with � ∈ {±,∓} is applied, then some synapses are created 
(respectively deleted) at the current time t and then they 
are deleted (respectively created) at time t + 1 . Neurons are 
always open (i.e., they can receive spikes), including in the 
two steps t and t + 1 during the application of a plasticity 
rule � = E∕w → (��)�s with � ∈ {±,∓} . Only at time t + 2 
the neuron can apply another rule.

A neuron emits no spikes when it applies a plasticity 
rule � of the form � = E∕w → (−�) . On the other hand, 
when a neuron N applies a plasticity rule � of the form 
� = E∕w → (��)�s (with � ∈ {+,±,∓} ), it executes the 
statement s, meaning that the spikes contained in statement 
s are executed in the context of neuron N and are transmit-
ted to the neighbouring neurons (as explained in Sect. 2.1).

In the particular case when L(E) = {ai} and w = [ai] , we 
write a plasticity rule E∕w → (��)�s in the simpler form 
w → (��)�s . Also, in the particular case when L(E) = {ai} 
and w = [ai] , we write a plasticity rule E∕w → (−�) in the 
simpler form w → (−�) . As standard for spiking neural P 

systems, the rules are selected and applied in nondetermin-
istic manner by each neuron, and all neurons work concur-
rently and synchronously (according to a global clock).

Example 8 We consider two Lsp
snp

 programs �sp

1
 and �sp

2
 based 

on an example from [4], and a simpler Lsp
snp

 program �sp

0
 . 

(1) The program �sp

1
 is given by �sp

1
= (D

sp

1
, s

sp

1
) , where the 

statement ssp
1

 is 

 and the declaration Dsp

1
∈ NDs is given by

D
sp

1
= ������N0 { r� ∣ {N1,N2,N3,NA1

,NA2
} },

         𝗇𝖾𝗎𝗋𝗈𝗇N1 { a
2∕[a] → (+1){N2,N3}a, [a] → (−1) ∣ {} },

         𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a] → a ∣ {NA1
,NA2

} },

         𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a] → a ∣ {N0} },

         𝗇𝖾𝗎𝗋𝗈𝗇NA1
{ [a] → a ∣ {N1} },

         𝗇𝖾𝗎𝗋𝗈𝗇NA2
{ [a] → a ∣ {N1} }.

   The Lsp
snp

 programs �sp

1
 implements the spiking neu-

ral P system with structural plasticity Πex given in [4, 
Section 4, Figure 1]. This system Πex comprises five 
neurons �1, �2, �3, �A1

 and �A2
 , implemented in our 

program �sp

1
 by the neurons N1,N2,N3,NA1

 and NA2
 , 

respectively. The statement ssp
1

 produces the initial 
configuration in which neuron N1 contains 2 spikes, 
neuron N3 contains 1 spike and neurons N2 , NA1

 and NA2
 

are empty (each containing 0 spikes). N3 is the output 
neuron. Neuron N0 (which is automatically initialized 
upon system start up) plays the role of the environment, 
receiving the spikes produced by the output neuron N3 
(as in Example 3). Following the convention that the 
result is given by the difference between the first two 
time instances when the output neuron spikes [4, 15], 
the system Πex presented in [4] generates in a nonde-
terministic manner the sequence 1, 4, 7, 10,… (namely, 
all numbers 3m + 1 for m ≥ 0 ). Our Lsp

snp
 program �sp

1
 

captures accurately this behaviour, fact illustrated by 
the experiments presented in Sect. 4.2.

(2) The program �sp

2
∈ L

sp
snp

 is almost identical to �sp

1
 ; 

the single difference is that the two plasticity rules 
in neuron N1 are replaced by a single plasticity rule 
[a2] → (±1){N2,N3}a . More precisely, �sp

2
 is given by 

(D
sp

2
, s

sp

2
) , where ssp

2
= s

sp

1
 and the declaration Dsp

2
∈ NDs 

is given by

D
sp

2
= ������N0 { r� ∣ {N1,N2,N3,NA1

,NA2
} },

         𝗇𝖾𝗎𝗋𝗈𝗇N1 { [a
2] → (±1){N2,N3}a ∣ {} },

         𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a] → a ∣ {NA1
,NA2

} },

         𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a] → a ∣ {N0} },

         𝗇𝖾𝗎𝗋𝗈𝗇NA1
{ [a] → a ∣ {N1} },

s
sp

1
= ( ��� {N1} a )

2 ∥ ( ��� {N3} a ) ∥ ���� {N2,NA1
,NA2

} ,

8 �⧵pres(N) is the set theoretic difference between sets � and pres(N) ; 
we use the same symbol ⧵ to represent the multiset difference opera-
tor, because it is always clear from the context whether the arguments 
of this operator ⧵ are sets or multisets.
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         𝗇𝖾𝗎𝗋𝗈𝗇NA2
{ [a] → a ∣ {N1} }.

   The Lsp
snp

 program �sp

2
 implements a variant of the 

spiking neural P system with structural plasticity Πex 
given in [4, Section 4, Figure 1], where the two plastic-
ity rules with � = + and � = − are replaced by a single 
plasticity rule with � = ± . The experiments performed 
in random trace semantics show that the two programs 
�
sp

1
 and �sp

2
 behave the same. When executed in ran-

dom trace semantics, the program �sp

2
 generates in a 

nondeterministic manner the numbers in the sequence 
1, 4, 7, 10,… (the same as �sp

1
).

(3) The two Lsp
snp

 programs �sp

1
 and �sp

2
 are designed to gen-

erate the numbers 3m + 1 for m ≥ 0 . They can only be 
executed by our interpreter in random trace semantics. 
Now we present a simple Lsp

snp
 program �sp

0
 that we ver-

ify using our semantic interpreter in all possible traces 
semantics. The program �sp

0
 is given by (Dsp

0
, s

sp

0
) , where 

the statement ssp
0

 is given by 

 and the declaration Dsp

0
∈ NDs are given by

D
sp

0
= ������N0 { r� ∣ {N1,N2,N3} },

         𝗇𝖾𝗎𝗋𝗈𝗇N1 { [a] → (±1){N2,N3}a ∣ {} },

         𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a] → a ∣ {N0} },

         𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a] → a ∣ {N0} }

s
sp

0
= ( ��� {N1} a ) ∥ ���� {N2,N3} ,

   By executing statement ssp
0

 , the program �sp

0
 pro-

duces the initial configuration in which neuron N1 con-
tains 1 spike and neurons N2 and N3 are empty (contain-
ing 0 spikes). After the initialization step, neuron N1 
contains 1 spike, and so it can apply its plasticity rule 
[a] → (±1){N2,N3}a . Since � = ± and  1< N2, N3  , 
neuron N1 creates nondeterministically one synapse 
(either N1 ↦ N2 or N1 ↦ N3 ), and transmits one spike 
to either neuron N2 or N3 . In the next step, the newly 
created synapse is removed and the receiving neuron 
(either N2 or N3 ) applies its firing rule ( [a] → a ), trans-
mitting one spike to neuron N0 . The behaviour of the 
program �sp

0
 is illustrated by an experiment presented 

in Sect. 4.1.

4.1  Interpreter for Lsp
snp working with all possible 

traces

A semantic interpreter for the language Lsp
snp

 (similar to the 
semantic interpreters presented in previous sections) is avail-
able online at [34] as file jmc23-snp-sp.hs. The inter-
preter contained in file jmc23-snp-sp.hs works in all 
possible traces semantics, where type R is a synonym for 
type P. Since the interpreter is similar to the previous ones, 
we present only what is different.

data Rule = Rfire (RExp Obj) W S
| Rplastic (RExp Obj) W Alpha Mu Xi S
| RplasticMinus (RExp Obj) W Mu

type Mu = Int
data Alpha = Aplus | PlusMinus | MinusPlus
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The type Rule implements the class Rule of rules given 
in Definition 7, and the type Alpha implements the set 
{+,±,∓}.

Specific to the language Lsp
snp

 is that a value of type OS 
(given by data OS = OS Nn Xi W) describes the cur-
rent observable state of a neuron. Also, the rules of the lan-
guage Lsp

snp
 are without delays, and the connections between 

neurons can be modified dynamically. A value of type OS is 
a construct (OS nn xi w), where nn::Nn is a neuron 
name, w::W is the multiset of spikes currently contained in 
the neuron, and xi::Xi is a set of neuron names describ-
ing the current connections (neighbours) of the neuron with 
name nn.

type K = [(Nn,Xi,W,NS)]
data NS = NSopen | NSplus Mu Xi S | NSminus Mu

The structure of an asynchronous continuation is spe-
cific to the language Lsp

snp
 , where the connections between 

neurons can be changed dynamically. In this language, 
an asynchronous continuation of type K is a list of tuples 
(nn,xi,w,ns), where nn::Nn is a neuron name, 
xi::Xi is a set of neuron names describing the current 
connections (i.e., the current neighbours) of the neuron 
with name nn, w::W is the multiset of spikes currently 
contained in the neuron, and ns:NS is the current state of 
the neuron. A value of type NS describes the (current) state 
of a neuron. We recall that a neuron applying a plasticity 
rule with � ∈ {±,∓} at time t, cannot apply another rule at 
times t and t + 1 . The constructs (NSplus mu xi s) and 
(NSminus mu) (where mu::Int, xi::Xi and s::S) 
are used in our implementation to model the temporary state 
of a neuron which executes a plasticity rule with � ∈ {±,∓}.

The definitions of the scheduler function sfun and 
predicate hlt (verifying whether the system reached a 
halting configuration) depend on the rules that are specific 
to spiking neural P systems with plasticity rules. Thus, the 
implementation of the scheduler function sfun and the 
implementation of the predicate hlt are also specific to the 
semantic interpreter for the language Lsp

snp
.

The complete implementation of the semantic interpreter 
for the language Lsp

snp
 is available online in the public reposi-

tory [34] as file jmc23-snp-sp.hs. The Haskell imple-
mentations of programs �sp

1
 , �sp

2
 and �sp

0
 (of Example 8) are 

stored in the variables pi1sp, pi2sp and pi0sp, respec-
tively. Among these programs, only the program �sp

0
 can be 

verified using all possible traces semantics (the programs �sp

1
 

and �sp

2
 can generate an infinite number of different execu-

tion traces, and so they can be executed only in random trace 
semantics). The Lsp

snp
 program �sp

0
 behaves as explained in 

Example 8(3).

Running the program �sp

0
 with (opsem pi0sp), we get 

the following output:

opsem pi0sp⇒

[[[("n0",_,[]),("n1",[],["a"]),("n2",_,[]),("n3",_,[])] .
[("n0",_,[]),("n1",["n3"],[]),("n2",_,[]),("n3",_,["a"])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[])]],

[[("n0",_,[]),("n1",[],["a"]),("n2",_,[]),("n3",_,[])] .
[("n0",_,[]),("n1",["n2"],[]),("n2",_,["a"]),("n3",_,[])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[])]]]

The output produced by our interpreter shows for each 
neuron both the content of the neuron and its current con-
nections (synapses). For readability, in the experiments pre-
sented here is displayed only the list of connections (the 
names of the neighbouring neurons) for the neurons whose 
connections change at runtime. In this example, only the 
connections of neuron N1 (implemented by the construct 
(Nn "n1")) change during the execution of the program; 
for other neurons (whose connections do not change), we 
replace the list of connections by the character ’_’.

4.2  Interpreter for Lsp
snp based on random choice

We present an interpreter for the language Lsp
snp

 working in 
random trace semantics, interpreter available at [34] in the 
file jmc23-snp-sp-rnd.hs. This interpreter can be 
obtained from the interpreter presented in Sect. 4.1 using the 
implementation of the type R presented in Sect. 2.3. Using 
this interpreter, we can simulate the behaviour of the spiking 
neural P system with structural plasticity Πex presented in [4] 
by the programs �sp

1
 and �sp

2
 presented in Example 8. At each 

execution, these programs can produce in a nondeterministic 
manner a number in the sequence 1, 4, 7, 10,… (i.e., a num-
ber 3m + 1 for m ≥ 0 ). Since there is an infinite number of 
possible alternative execution traces, this example can only 
be verified using our semantic interpreter in random trace 
semantics. The following experiments show three execu-
tions of the program �sp

1
 in random trace semantics. The 

reader can observe that the output neuron N3 (implemented 
by (Nn “n3”)) always fires (and produces spikes received 
by neuron N0 , implemented by (Nn “n0”)) in steps 1 and 
m, with m = 2, 5, 8, 11,… . Following the convention that the 
number computed by the system is given by the number of 
steps between the first two consecutive spikes produced by 
the output neuron, the numbers computed by the program �sp

1
 

are 1, 4, 7, 10,… (i.e., ( m − 1 ) for m = 2, 5, 8, 11,…).
The experiments confirm the result predicted in [4].
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tstRnd pi1sp⇒
[[("n0",_,[]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n2"],["a"]),("n2",_,["a"]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,["a"]),("na2",_,["a"])] .
[("n0",_,["a"]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n3"],["a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a","a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])]]

tstRnd pi1sp⇒
[[("n0",_,[]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n2"],["a"]),("n2",_,["a"]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,["a"]),("na2",_,["a"])] .
[("n0",_,["a"]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n2"],["a"]),("n2",_,["a"]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,["a"]),("na2",_,["a"])] .
[("n0",_,["a"]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n3"],["a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a","a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])]]

tstRnd pi1sp⇒
[[("n0",_,[]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n3"],["a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a","a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])]]

For readability, in the experiments presented here is dis-
played only the list of connections (the names of the neigh-
bouring neurons) for the neuron N1 (implemented by (Nn 
“n1”)) whose connections change at runtime. For other 
neurons (whose connections do not change), we replace the 
list of connections by the character ’_’.

According to the experiments performed using our inter-
preter based on random choice, it is verified that both the 
programs �sp

1
 and �sp

2
 compute numbers in the sequence 

1, 4, 7, 10,… . Even the programs �sp

2
 and �sp

1
 are similar, they 

are not identical: the program �sp

2
 is obtained from program 

�
sp

1
 by replacing the two plasticity rules using � = + and 

� = − with a single plasticity rule using � = ±.

5  Conclusion

There exist several software tools related to P systems [32]. 
Among them, the general framework P-Lingua allows to 
define a unified standard for different classes of P systems: 
cell-like P systems [14], tissue-like P systems [18] and spik-
ing neural P systems [17]. Recently, P-Lingua was rede-
signed to provide improved generic support for membrane 
computing [23]. The development of formal frameworks 
[31] and software simulators [12] for spiking neural P sys-
tems represent recent research.

In this paper we presented implementations of the spiking 
neural P systems, spiking neural P systems with inhibitory 
rules and spiking neural P systems with structural plasticity. 
These implementations were derived from their operational 
semantics. For each implementation it was presented a for-
mal syntax and an operational semantics; these semantics 
were translated then in the functional programming lan-
guage Haskell. Being based on a rigorous approach, these 
implementations can be used for the verification of various 
properties for spiking neural P systems and their variants.

As related work, we mention [9] in which is presented 
a semantic interpreter of a language similar to L�

snp
 . How-

ever, the semantic interpreter presented in [9] is designed 
following the discipline of denotational semantics [26], in 
contrast with the current approach in which we presented 
semantic interpreters for the languages L�

snp
 , Lir

snp
 and Lsp

snp
 

derived from operational semantics. Spiking neural P sys-
tems are currently employed to solve problems in large and 
real-life applications [13]; the development of semantic 
interpreters providing simulation and verification support 
for such complex applications will be considered in our 
future research. In future work we also intend to develop 
semantic interpreters for various other types of spiking neu-
ral P systems, including those with rules on synapses [27], 
delay on synapses [29], communication on request [19] and 
learning functions [28].
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The ingredients used in this work (namely operational 
semantics and Haskell) are quite general. We are confident 
that they can be used to develop prototype implementations 
for a wide class of spiking neural P systems.
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