
Vol.:(0123456789)1 3

Journal of Membrane Computing (2023) 5:81–99
https://doi.org/10.1007/s41965-023-00122-z

REGULAR PAPER

Variants of spiking neural P systems and their operational semantics
in Haskell

Gabriel Ciobanu1 · Eneia Nicolae Todoran2

Received: 1 February 2023 / Accepted: 25 April 2023 / Published online: 10 July 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023

Abstract
This article presents the Haskell implementations of spiking neural P systems and of two variants subsequently introduced
in the literature, namely the spiking neural P systems with inhibitory rules and spiking neural P systems with structural
plasticity. These implementations are obtained using their operational semantics in which the involved configurations use
continuations. For each variant, the formal syntax is presented, together with the semantics given accurately by the Haskell
implementation.

Keywords Spiking neural P systems · Inhibitory rules · Structural plasticity · Operational semantics with continuations ·
Haskell implementations

1 Introduction

Spiking neural P systems represent a class of distributed
and parallel neural-like computing models inspired from the
way in which neurons process information and communicate
by means of spikes. Spiking neural P systems are a variant
of neural-like P systems, incorporating the idea of spiking
neurons into membrane computing [20]. Inspired by various
biological phenomena and computing models, several vari-
ants of spiking neural P systems have been proposed, includ-
ing spiking neural P systems with inhibitory rules [22, 33]
and spiking neural P systems with structural plasticity [4],
among others.

The idea of implementing (in silico) the evolution of
various classes of P systems is old in the framework of
membrane computing, some implementations (for the basic
variants of P systems) being presented for the first time
more than 20 years ago [2, 3, 5]. In this paper we present
implementations for the general spiking neural P systems

and for two variants, namely for spiking neural P systems
with inhibitory rules and for spiking neural P systems with
structural plasticity. The novel aspects of these implementa-
tions come from the fact that they are derived from an opera-
tional semantics in which the configurations use continua-
tions. More exactly, for each implementation it is presented
a formal syntax and an operational semantics designed with
continuations, semantics translated then in the functional
programming language Haskell (http:// haske ll. org/). We aim
to develop a rigorous design and verification approach appli-
cable to a wide class of spiking neural P systems.

Using a terminology specific to programming languages
semantics, we study three languages named L�

snp
 , Lir

snp
 and

L
sp
snp

 . The language L�

snp
 is used to describe the structure and

behaviour of spiking neural P systems as presented in the
original paper [15]. The languages Lir

snp
 and Lsp

snp
 are vari-

ants of L�

snp
 , incorporating constructions specific to spiking

neural P systems with inhibitory rules [22, 33] and with
structural plasticity [4], respectively. We present semantic
interpreters for these three languages, using Haskell as an
implementation tool. These interpreters provide a sound
simulation and verification support for the variants of spik-
ing neural P systems under investigation.

The rest of the paper is organized as follows. Sections 2,
3 and 4 present the formal syntax and semantic interpreters
for the languages L�

snp
 , Lir

snp
 and Lsp

snp
 , respectively. Section 5

presents some concluding remarks.

 * Eneia Nicolae Todoran
 eneia.todoran@cs.utcluj.ro

 Gabriel Ciobanu
 gabriel.ciobanu@iit.academiaromana-is.ro

1 Institute of Computer Science, Romanian Academy, Iasi,
Romania

2 Technical University, Cluj-Napoca, Romania

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-023-00122-z&domain=pdf
http://haskell.org/

82 G. Ciobanu, E. N. Todoran

1 3

This is a revised and distinct version of a paper [10] pre-
sented at the 23rd Conference on Membrane Computing
(CMC’22). The differences between this version and the
(unpublished) conference version come from several parts
which are revised and improved, and a more concise way of
presenting the whole approach.

2 Spiking neural P systems

This section introduces a language called L�

snp
 , a language

based on the ��� calculus [8] and the language presented
in [7]. L�

snp
 is used to describe the structure and behaviour

of spiking neural P systems [15]. The constructions of L�

snp

are called ’statements’ and ’programs’, and we use the term
’execution’ to describe their behaviour. Following the mono-
graph [11], in the sequel we use a terminology that is spe-
cific to programming languages.

Remark 1 For the formal aspects we use the same notation
as in [7, 8]. We write (a ∈)A to introduce a set A with typi-
cal element a ranging over A. If A is a set, we denote by |A|
the cardinal number of A, and by Pfin(A) the powerset of all
finite subsets of A. For a countable set (a ∈)A , we denote
by [A] the set of all finite multisets of elements of type A; [A]
is defined formally as in [7], and m ∈ [A] is given by enu-
merating its elements between square brackets ‘[’ and ‘]’ (in
particular, we represent the empty multiset by []). A multiset
can be seen as an unordered list, i.e., a collection in which
repetition of elements is taken into account. For example,
[a1, a1, a2] = [a1, a2, a1] = [a2, a1, a1] is the multiset where
the element a1 occurs twice, and the element a2 occurs once.
A multiset m can be presented using the multiplicities in
the form m = [a

i1
1
,… , a

in
n] , where ij is the multiplicity (the

number of occurrences) of element aj in the multiset m. For
example, [a1, a1, a2] = [a2

1
, a1

2
] . The operations used over

multisets (namely multiset sum ’ ⊎ ’, submultiset ’⊆ ’, mul-
tiset difference ’ ⧵ ’ and multiset equality ’ = ’) are formally
defined in [7, 8]. Given a regular expression E, we denote by
L(E) the language associated with E. For a multiset w ∈ [A]
and E a regular expression over the same set A, we use the
notation w ∈ L(E) to express that there is a permutation
of multiset w that is an element of the language L(E). The
reader may consult [25] for a comprehensive presentation of
formal languages theory.

2.1 Syntax of L˛

snp

The syntax of the language L�

snp
 is presented in Definition 2

by using BNF. Given a countable alphabet (a ∈)O of spikes
(or objects) and a set (N ∈)Nn of neuron names, we define

(w ∈)W = [O] as the set of all finite multisets over O , and
(� ∈)Ξ = Pfin(Nn) as the set of all finite subsets of Nn.

Definition 2 (Syntax of L�

snp
)

(a) (S t a t e m e n t s) s(∈ S) ∶∶ = e ∣ s ∥ s
where e(∈ ES) ∶∶ = a ∣ ��� � a ∣ ���� �

(b) (Ru les) rs(∈ Rs) ∶∶ = r� ∣ r, rs
where r(∈ Rule) ∶∶ = E∕w → s;� ∣ w → � with E
a regular expression over O , and � ≥ 0, � ∈ ℕ

(c) (Neuron declarations) D(∈ NDs) ∶∶ = d ∣ d,D
where d(∈ ND) ∶∶ = ������N { rs ∣ � }

(d) (Programs) �(∈ L
�

snp
) ∶∶ = D, s

A statement s ∈ S is either an elementary statement
e ∈ ES or a parallel composition of two statements s1 ∥ s2 .
An elementary statement e is either a spike a ∈ O , or a
send statement ��� � a (with � ∈ Ξ and a ∈ O), or an ini-
tialization statement ���� � (with � ∈ Ξ). A neuron declara-
tion is a construct ������N { rs ∣ � } , where N ∈ Nn is the
name of the neuron, rs ∈ Rs is a list of rules, and � ∈ Ξ
is a finite set of neuron names indicating the neurons that
are adjacent (neighbouring) to neuron with name N. An
empty set of neuron names is denoted by {} . An element
D ∈ NDs is called a declaration. Note that a declaration
D = ������N0 { rs0 ∣ �0 };⋯ ; ������Nn { rsn ∣ �n } i s
valid only if all neuron names N0,… ,Nn occurring in D
are pairwise distinct, and Ni ∉ �i for i = 0,… , n . Also, the
name of the first neuron in any valid declaration D ∈ NDs
must be N0 (name N0 is reserved). An element rs ∈ Rs is a
list of rules; a rule r ∈ Rule is either a firing rule (also called
a spiking rule) E∕w → s;� or a forgetting rule w → � . A
firing rule is a construct E∕w → s;� , where E is a regular
expression over O , w ∈ W is a multiset of spikes, s ∈ S is a
statement and � is a natural number denoting a time interval.
A forgetting rule is a construct w → � , where w ∈ W . The
multiset w ∈ W occurring in the left-hand side of a firing or
a forgetting rule must be nonempty: w ≠ [] . Also, for a list of
rules rs ∈ Rs to be valid, the condition ¬(w� ∈ L(E)) , where ¬
is the logical negation operator, must be satisfied for any pair
of firing and forgetting rules E∕w → s;� and w′

→ � . Usu-
ally, we omit the element r� (denoting an empty list) occur-
ring at the end of a non-empty list of rules rs = r1,… , rj, r�
(rs ∈ Rs), and write rs as rs = r1,… , rj . Excepting minor
differences in notation, the syntax of programs, declarations
and rules is the same as in [7].

Let (� ∈)S0 be given by � ∶∶ = a ∣ � ∥ � , where a ∈ O
is spike. Clearly, S0 ⊆ S . A statement s ∈ S0(⊆ S) denotes a
multiset of spikes that is executed in the context of a neu-
ron and can be transmitted to the neighbouring neurons.
For example, the L�

snp
 statement (a1 ∥ a1) ∥ (a3 ∥ (a2 ∥ a3))

denotes the multiset of spikes [a1, a1, a2, a3, a3] = [a2
1
, a2, a

2

3
] .

83Variants of spiking neural P systems and their operational semantics in Haskell

1 3

Let ms ∶ S0 → [O] be given by: ms(a) = [a] and
ms(𝜍1 ∥ 𝜍2) = ms(𝜍1) ⊎ ms(𝜍2) , where ⊎ is the multiset sum
operation [1, 8]. The multiset of spikes denoted by a state-
ment s ∈ S0 (∈ S) is ms(s) (we recall that W = [O]). A state-
ment may also contain send statements ��� � a and initializa-
tion statements ���� � . A statement ��� � a specifies a spike
transmission operation with target indication � [20]. A state-
ment ���� � specifies an initialization operation. The language
L
�

snp
 incorporates the initialization mechanism described in

[8]; this mechanism has no counterpart in the original model
of spiking neural P systems [15].

As in the original model of spiking neural P systems [15],
a neuron may be either open or closed. An open neuron
accepts (can receive) spikes. A closed neuron does not
accept (cannot receive) spikes. Any elementary statement
is executed in the context of a neuron. When a spike a is
executed in the context of a neuron ������N { rsN ∣ �N } , the
spike a is transmitted to all open neurons with names in the
set �N . The set �N contains the names of all neurons that are
adjacent (neighbouring) with neuron N; they represent the
default destination for the spikes that are executed in the
context of neuron N.

As in SNP calculus [8], a neuron may be active or idle.
Idle neurons cannot interact with other neurons, and cannot
store spikes; only active neurons can send, receive and store
spikes. Upon system start up, only a single neuron is active
(namely the neuron with name N0). All other neurons are
idle and must be initialized using the initialization state-
ments ���� � and send statements ��� � a . Once initialized, a
neuron becomes active, and never returns to the idle state.
Note that we use the notions of open neuron and closed neu-
ron to refer only to neurons that are active (i.e., neurons that
were initialized previously).

The statements ���� � and ��� � a are the L�

snp
 counter-

parts for the initialization spike primitive and the selec-
tive spike primitive from the SNP calculus [8]. The effect
of executing a statement ���� � in the context of a neuron
������N { rsN ∣ �N } is to initialize the neurons (which were
not initialized previously) with names in the set �N ∩ � as
open neurons containing each an empty multiset of spikes
[] (�N ∩ � is the set theoretic intersection of �N and �).
Note that the execution of a statement ���� � has no effect
(is inoperative) whenever all the neurons with names in set
�N ∩ � are active (were initialized previously). The effect
of executing a statement ��� � a in the context of a neuron
������N { rsN ∣ �N } depends on the status of the receiving
neurons: each neuron that was not initialized previously (i.e.,
each idle neuron) with name in the set �N ∩ � is initialized
as an open neuron containing the multiset of spikes [a],1 and

each (active and) open neuron with name in the set �N ∩ �
receives and adds the spike a to the multiset of spikes that
it stores. In each step, all spikes are executed and transmit-
ted concurrently (in a single time unit). Note that only the
execution of an initialization statement ���� � or a send state-
ments ��� � a has initialization effects; the execution of a
spike a ∈ O has no initialization effect. In each execution
step, all initialization operations (associated with the execu-
tion of statements ���� � or ��� � a) are performed before the
transmission of spikes. Thus, all the spikes transmitted to
open neurons (initialized in the present step or in any previ-
ous execution step) surely reach their destinations.

The execution of an L�

snp
 program � = (D, s) begins by

executing the statement s in the context of neuron N0 ; the
neuron with name N0 is automatically initialized as an open
neuron containing an empty multiset of spikes [] upon sys-
tem start up.2 All other neurons are idle in the initial state.
In the original model of spiking neural P systems [15], the
initial state is part of the system specification and there is
no initialization mechanism. By contrast, the SNP calculus
provides primitives which can be used for initialization pur-
poses. The initialization mechanism of L�

snp
 is based on the

SNP calculus [8]. The statement s can be used to initialize
the whole system using initialization statements ���� � and
send statements ��� � a . If the neuron with name N0 is con-
nected directly with all other neurons in the system, then the
initialization operation can be performed in a single com-
putation step (one time unit) [8]. In all subsequent steps, the
evaluation of an L�

snp
 statement s is caused by the execution

of a firing rule E∕w → s;� with statement s occurring on the
right-hand side. As in the original model of spiking neural
P systems [15] and as in [8–10], the execution of an L�

snp

program proceeds synchronously assuming a global clock to
measure time, and each neuron is a nondeterministic sequen-
tial machine which executes at most one rule in each step.

A firing rule is a construct E∕w → s;� corresponding to
the variant of extended rules with multiple types of spikes
[16, 21]. The execution of a firing rule r = E∕w → s;� occur-
ring in the list rsN of a neuron ������N { rsN ∣ �N } currently
open and storing a multiset of spikes wN is triggered when
the following conditions are satisfied: wN ∈ L(E) and w is
a submultiset of wN , w ⊆ wN (see Remark 1, where nota-
tions wN ∈ L(E) and w ⊆ wN are explained). As in [8–10,
15], we say that the neuron fires (executes or applies) the
rule r whenever the execution of a rule r = E∕w → s;� is
triggered, and the effects of executing rule r are the follow-
ing: the multiset of spikes w is consumed (only the multiset
wN ⧵ w remains in neuron N), and the execution of state-
ment s is triggered after �(≥ 0) time units. If � = 0 , then the

1 [a] is the multiset containing only (one occurrence of) the spike a.
2 The neuron name N0 is reserved (as name of the first neuron in any
valid D ∈ NDs).

84 G. Ciobanu, E. N. Todoran

1 3

statement s is executed in the same computation step (the
same time unit). If 𝜗 > 0 , then the statement s is temporar-
ily suspended; it will be executed after exactly � time units.
When the statement s is executed (after exactly � time units)
we say that the neuron spikes, meaning that the spikes con-
tained in statement s are executed in the context of neuron
N and transmitted to the neighbouring neurons (as explained
above). As in the original model [15], the neuron changes
its status from open to closed whenever it fires; the neuron
remains closed (i.e., it does not accept spikes) in the whole
time interval between firing and spiking. After exactly � time
units, the neuron executes statement s and it becomes open
(meaning that it accepts spikes) again.

A forgetting rule is a construct w → � , where w ∈ W
is a multiset of spikes. A forgetting rule w → � can only
be executed by a neuron containing exactly the multiset of
spikes w; as the effect of executing a forgetting rule, all the
spikes are removed from the neuron. This means that imme-
diately after executing a forgetting rule, the neuron contains
an empty multiset of spikes [].

Example 3 We consider two L�

snp
 programs ��

0
 and ��

1
 ; ��

0
 is

a toy program to illustrate how we handle nondeterministic
behaviour, and ��

1
 is based on the spiking neural P system

Π1 presented in [15, Section 5, Figure 2]. In the sequel, we
write a firing rule E∕[ai] → s;� with L(E) = {ai} in its sim-
pler form [ai] → s;� (notation [ai] is explained in Remark
1). Also, the notation si is defined as follows: s1 = s and
si+1 = s ∥ si , for s ∈ S and i ∈ ℕ , i > 0 .

(1) The program ��
0
∈ L

�

snp
 is given by ��

0
= (D�

0
, s�

0
) , where

statement s�
0
∈ S is s�

0
= ��� {N1} a ∥ ���� {N2} , and

declaration D�
0
∈ NDs is given by:

D�
0
= ������N0 { r� ∣ {N1,N2} },

𝗇𝖾𝗎𝗋𝗈𝗇N1 { [a] → 𝗌𝗇𝖽 {N2} a1 ;0,
 [a] → 𝗌𝗇𝖽 {N2} a2 ;0 ∣ {N0,N2}},

 𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a1] → a2
1
;2, [a2] → a2

2
;2 ∣ {N0} }.

 After the initialization step (in which the state-
ment s�

0
 is executed) neuron N1 contains the multiset of

spikes [a] , and neurons N0 and N2 are empty (contain-
ing each the multiset []). In this state, neuron N1 can
select either of the spiking rules [a] → 𝗌𝗇𝖽 {N2} a1 ;0 or
[a] → 𝗌𝗇𝖽 {N2} a2 ;0 , and so it transmits to neuron N2
either the spike a1 or the spike a2 (in a nondeterministic
manner). Although neuron N1 is connected by outgoing
synapses to both neurons N0 and N2 , it transmits spikes
only to neuron N2 (using selective send operations
��� {N2} a1 or ��� {N2} a2). In the next step neuron N2
fires. If neuron N2 received the spike a1 , it will use the
rule [a1] → a2

1
;2 . If neuron N2 received the spike a2 , it

will use the rule [a2] → a2
2
;2 In each case, neuron N2

remains in the closed status for the next two steps. After
exactly two steps, neuron N2 produces spikes which
are transmitted to neuron N0 and the system reaches
a halting configuration. The semantics of this simple
nondeterministic program ��

0
 can be described as a col-

lection containing two alternative execution traces.
(2) We also consider an example taken from the literature,

namely the spiking neural P system Π1 presented in [15,
Section 5, Figure 2], whose specification is given with
respect to a natural number n > 0 which is a parameter
of the model. The system Π1 consists of three neurons.
In the initial state, the three neurons contain 2n−1 spikes,
0 spikes and 1 spike, respectively. In [15], it is used the
convention that the result of a computation performed
by a spiking neural P system is the time interval (num-
ber of steps) elapsed between the first two spikes pro-
duced by the output neuron. Following this convention,
the spiking neural P system Π1 computes the number
3n + 2 (for further explanations, see [15]). Here we pre-
sent an L�

snp
 program ��

1
 which implements the spiking

neural P system Π1 . Let n ∈ ℕ, n > 0 . The L�

snp
 program

��
1
 is given by (D�

1
, s�

1
) , where the statement s�

1
 is given

by s�
1
= (��� {N1} a)

2n−1 ∥ ���� {N2} ∥ ��� {N3} a , and
declaration D�

1
 is given by

D�
1
= ������N0 { r� ∣ {N1,N2,N3} },

 𝗇𝖾𝗎𝗋𝗈𝗇N1 { a
+∕[a] → a;2 ∣ {N2} },

 𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a
n] → a;1 ∣ {N3} },

 𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a] → a;0 ∣ {N0} }.

 In the original model of spiking neural P systems [15],
it is used the notion of an environment. Although the
notion of an environment is not articulated in our paper,
we use the neuron with the (reserved) name N0 to play
the role of the environment (as in [8–10]). In this way, the
neuron with name N0 receives the spikes produced by the
output neuron. The three neurons N1 , N2 and N3 imple-
ment the corresponding neurons from the spiking neural P
system Π1 given in [15, Section 5, Figure 2], and N3 is the
output neuron. The L�

snp
 program ��

1
 implements faithfully

the spiking neural P system Π1 presented in [15].

2.2 Semantic interpreter for L˛

snp
 working with all

possible traces

We present a semantic interpreter for L�

snp
 derived from an

operational semantics [24]. The interpreter is implemented in
Haskell, and can be found in the public repository [34] as file
jmc23-snp0.hs. Essentially, the semantic interpreter is
based on the operational semantics of ��� calculus presented
in [8]; the differences are mentioned in Remark 4.

85Variants of spiking neural P systems and their operational semantics in Haskell

1 3

In general, formal semantics assign meanings taken from
some mathematical domains of interpretation to syntactic
language constructions. In this article, the syntax, the con-
figurations of the operational semantics and the semantic
domains are implemented using Haskell type declarations.

The Haskell types Obj and Nn implement the sets O and
Nn of spikes (or objects) and neuron names, respectively.
Also, the types W and Xi implement the sets W and Ξ of
finite multisets over O and of finite sets of neuron names Nn ,
respectively. We model sets and multisets as Haskell lists.

type Obj = String
data Nn = Nn String
type W = [Obj]
type Xi = [Nn]

The abstract syntax of language L�

snp
 of Definition 1 can

be implemented as:

data S = ES ES | Par S S
data ES = Aspike Obj | Snd Xi Obj | Init Xi

The types S and ES implement the classes S of statements
and ES of elementary statements, respectively.

data Rule = Rfire (RExp Obj) W S Int | Rforget W
type Rs = [Rule]

The type Rule implements the class Rule of rules, using
the type constructor RExp to represent regular expressions
over spikes (or objects) of type Obj. A straightforward
Haskell implementation of type RExp of regular expres-
sions (with associated operators) is available at [34]. The
same type RExp is employed in the implementation of each
semantic interpreter presented in this paper. The type Rs
implements the class Rs of lists of rules.

type ND = (Nn,Rs,Xi)
type NDs = [ND]
type Prg = (NDs,S)

The types ND and NDs implement the class ND of neuron
declarations and the class NDs of declarations, respectively.
The type Prg implements the class Prg of programs pre-
sented in Definition 2.

All languages studied in this paper are concurrent and
nondeterministic. Nondeterministic behaviour is imple-
mented in two different ways for each of the three lan-
guages L�

snp
 , Lir

snp
 and Lsp

snp
 presented in this article. For

each language, we provide both an implementation which
produces all possible execution traces based on the con-
cept of a linear time powerdomain [11], and an imple-
mentation where nondeterministic behaviour is simulated
using a (pseudo) random number generator to choose an
arbitrary execution trace.

type R = P
type P = [Q]
data Q = Epsilon | Q Omega Q
type Omega = [OS]
data OS = OSO Nn W | OSC Nn W

In this and all subsequent sections, we implement
nondeterministic behaviour using the type R. The imple-
mentation given in this subsection produces all possible
execution traces; here, the type R is defined as a synonym
for the type P which implements the concept of a linear
time powerdomain [11] whose elements are collections of
sequences of observables. We use the elements of types
Omega, Q and P to implement observables, sequences of
observables (modelling execution traces), and collections
of sequences of observables (modelling collections of exe-
cution traces), respectively. An observable of type Omega
is a list (implementing a set) of elements of type OS.

An element of type OS describes the current observ-
able state of a neuron (an element of type OS is actually
obtained based on information extracted from an element
of type NS which describes the complete state of a neu-
ron). An element of type OS is a construct of the form
(OSO nn w) or (OSC nn w), where nn is a neuron
name and w is a multiset of spikes currently stored by the
neuron with name nn. The constructs (OSO nn w) and
(OSC nn w) describe the current observable state of an
open neuron and of a closed neuron, respectively.

A sequence of observables of type Q is implemented as a
list of observables (Epsilon is the empty list of observa-
bles). A collection of sequences of observables of type P is
a list (implementing a set) of sequences of observables. As
in the original model [15], time is measured by considering
a global clock. As in [8], time information is implicit in our
implementation, being given by the number of steps in each
sequence of observables of type Q.

86 G. Ciobanu, E. N. Todoran

1 3

fprefr :: Omega -> R -> R
fprefr = fpref
bignedr :: [R] -> R
bignedr = bigned
re :: R
re = [Epsilon]

fpref :: Omega -> P -> P
fpref omega p = [Q omega q | q <- p]
bigned :: [P] -> P
bigned = bigunion
bigunion :: Eq a => [[a]] -> [a]
bigunion [] = []
bigunion (x : xs) = x ‘union‘ (bigunion xs)

To manipulate elements of type R, we use the opera-
tor fprefr and the n-ary operator bignedr handling
observable prefixing and nondeterministic choice opera-
tions, respectively. The value re is used for computation
termination.

In this subsection, R is a type synonym for P and the oper-
ators fprefr and bignedr behave the same as functions
fpref and bigned, respectively. The mapping fpref
prefixes an observable to each element in a collection of
sequences of observables. The mapping bigned imple-
ments nondeterministic choice based on the standard set
union operator union. To simplify the presentation, in the
Haskell code we omit the Eq instance declarations needed
in the definition of polymorphic functions such as the set
union operator union. For nondeterministic programs, the
implementation presented in this subsection produces all
possible execution traces.

All the semantic interpreters presented in this article are
designed with continuations for concurrency [6, 30]. As in
[8], we employ two different classes of continuations: syn-
chronous continuations and asynchronous continuations.3

data Conf = Cres H Cont U | Kres K
type Cont = (F,K)
data F = Fe | F H
data H = H (S,Xi) | Hpar H H
type K = [(Nn,NS)]
data NS = NSopen W | NSclosed W Int W (S,Xi)
type U = [A]
data A = At Obj Xi | AtI Obj XiInit | AtInit XiInit
data XiInit = XiInit Xi

The type Conf implements the class of configurations
that are used in the transition relation for the operational

semantics of L�

snp
 . The types F and K implement the classes

of synchronous continuations and asynchronous continua-
tions, respectively. We also use the term continuation to refer
to any pair (f,k) of type Cont, where f is a synchronous
continuation of type F and k is an asynchronous continua-
tion of type K. A configuration of type Conf is either a con-
struct (Kres k) or a construct of the form (Cres h (f,k)
u), where f::F is a synchronous continuation, k::K is an
asynchronous continuation, h and u are elements of types
H and U, respectively.

A synchronous continuation of type F is either the empty
synchronous continuation Fe or a construct (F h) with h
a value of type H. An element of type H is either a construct
(H (s,xi)) with s a statement of type S and xi a set of
neuron names of type Xi, or a construct of the form (Hpar
h1 h2) which is used to represent a parallel composition of
the values h1 and h2 of type H. A construct of the form (H
(s,xi)) is used to execute statement s in a context where
the neuron names in the set xi represent the destination for
the spikes contained in the statement s.

An asynchronous continuation of type K is a set of pairs
of the form (nn,ns), where nn is a neuron name of
type Nn and ns is a value of type NS. A value of type NS
describes the (current) state of a neuron which can be open
or closed. The state of an open neuron is described by a
construct of the form (NSopen w), where w is the multi-
set of spikes that is currently stored in the neuron. The state
of a closed neuron is described by a construct of the form
(NSclosed w vartheta wr (s,xi)), where w is
the multiset of spikes (of type W) that is currently stored in
the neuron, vartheta is a (positive) integer number (of
type Int) representing a time interval4, wr represents the
multiset of spikes that remain in the neuron when the neuron
moves to the open status, and (s,xi) is a computation that
is activated when the neuron moves to the open status.

sOmega :: NDs -> K -> Omega
sOmega nds k = [aux nn s | nn <- nns, (nn’,s) <- k, nn’==nn]

where nns = [nn | (nn,_,_) <- nds]
aux :: Nn -> NS -> OS
aux nn (NSopen w) = OSO nn w
aux nn (NSclosed w _ _ _) = OSC nn w

The mapping (sOmega nds k) extracts from the
asynchronous continuation k the information that is pro-
duced as an observable element of type Omega (which is a
synonym for the type [OS]). To obtain a readable output,
the mapping (sOmega nds k) yields the list of elements
of type OS describing the current observable state of all

3 In [8], both an operational semantics and a denotational semantics
for ��� calculus are presented; it is used the term resumption as an
operational counterpart of the term continuation; in this article we
use (only) the term continuation.

4 vartheta decreases by 1 with each clock tick, and becomes 0
when the neuron moves to the open status.

87Variants of spiking neural P systems and their operational semantics in Haskell

1 3

neurons in the order in which neurons occur in the declara-
tion nds::NDs.

An element of type A is called an action. Values of type
U are lists of elements of type A, implementing multisets
of actions. Actions of the form (At a xi), (AtI a
xiInit) and (AtInit xiInit) correspond to ele-
mentary statements of the form (Aspike a), (Snd xi1
a) and (Init xi), respectively. The elements of type Xi
are sets (implemented as lists) of neuron names. We also use
the type XiInit; its elements are constructs (XiInit
xi), where xi:Xi and the data constructor XiInit car-
ries an initialization indication. The correspondence between
elementary statements and actions is computed by the fol-
lowing mapping act:

act :: ES -> Xi -> A
act (Aspike a) xi = At a xi
act (Snd xi1 a) xi = AtI a (XiInit (xi1 ‘intersect‘ xi))
act (Init xi1) xi = AtInit (XiInit (xi1 ‘intersect‘ xi))

The mapping (act e xi) receives as arguments an
elementary statement e::ES and a set of neuron names
xi:Xi representing the set of neurons adjacent to the neu-
ron which executes the elementary statement e. An action
(At a xi) describes the execution of an elementary spike
(Aspike a) with destination given by the set of neuron
names xi. The definition of mapping act indicates that
send statements (Snd xi1 a) and initialization state-
ments (Init xi1)5 have an initialization effect upon the
neurons with names in the set (xi1 ‘intersect‘ xi),
as explained in Sect. 2.1 (the expression (xi1 ‘inter-
sect‘ xi) computes the set theoretic intersection
between the sets xi1 and xi). We recall that immediately
after initialization, a neuron is open (i.e., it accepts spikes).
When executed in the context of a particular neuron whose
neighbours are the neurons that have names in a given set
xi, a send statement (Snd xi1 a) also transmits the
spike a to all open neurons with names in the set (xi1
‘intersect‘ xi).

The behaviour of L�

snp
 programs is specified based on

a transition relation designed in the style of operational
semantics [24]. The transition relation connects each
L
�

snp
 configuration of type Conf to a set of pairs of type

[(Omega,K)], where type Omega implements the set
of observables and type K implements the class of asyn-
chronous continuations (the transition relation is designed
with continuations for concurrency [6, 30]). We recall that
a construct of the form (Kres k) is a configuration,
where k::K is an asynchronous continuation. The class of

asynchronous continuations is a subset of the class of con-
figurations. For any L�

snp
 program (nds,s) with nds a

declaration and s a statement, the definition of the transition
relation also depends on the declaration nds::NDs.

tr :: Conf -> NDs -> [(Omega,K)]
tr (Cres (H (ES e, xi)) (Fe,k) u) nds =

let u2 = [act e xi] ‘summs‘ u
k1 = initk u2 k
k2 = sndk u2 k1
obs = sOmega nds k2

in [(obs,k2)]
tr (Cres (H (ES e, xi)) (F h,k) u) nds =

tr (Cres h (Fe,k) ([(act e xi)] ‘summs‘ u)) nds
tr (Cres (H (Par s1 s2,xi)) (f,k) u) nds =

(tr (Cres (H (s1,xi)) (parf (F (H (s2,xi))) f,k) u) nds) ‘union‘
(tr (Cres (H (s2,xi)) (parf (F (H (s1,xi))) f,k) u) nds)

tr (Cres (Hpar h1 h2) (f,k) u) nds =
(tr (Cres h1 (parf (F h2) f,k) u) nds) ‘union‘
(tr (Cres h2 (parf (F h1) f,k) u) nds)

tr (Kres k) nds =
case sfun nds k of

[] -> []
scheds -> bigunion ([tr (Cres h (Fe,k’) []) nds

| (h,k’) <- scheds])

The transition relation for L�

snp
 is implemented as a function

tr of type tr :: Conf -> NDs -> [(Omega,K)].
Essentially, the function (tr t nds) yields the successor
set (see [11]) for configuration t. When using synchronous
continuations to capture the synchronized functioning that is
specific to spiking neural P systems, the synchronization
involves the components h::H, f::F and u::U for a con-
figuration of the form (Cres h (f,k) u).

The definition of the transition relation tr consists of five
equations. The first one describes the configuration (Cres
(H (ES e, xi)) (Fe,k) u), where e::ES is an
elementary statement executed in the context of a neuron
whose neighbours are the neurons with names in the set
xi:Xi, with respect to the empty synchronous continua-
tion Fe, an asynchronous continuation k::K and a multi-
set of actions u::U. The implementations of the auxiliary
mappings summs, initk and sndk are available in the
public repository [34] in the file jmc23-snp0.hs; the
function summs implements the multiset sum operation,
while the mappings initk and sndk implement initiali-
zation and spike transmission operations, respectively. In
the first equation of function tr, u2::U is the multiset
obtained by adding the action (act e xi) to the multi-
set u, k1::K is the asynchronous continuation obtained by
executing the initialization actions contained in the multiset
u2 on the asynchronous continuation k, and k2::K is the
asynchronous continuation obtained by executing the spike
transmission actions contained in the multiset u2 on the
asynchronous continuation k1. The mapping (sOmega
nds k2) extracts from the asynchronous continuation k2
the information that is produced as an observable element
obs. Thus, the first equation of function tr implements the
transition from configuration (Cres (H (ES e, xi))

5 The constructs (Snd xi1 a) and (Init xi1) implement ele-
mentary statements of the form ��� �1 a and ���� �1 given in Definition
2.

88 G. Ciobanu, E. N. Todoran

1 3

(Fe,k) u) to configuration k2 with observable obs; in
this case, function tr yields a singleton set given by the
list [(obs,k2)].

The second equation of function tr describes the execu-
tion of an elementary statement e::ES with respect to a
nonempty synchronous continuation (F h), an asynchro-
nous continuation k::K and a multiset of actions u::U.
According to this equation, configurations (Cres (H
(ES e, xi)) (F h,k) u) and (Cres h (Fe,k)
([(act e xi)] ‘summs‘ u)) behave the same.

The third equation and the fourth equation of function tr
handle the parallel execution of the statements and of the
synchronous continuations, respectively. The operator parf
models parallel composition over the class of synchronous
continuations.

parf :: F -> F -> F
parf Fe f = f
parf f Fe = f
parf (F h1) (F h2) = F (Hpar h1 h2)

The fifth equation evaluates a configuration (Kres k)
using the scheduler function sfun, where k::K is an asyn-
chronous continuation. The type of the scheduler function
sfun is NDs -> K -> [(H,K)]. The scheduler function
applies the rules contained in declaration in a nondetermin-
istic sequential manner, as indicated in [15]. Hence, the
scheduler function (sfun nds k) receives as arguments
a declaration nds::NDs and an asynchronous continuation
k::K, and yields a list of type [(H,K)]. It yields the
empty list [] when the system reaches a halting configura-
tion; otherwise, it yields a nonempty list. The implementa-
tion of the scheduler function sfun is available at [34] in
file jmc23-snp0.hs.

Remark 4 The design of the semantic interpreter presented
in this subsection is essentially based on the operational
semantics of ��� calculus [8]. However, there are certain
differences. In [8], the nondeterministic behaviour is mod-
elled using a linear time powerdomain. In this article, we
provide two alternative implementations for nondetermin-
ism: in this subsection we use the type P to implement a
linear time powerdomain, and in Sect. 2.3 the nondetermin-
istic behaviour is simulated using a (pseudo)random number
generator. Excepting the interpretation of nondeterminism,
the other differences are minor.

As in [8], we define the operational semantics function
osem for the language L�

snp
 as the fixed point of a higher-

order function. Since Haskell features lazy evaluation, one
can define the fixed point combinator as follows:

fix :: (a -> a) -> a
fix f = f (fix f)

We define the operational semantics function
osem :: Conf -> R (mapping a configuration of type
Conf to a final value of type R) as the fixed point of the
higher-order function psiD defined by:

psiD :: NDs -> (Conf -> R) -> (Conf -> R)
psiD nds phi t =

if hlt nds t then re
else bignedr [fprefr omega (phi (Kres k))

| (omega,k) <- tr t nds]
osem :: Conf -> R
osem = fix (psiD nds)

The predicate (hlt nds t) yields ���� when the
system reaches a halting configuration (in which no rule
can be applied, although the neurons are open). The imple-
mentation for hlt :: NDs -> Conf -> Bool is available
at [34].

opsem :: Prg -> R
opsem (nds,s) = osem (Cres (H (s,xi0)) (Fe,k0) [])

where k0 :: K
k0 = [(Nn "n0",NSopen [])]
xi0 = xizero nds
xizero :: NDs -> Xi
xizero ((nn0,rules0,xi0):_) = xi0

The initial asynchronous continuation k0::K occur-
ring in the definition of function opsem contains a sin-
gle active neuron named (Nn “n0”); this name (Nn
“n0”) implements the (reserved) neuron name N0.

We present the main components of the semantic inter-
preters and illustrate how nondeterministic behaviour
is handled. First, we present an implementation of the
L
�

snp
 program ��

0
 described in Example 3(1). The Haskell

implementation of L�

snp
 program ��

0
 is stored in variable

pi0a::Prg of the file jmc23-snp0.hs. Running the
L
�

snp
 program ��

0
 with (opsem pi0a), we get:

89Variants of spiking neural P systems and their operational semantics in Haskell

1 3

opsem pi0a ⇒

[[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a1"])] .
[("n0",[]),("n1",[]),<"n2",["a1"]>] .
[("n0",[]),("n1",[]),<"n2",["a1"]>] .
[("n0",["a1","a1"]),("n1",[]),("n2",[])]],

[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a2"])] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",["a2","a2"]),("n1",[]),("n2",[])]]

The yield of the semantic interpreter is a value of type R
(which in this subsection is a synonym for type P). The type P
implements a linear time powerdomain. A value of type P
is a list (implementing a set) of sequences of observables,
representing execution traces (hence the order in which execu-
tion traces are displayed is not important). In this example
there are two alternative execution traces. For each execution
trace, the observables are displayed in chronological order. We
recall that an observable of type Omega is a set (implemented
as a list) of elements of type OS. For instance, [[(“n0”,[]
),(“n1”,[“a”]),(“n2”,[])] is the first observable
occurring in each execution trace. Each observable shows the
name, the content and the open/closed status for all active
neurons. The observable state of an open neuron is displayed
between round brackets ‘(’ and ‘)’; the observable state of a
closed neuron is displayed between angle brackets ‘‘<’’ and
‘‘>’’. For example, in each of the two execution traces dis-
played above, neuron with name (Nn “n2”) is closed for
two time units (in steps 3 and 4).

We also provide an implementation of the L�

snp
 program

��
1
 presented in Example 3(2). The source code is contained

in the file jmc23-snp0.hs (available at [34]), where the
Haskell implementation for the L�

snp
 program ��

1
 is stored in

the variable pi1a::Prg (the variable pi1a::Prg imple-
ments the program ��

1
 for n = 2). Running this program with

(opsem pi1a), the reader can observe that the program
��
1
 is deterministic (it produces a single execution trace), the

output neuron N1 spikes twice (in steps 2 and 10), and the
spikes are received by the neuron with name N0 (N0 plays
the role of the environment). The number computed by the
L
�

snp
 program ��

1
 is 10 − 2 =8 and 8=3n + 2 (because n=2),

which coincides with the result predicted in [15].
opsem pi1a ⇒

[[[("n0",[]),("n1",["a","a","a"]),("n2",[]),("n3",["a"])] .
[("n0",["a"]),<"n1",["a","a","a"]>,("n2",[]),("n3",[])] .
[("n0",["a"]),<"n1",["a","a","a"]>,("n2",[]),("n3",[])] .
[("n0",["a"]),("n1",["a","a"]),("n2",["a"]),("n3",[])] .
[("n0",["a"]),<"n1",["a","a"]>,("n2",["a"]),("n3",[])] .
[("n0",["a"]),<"n1",["a","a"]>,("n2",["a"]),("n3",[])] .
[("n0",["a"]),("n1",["a"]),("n2",["a","a"]),("n3",[])] .
[("n0",["a"]),<"n1",["a"]>,<"n2",["a","a"]>,("n3",[])] .
[("n0",["a"]),<"n1",["a"]>,("n2",[]),("n3",["a"])] .
[("n0",["a","a"]),("n1",[]),("n2",["a"]),("n3",[])]]]

2.3 Interpreter for L˛

snp
 based on random choice

The semantic interpreter presented in Sect. 2.2 implements
an operational semantics for the language L�

snp
 modelling

nondeterministic behaviour based on the type P, which
implements a linear time powerdomain [11]. Since the
length of execution traces may be infinite, a direct imple-
mentation based on a powerdomain is in general intractable,
and can be used for executing only toy L�

snp
 programs. In

this subsection, we consider an alternative implementation
option in which nondeterministic behaviour is simulated
using a (pseudo) random number generator. For any given
L
�

snp
 program, the implementation presented now generates

incrementally a single execution trace (randomly selected).
Since Haskell features lazy evaluation, this new implementa-
tion can be used to execute non-terminating L�

snp
 programs.

In random trace semantics, our interpreter can be used to test
nondeterministic and non-terminating programs.

Starting from the implementation given in Sect. 2.2 and
using the features provided by the Haskell library System.
Random, we obtain the semantic interpreter presented in
this subsection with some simple modifications. We use the
type Rand of random number generators given by Sys-
tem.Random.StdGen. We also use function System.
Random.next to extract a value from the random number
generator. For nondeterministic L�

snp
 programs, the imple-

mentation presented now can produce different outputs at
each different execution. To obtain this new version of our
semantic interpreter, it is enough to redefine the type R and
the associated operators as follows:

type R = Rand -> (Q,Rand)

fprefr :: Omega -> R -> R
fprefr omega r =

\rand -> let (q,rand’) = r rand in (Q omega q,rand’)
bignedr :: [R] -> R
bignedr rs = \nr -> let (nr’,rand’) = System.Random.next nr

in (rs !! (nr’ ‘mod‘ (length rs))) rand’
re :: R
re = \rand -> (Epsilon,rand)

No other modifications are required in the Haskell code
(all other type and function definitions remain as in previous
Sect. 2.2). However, to test this new version of our semantic
interpreter, it is convenient to define the function tstRnd
given below, which receives as argument a program of type
Prg and can produce different random traces at different
executions.

tstRnd :: Prg -> IO()
tstRnd prg =

do rand0 <- System.Random.newStdGen
print (fst (opsem prg rand0))

90 G. Ciobanu, E. N. Todoran

1 3

This new version of our semantic interpreter is available
online at [34] in the file jmc23-snp0-rnd.hs, where
program ��

0
 is stored in variable pi0a : : Prg. Among the

programs presented in Example 3, only ��
0
 is nondeterminis-

tic. Since the program ��
0
 is nondeterministic, by running this

program ��
0
 in random trace semantics we can obtain different

outputs for different executions. However, since in this simple
example there are only two possible different execution traces,
two out of the three experiments presented here (the first one
and the third one) happen to produce same output:

tstRnd pi0a ⇒

[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a2"])] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",["a2","a2"]),("n1",[]),("n2",[])]]

tstRnd pi0a⇒
[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a1"])] .
[("n0",[]),("n1",[]),<"n2",["a1"]>] .
[("n0",[]),("n1",[]),<"n2",["a1"]>] .
[("n0",["a1","a1"]),("n1",[]),("n2",[])]]

tstRnd pi0a⇒
[[("n0",[]),("n1",["a"]),("n2",[])] .
[("n0",[]),("n1",[]),("n2",["a2"])] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",[]),("n1",[]),<"n2",["a2"]>] .
[("n0",["a2","a2"]),("n1",[]),("n2",[])]]

3 Spiking neural P systems with inhibitory
rules

In this section we study a language named Lir
snp

 . This lan-
guage Lir

snp
 extends the language L�

snp
 with constructions

specific to spiking neural P systems with inhibitory rules
[22, 33]. Following [33], we consider spiking and inhibi-
tory rules with time delays. Since the main ingredients
were introduced in Sect. 2, in this section and in Sect. 4
we adopt a more concise style.

The syntax of language Lir
snp

 is presented in Definition 5.
The sets (a ∈)O , (N ∈)Nn , (w ∈)W and (� ∈)Ξ and the syn-
tactic classes of statements (s ∈)S and elementary state-
ments (e ∈)ES are as in Sect. 2. On the other hand, the
class of rules (r ∈)Rule is different. However, the classes of
lists of rules (rs ∈)Rs , neuron declarations (d ∈)ND , decla-
rations (D ∈)NDs and programs (� ∈)Lir

snp
 are defined as in

Sect. 2. The language Lir
snp

 supports the same initialization

mechanism like the language L�

snp
 (based on the statements

��� � a and ���� � explained in Sect. 2.1).

Definition 5 (Syntax of Lir
snp

)

(a) (S t a t e m e n t s) s(∈ S) ∶∶ = e ∣ s ∥ s
where e(∈ ES) ∶∶ = a ∣ ��� � a ∣ ���� �

(b) (Rules) rs(∈ Rs) ∶∶ = r� ∣ r, rs with r(∈ Rule) ∶∶ =

E∕w → s;� ∣ (E, �)∕w → s;� ∣ E∕w → �
�(∈ Iota) ∶∶ = (E,N) ∣ �, �
where E and E are regular expressions over O , and
� ≥ 0, � ∈ ℕ.

(c) (Neuron declarations) D(∈ NDs) ∶∶ = d ∣ d,D
where d(∈ ND) ∶∶ = ������N { rs ∣ � }

(d) (Programs) �(∈ L
ir
snp

) ∶∶ = D, s

Spiking rules of the form E∕w → s;� remain as in
Sect. 2. E∕w → � is a particular kind of spiking rule,
where no statement and no time delay indication occur in
the right-hand side. Such a rule can be applied by a neu-
ron N in case the neuron currently contains the multiset
wN of spikes, wN ∈ L(E) (notation presented in Remark
1), and w ⊆ wN . In this case, the multiset w is consumed
immediately (without any delay), and only the multiset
wN ⧵ w remains in the neuron. In the particular case when
L(E) = {ai} and w = [ai] , we write such a rule in the sim-
pler form [ai] → � ; such a rule [ai] → � behaves like a sim-
ple forgetting rule presented in Sect. 2.

Specific to the language Lir
snp

 are the inhibitory rules.
These inhibitory rules have the form (E, �)∕w → s;� ,
where E is a regular expression over O , w ∈ W is a mul-
tiset, s ∈ S is an Lir

snp
 statement and � ∈ ℕ is a natural

number indicating a time delay interval. If E is a regu-
lar expression over O , then E is an indication that E is
used as an inhibitory regular expression [22]. The com-
ponent � ∈ Iota of an inhibitory rule (E, �)∕w → s;� is a
list of pairs (Ej,Nj) , where Ej is an (inhibitory) regular
expression and Nj is a neuron name. Considering a neuron
with name N that currently stores the multiset of spikes
wN and that contains in its list of rules an inhibitory rule
r = (E, (E1,N1),… , (Em,Nm))∕w → s;� , r ∈ Rule , t he
neurons with names N1,… ,Nm are inhibitory neurons.6
Assuming that neurons N1,… ,Nm currently contain the
multisets of spikes w1,… ,wm , the firing condition for the
inhibitory rule r in neuron N is7

(w ∈ L(E)) ∧ (¬(w1 ∈ L(E1))) ∧⋯ ∧ (¬(wm ∈ L(Em))) ∧ (w ⊆ wN).

6 A spiking neural P system with inhibitory rules can be represented
as a graph with inhibitory arcs [22]. For each j = 1,… ,m , there is an
arc between neurons Nj and N corresponding to an inhibitory synapse.
7 ¬ is the logical negation operator; the notations were presented in
Remark 1.

91Variants of spiking neural P systems and their operational semantics in Haskell

1 3

I f t h e f i r i n g c o n d i t i o n o f t h e r u l e
r = (E, (E1,N1),… , (Em,Nm))∕w → s;� is satisfied and
� = 0 , then the neuron with name N fires, the multiset w
is consumed, and the execution of statement s is triggered
(the neuron produces spikes) immediately. If 𝜗 > 0 , then
the statement s is suspended for the next � time units, and
the execution of statement s is triggered after exactly � time
units. In each case, the spikes produced by the execution
of statement s are transmitted to the neighbouring neurons.
Moreover, rules are selected and applied in nondeterministic
manner by each neuron, with all neurons working concur-
rently, as in any spiking neural P systems [15, 22].

Example 6 We consider two Lir
snp

 programs �ir
1

 and �ir
2

based on [22, 33], respectively. In each case, the result
computed by the system is considered to be the spike train
(the sequence of zeros and ones) obtained by observing the
behaviour of the output neuron, writing 1 when the output
neuron spikes, and 0 otherwise.

(1) T h e p r o g r a m �ir
1
∈ L

ir
snp

 i s �ir
1
= (Dir

1
, sir

1
) ,

w h e r e t h e s t a t e m e n t sir
1

 i s g i v e n
by sir

1
= (��� {N1} a)

2 ∥ (��� {N2} a)
2 ∥ ���� {N3} ,

and the declaration Dir
1
∈ NDs is given by

Dir
1
= ������N0 { r� ∣ {N1,N2,N3} },

 𝗇𝖾𝗎𝗋𝗈𝗇N1 { a
+∕[a] → a;0 ∣ {N3} },

 𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a] → �, (a+, (aa+,N1))∕[a] → a;0 ∣ {N3} },

 𝗇𝖾𝗎𝗋𝗈𝗇N3 { a
+∕[a] → a;0 ∣ {N0} }.

 The Lir
snp

 program �ir
1

 implements the spiking neural
P system with inhibitory rules presented in [22, Sec-
tion 2.2, Figure 2]. This illustrative example consists
of three neurons �1, �2 and �3 implemented in our pro-
gram �ir

1
 by the neurons N1,N2 and N3 , respectively.

The statement sir
1
 produces the initial configuration in

which the neuron N1 contains 2 spikes, neuron N2 con-
tains 2 spikes and neurons N3 is empty (N3 is the out-
put neuron). In our implementation, neuron N0 (which
is automatically initialized upon system start up as an
open and empty neuron) plays the role of the environ-
ment, receiving the spikes produced by the output
neuron N3 (more explanations are given in Example
3). The example presented in [22] can generate two
different spike trains, namely: 0111 and 01111. Our
L
ir
snp

 program �ir
1

 captures accurately this behaviour; the
behaviour is illustrated by the experiments presented in
Sect. 3.1.

(2) T h e p r o g r a m �ir
2
∈ L

ir
snp

 i s �ir
2
= (Dir

2
, sir

2
) ,

w h e r e t h e s t a t e m e n t sir
2

 i s g i ve n by

sir2 = (��� {N1} a)2 ∥ (��� {N2} a)2 ∥ (��� {N3} a)3 ∥ ���� {Nout}

���� {Nout} , and the declaration Dir
2
∈ NDs is given by

Dir
2
= ������N0 { r� ∣ {N1,N2,N3,Nout} },

𝗇𝖾𝗎𝗋𝗈𝗇N1 { [a
2] → a2;0, [a2] → a2;1, [a] → �

∣ {N2,N3,Nout} },

𝗇𝖾𝗎𝗋𝗈𝗇N2 { (a
2, ((a2)+,N3))∕[a

2] → a2;0,

(a2, (a3,N3))∕[a
2] → a;0 ∣ {N1,Nout} },

𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a
4] → �, a3∕[a2] → �, [a2] → � ∣ {} },

𝗇𝖾𝗎𝗋𝗈𝗇Nout { [a
4] → �, [a2] → a;0, [a] → a;0 ∣ {N3,N0} }.

 The Lir
snp

 program �ir
2

 implements the spiking neural
P system with inhibitory rules presented in [33, Sec-
tion 3.2, Figure 3]. This illustrative example consist of
four neurons �1, �2, �3 and �out implemented in our pro-
gram �ir

2
 by neurons N1,N2,N3 and Nout , respectively.

The statement sir
2

 produces the initial configuration
in which the neuron N1 contains 2 spikes, neuron N2
contains 2 spikes, neurons N3 contains 3 spikes and
neuron Nout is empty (Nout is the output neuron). Neu-
ron N0 plays the role of the environment, receiving the
spikes produced by Nout . The example presented in [33]
generates the language L(0+1110) ; at each execution,
in a nondeterministic manner, it can produce a spike
train described by the regular expression 0+1110 . Our
L
ir
snp

 program �ir
2

 captures accurately this behaviour; the
behaviour is illustrated by the experiments presented
in Sect. 3.2. It is worth noting that program �ir

2
 can be

executed using only our interpreter based on random
choice.

3.1 Interpreter for Lir
snp

 working with all possible
traces

An interpreter for the language Lir
snp

 (similar to the one pre-
sented in Sect. 2) is available online in the public reposi-
tory [34] as file jmc23-snp-ird.hs. The interpreters
presented in Sect. 2.2 and in this subsection are similar;
both work in all possible traces semantics, where type R
is a synonym with the type P. Only the definitions that are
specific to language Lir

snp
 are discussed below.

data Rule = Rfire (RExp Obj) W S Int
| Rforgetre (RExp Obj) W
| Rin (RExp Obj) [(RExp Obj,Nn)] W S Int

The type Rule implements the class Rule of rules
given in Definition 5. Specific to language Lir

snp
 are the

inhibitory rules of the form (E, �)∕w → s;� ; they are imple-
mented using the construction (Rin re rens w s
vartheta), where re is a regular expression of type
(RExp Obj), rens is a list of pairs of type [(RExp

92 G. Ciobanu, E. N. Todoran

1 3

Obj,Nn)] (which implements the syntactic class Iota
of Definition 5), w::W is a multiset of spikes, s::S is
a statement and vartheta::Int is a positive integer
number representing a time interval.

The definitions of the scheduler function sfun and
predicate hlt (which verifies whether the system reached
a halting configuration) depend on the rules that are spe-
cific to spiking neural P systems with inhibitory rules.
Hence, the implementations of the scheduler function
sfun and of the predicate hlt are also specific to the
interpreter for the language Lir

snp
 . The complete implemen-

tation of the semantic interpreter for Lir
snp

 is available at
[34] in the file jmc23-snp-ird.hs, where the Haskell
implementations of Lir

snp
 programs �ir

1
 and �ir

2
 (presented in

Example 6) are stored in the variables pi1ir and pi2ir,
respectively. Only the program �ir

1
 can be verified using

our semantic interpreter in all possible traces semantics.
Running the program �ir

1
 with (opsem pi1ir) gen-

erates the output below:
opsem pi1ir ⇒

[[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",[])] .
[("n0",[]),("n1",["a"]),("n2",["a","a"]),("n3",["a"])] .
[("n0",["a"]),("n1",[]),("n2",["a"]),("n3",["a","a"])] .
[("n0",["a","a"]),("n1",[]),("n2",[]),("n3",["a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",[])]],

[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",[])] .
[("n0",[]),("n1",["a"]),("n2",["a","a"]),("n3",["a"])] .
[("n0",["a"]),("n1",[]),("n2",["a"]),("n3",["a","a"])] .
[("n0",["a","a"]),("n1",[]),("n2",[]),("n3",["a","a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",["a"])] .
[("n0",["a","a","a","a"]),("n1",[]),("n2",[]),("n3",[])]]]

As explained in Example 6(1), the program �ir
1

 imple-
ments the example presented in [22]. In this experiment, our
interpreter produces as output a value of type P (i.e., a set of
execution traces) comprising two execution traces. We recall
that in our implementation the spikes produced by the out-
put neuron are received by the neuron with name N0 (imple-
mented by (Nn “n0”)) which models the environment. In
this example, neuron N3 is the output neuron (implemented by

(Nn “n3”)). In the first step of the both execution traces,
the output neuron N3 does not produce spikes (and N0 does
not receive spikes); after that, the output neuron spikes in each
of the following steps. Thus, the first execution produces the
spike train 0111, and the second execution produces the spike
train 01111; both confirm the result predicted in [22].

3.2 Interpreter for Lir
snp

 based on random choice

Starting from the interpreter presented in Sect. 3.1, we obtain
an interpreter working in random trace semantics using the
implementation of type R presented in Sect. 2.3. No other
modification is needed. The semantic interpreter for the lan-
guage Lir

snp
 working in random trace semantics can simulate

the behaviour of the example of spiking neural P system with
inhibitory rules presented in [33, Section 3.2, Figure 3]. At
each execution, it can produce in a nondeterministic manner
a spike train described by the regular expression 0+1110 (as
explained in Example 6(2)). Since there is an infinite number
of possible alternative execution traces, this example can be
verified only using our interpreter based on random choice.

The illustrative example of spiking neural P system with
inhibitory rules presented in [33] is implemented by the Lir

snp

program �ir
2

 (introduced in Example 6(2)). The semantic inter-
preter for the language Lir

snp
 working in random trace semantics

is available at [34] in the file jmc23-snp-ird-rnd.hs,
where the Haskell implementation of the program �ir

2
 is stored

in the variable pi2ir. The following experiments show three
executions of the program �ir

2
 using random trace semantics.

In the experiments presented below, the output neuron Nout
(implemented by (Nn “out”)) spikes in steps m,m + 1
and m + 2 , where m = 8 , m = 2 and m = 5 , respectively. The
spikes emitted by Nout are received by the neuron N0 (imple-
mented by (Nn “n0”)); in step m + 3 , no spike is emitted
by the output neuron and execution terminates. Thus, the pro-
gram �ir

2
 always produces a spike train described by the regular

expression 0+1110 , confirming the result predicted in [33].

tstRnd pi2ir⇒

[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",[])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),<"n1",["a","a"]>,("n2",[]),("n3",["a"]),("out",["a","a"])] .
[("n0",["a"]),("n1",[]),("n2",["a","a"]),("n3",["a","a","a","a"]),("out",["a","a"])] .
[("n0",["a","a"]),("n1",["a"]),("n2",[]),("n3",["a"]),("out",["a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",["a","a"]),("out",[])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",[]),("out",[])]]

93Variants of spiking neural P systems and their operational semantics in Haskell

1 3

tstRnd pi2ir⇒

[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",[])] .
[("n0",[]),<"n1",["a","a"]>,("n2",[]),("n3",["a"]),("out",["a","a"])] .
[("n0",["a"]),("n1",[]),("n2",["a","a"]),("n3",["a","a","a","a"]),("out",["a","a"])] .
[("n0",["a","a"]),("n1",["a"]),("n2",[]),("n3",["a"]),("out",["a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",["a","a"]),("out",[])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",[]),("out",[])]]

tstRnd pi2ir⇒

[[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",[])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),("n1",["a","a"]),("n2",["a","a"]),("n3",["a","a","a"]),("out",["a","a","a","a"])] .
[("n0",[]),<"n1",["a","a"]>,("n2",[]),("n3",["a"]),("out",["a","a"])] .
[("n0",["a"]),("n1",[]),("n2",["a","a"]),("n3",["a","a","a","a"]),("out",["a","a"])] .
[("n0",["a","a"]),("n1",["a"]),("n2",[]),("n3",["a"]),("out",["a"])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",["a","a"]),("out",[])] .
[("n0",["a","a","a"]),("n1",[]),("n2",[]),("n3",[]),("out",[])]]

4 Spiking neural P systems with structural
plasticity

This section introduces a language named Lsp
snp

 . The lan-
guage Lsp

snp
 is a variant of the language L�

snp
 (presented in

Sect. 2), incorporating constructions specific to spiking neu-
ral P systems with structural plasticity [4]. The syntax of
language Lsp

snp
 is presented in Definition 7. The sets (a ∈)O ,

(N ∈)Nn , (w ∈)W and (� ∈)Ξ and the classes of statements
(s ∈)S and elementary statements (e ∈)ES are as in Sect. 2.
Only the class of rules (r ∈)Rule is different. However, the
lists of rules (rs ∈)Rs , neuron declarations (d ∈)ND , decla-
rations (D ∈)NDs and programs (� ∈)Lir

snp
 are defined as in

Sect. 2.

Definition 7 (Syntax of Lsp
snp

)

(a) (S t a t e m e n t s) s(∈ S) ∶∶ = e ∣ s ∥ s
where e(∈ ES) ∶∶ = a ∣ ��� � a ∣ ���� �

(b) (Ru les) rs(∈ Rs) ∶∶ = r� ∣ r, rs
w h e r e r(∈ Rule) ∶∶ = E∕w → s ∣ �
�(∈ PR) ∶∶ = E∕w → (��)�s ∣ E∕w → (−�) w i th
E a regular expression over O , � ∈ {+,±,∓} , and
� ≥ 1,� ∈ ℕ

(c) (Neuron declarations) D(∈ NDs) ∶∶ = d ∣ d,D
where d(∈ ND) ∶∶ = ������N { rs ∣ � }

(d) (Programs) �(∈ L
sp
snp

) ∶∶ = D, s

The language Lsp
snp

 supports the same initialization mecha-
nism like the language L�

snp
 in Sect. 2. We recall that the neuron

with name N0 is automatically initialized upon system start up,
and all other neurons must be initialized explicitly by using

statements ��� � a and ���� � (Sect. 2.1). Before initialization,
a neuron is idle; immediately after initialization, each neuron
becomes active. An active neuron can be open or closed, but it
never moves to an idle state. The connections between active
neurons are given by the declarations of neurons. Let Ni be a
neuron given by a declaration ������Ni { rsi ∣ �i } ; the set �i
contains the names of all neurons that are adjacent with neuron
Ni and represent the destination for the spikes that are emitted
by neuron Ni . Once the neuron becomes active, there is an
outgoing synapse between neuron Ni and each neuron with
name Nj ∈ �i that is also active. We write Ni ↦ Nj to express
that there is a synapse connecting neuron Ni to neuron Nj . Let
pres(Ni) = {Nj ∣ Ni ↦ Nj} be the set of neuron names having
the neuron with name Ni as their presynaptic neuron [4].

As in [4], the rules in language Lsp
snp

 are without delays;
moreover, we do not use forgetting rules. A rule of the form
E∕w → s is a spiking rule. When executed by a neuron cur-
rently containing the multiset wN of spikes, a spiking rule
E∕w → s fires if w ⊆ wN (i.e., w is a submultiset of wN) and
wN ∈ L(E) . Unlike in previous sections, when such a rule is
applied, the execution of statement s is always triggered (and
the neuron produces spikes) immediately, without delay.

Rules � ∈ PR of the form � = E∕w → (��)�s and
� = E∕w → (−�) are called plasticity rules; they are specific
to the language Lsp

snp
 which is based on the model of spiking

neural P systems with structural plasticity presented in [4].
There is a single syntactic construction in [4] for plastic-
ity rules, with � ∈ {+,−,±,∓} . When a neuron with name
N executing a plasticity rule with � ∈ {+,±,∓} is attached
to a neuron with name Nj using a synapse (during synapse
creation), it also transmits one spike to neuron with name
Nj . On the other hand, if the neuron executes a plasticity rule

94 G. Ciobanu, E. N. Todoran

1 3

with �=−, then no spike is transmitted between neurons.
In this article, the spikes emitted by a neuron are specified
by means of statements s ∈ S ; we use two different syntac-
tic constructions for plasticity rules: E∕w → (��)�s (when
� ∈ {+,±,∓}) and E∕w → (−�) . A plasticity rule can be
applied by a neuron with name N which currently contains
wN spikes whenever w ⊆ wN and wN ∈ L(E) . If the plasticity
rule is applied, then the multiset of spikes w is consumed,
i.e., only the multiset wN⧵w remains in the neuron. In addi-
tion, a plasticity rule � ∈ PR can create or delete synapses.

No synapse is created or deleted when a rule of the form
� = E∕w → (��)�s with � = + and (� ⧵ pres(N)) = � is
applied,8 or when a rule � of the form � = E∕w → (−�) with
pres(N) = � is applied.

If a plasticity rule � of the form � = E∕w → (��)�s
with � = + is applied, then there are two possibilities: if
|� ⧵ pres(N)| ≤ � , then it is created a synapse to each neuron
with name Nj ∈ (� ⧵ pres(N)) ; if |𝜉 ⧵ pres(N)| > 𝜇 , then it is
selected nondeterministically a subset of (� ⧵ pres(N)) con-
taining � neurons, and a synapse is created to each selected
neuron.

If a plasticity rule � of the form � = E∕w → (−�) is
applied, then we have two alternatives: if |pres(N)| ≤ � , then
all synapses in pres(N) are erased; if |pres(N)| > 𝜇 , then it
is selected in a nondeterministic manner a subset of pres(N)
containing � neurons, and all synapses to the selected neu-
rons are removed.

If a plasticity rule � of the form � = E∕w → (��)�s
with � ∈ {±,∓} is applied, then some synapses are created
(respectively deleted) at the current time t and then they
are deleted (respectively created) at time t + 1 . Neurons are
always open (i.e., they can receive spikes), including in the
two steps t and t + 1 during the application of a plasticity
rule � = E∕w → (��)�s with � ∈ {±,∓} . Only at time t + 2
the neuron can apply another rule.

A neuron emits no spikes when it applies a plasticity
rule � of the form � = E∕w → (−�) . On the other hand,
when a neuron N applies a plasticity rule � of the form
� = E∕w → (��)�s (with � ∈ {+,±,∓}), it executes the
statement s, meaning that the spikes contained in statement
s are executed in the context of neuron N and are transmit-
ted to the neighbouring neurons (as explained in Sect. 2.1).

In the particular case when L(E) = {ai} and w = [ai] , we
write a plasticity rule E∕w → (��)�s in the simpler form
w → (��)�s . Also, in the particular case when L(E) = {ai}
and w = [ai] , we write a plasticity rule E∕w → (−�) in the
simpler form w → (−�) . As standard for spiking neural P

systems, the rules are selected and applied in nondetermin-
istic manner by each neuron, and all neurons work concur-
rently and synchronously (according to a global clock).

Example 8 We consider two Lsp
snp

 programs �sp

1
 and �sp

2
 based

on an example from [4], and a simpler Lsp
snp

 program �sp

0
 .

(1) The program �sp

1
 is given by �sp

1
= (D

sp

1
, s

sp

1
) , where the

statement ssp
1

 is

 and the declaration Dsp

1
∈ NDs is given by

D
sp

1
= ������N0 { r� ∣ {N1,N2,N3,NA1

,NA2
} },

 𝗇𝖾𝗎𝗋𝗈𝗇N1 { a
2∕[a] → (+1){N2,N3}a, [a] → (−1) ∣ {} },

 𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a] → a ∣ {NA1
,NA2

} },

 𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a] → a ∣ {N0} },

 𝗇𝖾𝗎𝗋𝗈𝗇NA1
{ [a] → a ∣ {N1} },

 𝗇𝖾𝗎𝗋𝗈𝗇NA2
{ [a] → a ∣ {N1} }.

 The Lsp
snp

 programs �sp

1
 implements the spiking neu-

ral P system with structural plasticity Πex given in [4,
Section 4, Figure 1]. This system Πex comprises five
neurons �1, �2, �3, �A1

 and �A2
 , implemented in our

program �sp

1
 by the neurons N1,N2,N3,NA1

 and NA2
 ,

respectively. The statement ssp
1

 produces the initial
configuration in which neuron N1 contains 2 spikes,
neuron N3 contains 1 spike and neurons N2 , NA1

 and NA2

are empty (each containing 0 spikes). N3 is the output
neuron. Neuron N0 (which is automatically initialized
upon system start up) plays the role of the environment,
receiving the spikes produced by the output neuron N3
(as in Example 3). Following the convention that the
result is given by the difference between the first two
time instances when the output neuron spikes [4, 15],
the system Πex presented in [4] generates in a nonde-
terministic manner the sequence 1, 4, 7, 10,… (namely,
all numbers 3m + 1 for m ≥ 0). Our Lsp

snp
 program �sp

1

captures accurately this behaviour, fact illustrated by
the experiments presented in Sect. 4.2.

(2) The program �sp

2
∈ L

sp
snp

 is almost identical to �sp

1
 ;

the single difference is that the two plasticity rules
in neuron N1 are replaced by a single plasticity rule
[a2] → (±1){N2,N3}a . More precisely, �sp

2
 is given by

(D
sp

2
, s

sp

2
) , where ssp

2
= s

sp

1
 and the declaration Dsp

2
∈ NDs

is given by

D
sp

2
= ������N0 { r� ∣ {N1,N2,N3,NA1

,NA2
} },

 𝗇𝖾𝗎𝗋𝗈𝗇N1 { [a
2] → (±1){N2,N3}a ∣ {} },

 𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a] → a ∣ {NA1
,NA2

} },

 𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a] → a ∣ {N0} },

 𝗇𝖾𝗎𝗋𝗈𝗇NA1
{ [a] → a ∣ {N1} },

s
sp

1
= (��� {N1} a)

2 ∥ (��� {N3} a) ∥ ���� {N2,NA1
,NA2

} ,

8 �⧵pres(N) is the set theoretic difference between sets � and pres(N) ;
we use the same symbol ⧵ to represent the multiset difference opera-
tor, because it is always clear from the context whether the arguments
of this operator ⧵ are sets or multisets.

95Variants of spiking neural P systems and their operational semantics in Haskell

1 3

 𝗇𝖾𝗎𝗋𝗈𝗇NA2
{ [a] → a ∣ {N1} }.

 The Lsp
snp

 program �sp

2
 implements a variant of the

spiking neural P system with structural plasticity Πex
given in [4, Section 4, Figure 1], where the two plastic-
ity rules with � = + and � = − are replaced by a single
plasticity rule with � = ± . The experiments performed
in random trace semantics show that the two programs
�
sp

1
 and �sp

2
 behave the same. When executed in ran-

dom trace semantics, the program �sp

2
 generates in a

nondeterministic manner the numbers in the sequence
1, 4, 7, 10,… (the same as �sp

1
).

(3) The two Lsp
snp

 programs �sp

1
 and �sp

2
 are designed to gen-

erate the numbers 3m + 1 for m ≥ 0 . They can only be
executed by our interpreter in random trace semantics.
Now we present a simple Lsp

snp
 program �sp

0
 that we ver-

ify using our semantic interpreter in all possible traces
semantics. The program �sp

0
 is given by (Dsp

0
, s

sp

0
) , where

the statement ssp
0

 is given by

 and the declaration Dsp

0
∈ NDs are given by

D
sp

0
= ������N0 { r� ∣ {N1,N2,N3} },

 𝗇𝖾𝗎𝗋𝗈𝗇N1 { [a] → (±1){N2,N3}a ∣ {} },

 𝗇𝖾𝗎𝗋𝗈𝗇N2 { [a] → a ∣ {N0} },

 𝗇𝖾𝗎𝗋𝗈𝗇N3 { [a] → a ∣ {N0} }

s
sp

0
= (��� {N1} a) ∥ ���� {N2,N3} ,

 By executing statement ssp
0

 , the program �sp

0
 pro-

duces the initial configuration in which neuron N1 con-
tains 1 spike and neurons N2 and N3 are empty (contain-
ing 0 spikes). After the initialization step, neuron N1
contains 1 spike, and so it can apply its plasticity rule
[a] → (±1){N2,N3}a . Since � = ± and 1< N2, N3 ,
neuron N1 creates nondeterministically one synapse
(either N1 ↦ N2 or N1 ↦ N3), and transmits one spike
to either neuron N2 or N3 . In the next step, the newly
created synapse is removed and the receiving neuron
(either N2 or N3) applies its firing rule ([a] → a), trans-
mitting one spike to neuron N0 . The behaviour of the
program �sp

0
 is illustrated by an experiment presented

in Sect. 4.1.

4.1 Interpreter for Lsp
snp working with all possible

traces

A semantic interpreter for the language Lsp
snp

 (similar to the
semantic interpreters presented in previous sections) is avail-
able online at [34] as file jmc23-snp-sp.hs. The inter-
preter contained in file jmc23-snp-sp.hs works in all
possible traces semantics, where type R is a synonym for
type P. Since the interpreter is similar to the previous ones,
we present only what is different.

data Rule = Rfire (RExp Obj) W S
| Rplastic (RExp Obj) W Alpha Mu Xi S
| RplasticMinus (RExp Obj) W Mu

type Mu = Int
data Alpha = Aplus | PlusMinus | MinusPlus

96 G. Ciobanu, E. N. Todoran

1 3

The type Rule implements the class Rule of rules given
in Definition 7, and the type Alpha implements the set
{+,±,∓}.

Specific to the language Lsp
snp

 is that a value of type OS
(given by data OS = OS Nn Xi W) describes the cur-
rent observable state of a neuron. Also, the rules of the lan-
guage Lsp

snp
 are without delays, and the connections between

neurons can be modified dynamically. A value of type OS is
a construct (OS nn xi w), where nn::Nn is a neuron
name, w::W is the multiset of spikes currently contained in
the neuron, and xi::Xi is a set of neuron names describ-
ing the current connections (neighbours) of the neuron with
name nn.

type K = [(Nn,Xi,W,NS)]
data NS = NSopen | NSplus Mu Xi S | NSminus Mu

The structure of an asynchronous continuation is spe-
cific to the language Lsp

snp
 , where the connections between

neurons can be changed dynamically. In this language,
an asynchronous continuation of type K is a list of tuples
(nn,xi,w,ns), where nn::Nn is a neuron name,
xi::Xi is a set of neuron names describing the current
connections (i.e., the current neighbours) of the neuron
with name nn, w::W is the multiset of spikes currently
contained in the neuron, and ns:NS is the current state of
the neuron. A value of type NS describes the (current) state
of a neuron. We recall that a neuron applying a plasticity
rule with � ∈ {±,∓} at time t, cannot apply another rule at
times t and t + 1 . The constructs (NSplus mu xi s) and
(NSminus mu) (where mu::Int, xi::Xi and s::S)
are used in our implementation to model the temporary state
of a neuron which executes a plasticity rule with � ∈ {±,∓}.

The definitions of the scheduler function sfun and
predicate hlt (verifying whether the system reached a
halting configuration) depend on the rules that are specific
to spiking neural P systems with plasticity rules. Thus, the
implementation of the scheduler function sfun and the
implementation of the predicate hlt are also specific to the
semantic interpreter for the language Lsp

snp
.

The complete implementation of the semantic interpreter
for the language Lsp

snp
 is available online in the public reposi-

tory [34] as file jmc23-snp-sp.hs. The Haskell imple-
mentations of programs �sp

1
 , �sp

2
 and �sp

0
 (of Example 8) are

stored in the variables pi1sp, pi2sp and pi0sp, respec-
tively. Among these programs, only the program �sp

0
 can be

verified using all possible traces semantics (the programs �sp

1

and �sp

2
 can generate an infinite number of different execu-

tion traces, and so they can be executed only in random trace
semantics). The Lsp

snp
 program �sp

0
 behaves as explained in

Example 8(3).

Running the program �sp

0
 with (opsem pi0sp), we get

the following output:

opsem pi0sp⇒

[[[("n0",_,[]),("n1",[],["a"]),("n2",_,[]),("n3",_,[])] .
[("n0",_,[]),("n1",["n3"],[]),("n2",_,[]),("n3",_,["a"])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[])]],

[[("n0",_,[]),("n1",[],["a"]),("n2",_,[]),("n3",_,[])] .
[("n0",_,[]),("n1",["n2"],[]),("n2",_,["a"]),("n3",_,[])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[])]]]

The output produced by our interpreter shows for each
neuron both the content of the neuron and its current con-
nections (synapses). For readability, in the experiments pre-
sented here is displayed only the list of connections (the
names of the neighbouring neurons) for the neurons whose
connections change at runtime. In this example, only the
connections of neuron N1 (implemented by the construct
(Nn "n1")) change during the execution of the program;
for other neurons (whose connections do not change), we
replace the list of connections by the character ’_’.

4.2 Interpreter for Lsp
snp based on random choice

We present an interpreter for the language Lsp
snp

 working in
random trace semantics, interpreter available at [34] in the
file jmc23-snp-sp-rnd.hs. This interpreter can be
obtained from the interpreter presented in Sect. 4.1 using the
implementation of the type R presented in Sect. 2.3. Using
this interpreter, we can simulate the behaviour of the spiking
neural P system with structural plasticity Πex presented in [4]
by the programs �sp

1
 and �sp

2
 presented in Example 8. At each

execution, these programs can produce in a nondeterministic
manner a number in the sequence 1, 4, 7, 10,… (i.e., a num-
ber 3m + 1 for m ≥ 0). Since there is an infinite number of
possible alternative execution traces, this example can only
be verified using our semantic interpreter in random trace
semantics. The following experiments show three execu-
tions of the program �sp

1
 in random trace semantics. The

reader can observe that the output neuron N3 (implemented
by (Nn “n3”)) always fires (and produces spikes received
by neuron N0 , implemented by (Nn “n0”)) in steps 1 and
m, with m = 2, 5, 8, 11,… . Following the convention that the
number computed by the system is given by the number of
steps between the first two consecutive spikes produced by
the output neuron, the numbers computed by the program �sp

1

are 1, 4, 7, 10,… (i.e., (m − 1) for m = 2, 5, 8, 11,…).
The experiments confirm the result predicted in [4].

97Variants of spiking neural P systems and their operational semantics in Haskell

1 3

tstRnd pi1sp⇒
[[("n0",_,[]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n2"],["a"]),("n2",_,["a"]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,["a"]),("na2",_,["a"])] .
[("n0",_,["a"]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n3"],["a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a","a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])]]

tstRnd pi1sp⇒
[[("n0",_,[]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n2"],["a"]),("n2",_,["a"]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,["a"]),("na2",_,["a"])] .
[("n0",_,["a"]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n2"],["a"]),("n2",_,["a"]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,["a"]),("na2",_,["a"])] .
[("n0",_,["a"]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n3"],["a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a","a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])]]

tstRnd pi1sp⇒
[[("n0",_,[]),("n1",[],["a","a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a"]),("n1",["n3"],["a"]),("n2",_,[]),("n3",_,["a"]),("na1",_,[]),("na2",_,[])] .
[("n0",_,["a","a"]),("n1",[],[]),("n2",_,[]),("n3",_,[]),("na1",_,[]),("na2",_,[])]]

For readability, in the experiments presented here is dis-
played only the list of connections (the names of the neigh-
bouring neurons) for the neuron N1 (implemented by (Nn
“n1”)) whose connections change at runtime. For other
neurons (whose connections do not change), we replace the
list of connections by the character ’_’.

According to the experiments performed using our inter-
preter based on random choice, it is verified that both the
programs �sp

1
 and �sp

2
 compute numbers in the sequence

1, 4, 7, 10,… . Even the programs �sp

2
 and �sp

1
 are similar, they

are not identical: the program �sp

2
 is obtained from program

�
sp

1
 by replacing the two plasticity rules using � = + and

� = − with a single plasticity rule using � = ±.

5 Conclusion

There exist several software tools related to P systems [32].
Among them, the general framework P-Lingua allows to
define a unified standard for different classes of P systems:
cell-like P systems [14], tissue-like P systems [18] and spik-
ing neural P systems [17]. Recently, P-Lingua was rede-
signed to provide improved generic support for membrane
computing [23]. The development of formal frameworks
[31] and software simulators [12] for spiking neural P sys-
tems represent recent research.

In this paper we presented implementations of the spiking
neural P systems, spiking neural P systems with inhibitory
rules and spiking neural P systems with structural plasticity.
These implementations were derived from their operational
semantics. For each implementation it was presented a for-
mal syntax and an operational semantics; these semantics
were translated then in the functional programming lan-
guage Haskell. Being based on a rigorous approach, these
implementations can be used for the verification of various
properties for spiking neural P systems and their variants.

As related work, we mention [9] in which is presented
a semantic interpreter of a language similar to L�

snp
 . How-

ever, the semantic interpreter presented in [9] is designed
following the discipline of denotational semantics [26], in
contrast with the current approach in which we presented
semantic interpreters for the languages L�

snp
 , Lir

snp
 and Lsp

snp

derived from operational semantics. Spiking neural P sys-
tems are currently employed to solve problems in large and
real-life applications [13]; the development of semantic
interpreters providing simulation and verification support
for such complex applications will be considered in our
future research. In future work we also intend to develop
semantic interpreters for various other types of spiking neu-
ral P systems, including those with rules on synapses [27],
delay on synapses [29], communication on request [19] and
learning functions [28].

98 G. Ciobanu, E. N. Todoran

1 3

The ingredients used in this work (namely operational
semantics and Haskell) are quite general. We are confident
that they can be used to develop prototype implementations
for a wide class of spiking neural P systems.

References

 1. Alexandru, A., & Ciobanu, G. (2015). Mathematics of multisets in
the Fraenkel–Mostowski framework. Bulletin Mathematique de la
Societe des Sciences Mathematiques de Roumanie, 58(106), 3–18.

 2. Arroyo, F., Luengo, C., Baranda, A. V., & de Mingo, L. (2002).
A software simulation of transition P systems in Haskell. Lecture
Notes in Computer Science, 2597, 19–32.

 3. Bonchiş, C., Ciobanu, G., Izbaşa, C., & Petcu, D. (2005). A web-
based P systems simulator and its parallelization. Lecture Notes
in Computer Science, 3699, 58–69.

 4. Cabarle, F. G., Adorna, H. N., Perez-Jimenez, M. J., & Song, T.
(2015). Spiking neural P systems with structural plasticity. Neural
Computing and Applications, 26(8), 1905–1917.

 5. Ciobanu, G., & Paraschiv, D. (2002). A P system software simula-
tor. Fundamenta Informaticae, 49, 61–66.

 6. Ciobanu, G., & Todoran, E. N. (2014). Continuation semantics for
asynchronous concurrency. Fundamenta Informaticae, 131(3–4),
373–388.

 7. Ciobanu, G., & Todoran, E. N. (2019). A semantic investigation
of spiking neural P systems. Lecture Notes in Computer Science,
11399, 108–130.

 8. Ciobanu, G., & Todoran, E. N. (2022). A process calculus for
spiking neural P systems. Information Sciences, 604, 298–319.

 9. Ciobanu, G., & Todoran, E. N. (2023). Spiking neural P systems
and their semantics in Haskell. Natural Computing, 22(1), 41–54

 10. Ciobanu, G., & Todoran, E. N. (2022). Variants of spiking neural
P systems and their operational semantics in Haskell. In 23rd Int’l
Conference on Membrane Computing, CMC

 11. de Bakker, J. W., & de Vink, E. P. (1996). Control flow semantics.
MIT Press.

 12. Dupaya, A. G., Galano, A. C., Cabarle, F. G., de la Cruz, R. T.,
Ballesteros, K. J., & Lazo, P. P. (2022). A web-based visual simu-
lator for spiking neural P systems. Journal of Membrane Comput-
ing, 4(1), 21–40.

 13. Fan, S., Paul, P., Wu, T., Rong, H., & Zhang, G. (2020). On appli-
cations of spiking neural P systems. Applied Sciences, 10, 7011.

 14. García-Quismondo, M., Gutiérrez-Escudero, R., Martínez-del-
Amor, M. A., Orejuela-Pinedo, E., & Pérez-Hurtado, I. (2009).
P-Lingua 2.0: A software framework for cell-like P systems.
International Journal of Computers Communication & Control,
4, 234–243.

 15. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P
systems. Fundamenta Informaticae, 71, 279–308.

 16. Ionescu, M., Păun, G., Pérez-Jiménez, M. J., & Rodriguez-Patón,
A. (2011). Spiking neural P systems with several types of spikes.
International Journal of Computers & Control, 6, 647–655.

 17. Macías-Ramos, L. F., Pérez-Hurtado, I., García-Quismondo, M.,
Valencia-Cabrera, L., Pérez-Jiménez, M. J., & Riscos-Núñez, A.
(2012). A P-Lingua based simulator for spiking neural P systems.
Lecture Notes in Computer Science, 7184, 257–281.

 18. Martínez-del-Amor, M. A., Pérez-Hurtado, I., Pérez-Jiménez, M.
J., & Riscos-Núñez, A. (2010). A P-Lingua based simulator for

tissue P systems. Journal of Logic and Algebraic Programming,
79, 374–382.

 19. Pan, L., Păun, Gh., Zhang, G., & Neri, F. (2017). Spiking neural
P systems with communication on request. International Journal
of Neural Systems, 27(8), 1750042.

 20. Păun, Gh. (2002). Membrane computing. An introduction.
Springer.

 21. Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). Handbook
of membrane computing. Oxford University Press.

 22. Peng, H., Li, B., Wang, J., Song, X., Wang, T., Valencia-Cabrera,
L., Perez-Hurtado, I., Riscos-Nunez, A., & Perez-Jimenez, M. J.
(2020). Spiking neural P systems with inhibitory rules. Knowl-
edge-Based Systems, 188, 105064.

 23. Pérez-Hurtado, I., Orellana-Martín, D., Martínez-del-Amor, M.
A., Valencia-Cabrera, L., & Riscos-Núñez, A. (2022). A new
P-Lingua toolkit for agile development in membrane computing.
Information Sciences, 587, 1–22.

 24. Plotkin, G. (2004). A structural approach to operational semantics.
Journal of Logic and Algebraic Programming, 60–61, 17–139.

 25. Rozenberg, G., & Salomaa, A. (Eds.). (1998). Handbook of formal
languages (Vol. 3). Springer.

 26. Schmidt, D. A. (1986). Denotational semantics: A methodology
for language development. Allyn & Bacon.

 27. Song, T., Pan, L., & Păun, Gh. (2014). Spiking neural P systems
with rules on synapses. Theoretical Computer Science, 529,
82–95.

 28. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. L. D., & Rod-
ríguez-Patón, A. (2019). Spiking neural P systems with learning
functions. IEEE Transactions on Nanobioscience, 18(2), 176–190.

 29. Song, X., Valencia-Cabrera, L., Peng, H., Wang, J., & Pérez-Jimé-
nez, M. J. (2021). Spiking neural P systems with delay on syn-
apses. International Journal of Neural Systems, 31(1), 2050042.

 30. Todoran, E. N. (2000). Metric semantics for synchronous and
asynchronous communication: A continuation-based approach.
Electronic Notes in Theoretical Computer Science, 28, 101–127.

 31. Verlan, S., Freund, R., Alhazov, A., Ivanov, S., & Pan, L. (2020).
A formal framework for spiking neural P systems. Journal of
Membrane Computing, 2(4), 355–368.

 32. Zhang, G., Pérez-Jiménez, M. J., Riscos-Núñez, A., Verlan, S.,
Konur, S., Hinze, T., & Gheorghe, M. (2021). Membrane comput-
ing models: Implementations. Springer.

 33. Zhou, N., Peng, H., Wang, J., Yang, Q., & Luo, X. (2022). Com-
putational completeness of spiking neural P systems with inhibi-
tory rules for generating string languages. Theoretical Computer
Science, 920, 64–75.

 34. (2023). Haskell implementation of the operational semantics pre-
sented in this paper http:// ftp. utcluj. ro/ pub/ users/ gc/ eneia/ jmc20
23

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://ftp.utcluj.ro/pub/users/gc/eneia/jmc2023
http://ftp.utcluj.ro/pub/users/gc/eneia/jmc2023

99Variants of spiking neural P systems and their operational semantics in Haskell

1 3

Gabriel Ciobanu is a member of
Academia Europaea (the Acad-
emy of Europe), affiliated with
the Romanian Academy of Sci-
ences and Alexandru Ioan Cuza
University of Iasi. His main
research fields are formal meth-
ods (semantics, type systems,
logics), process calculi, and nat-
ural computing (membrane sys-
tems). For his scientific contribu-
tions, he received awards from
the Romanian Academy (2000,
2004, 2013 and 2022), Ad Astra
Association (2018) and Interna-
tional Membrane Computer

Society (2019). He was for 16 years the Editor-in-Chief of the journal
Scientific Annals of Computer Science (now honorary EiC).

Eneia Nicolae Todoran studied
computer science and received
the Ph.D. degree from the Tech-
nical University of Cluj-Napoca
(Romania) for his thesis entitled
“Semantic techniques in concur-
rent systems development” in
2000. Currently, he is Professor
of Computer Science at the
Technical University of Cluj-
Napoca. His research interests
include programming languages
design and semantics, concur-
rency theory, continuations,
functional programming, and
membrane computing.

	Variants of spiking neural P systems and their operational semantics in Haskell
	Abstract
	1 Introduction
	2 Spiking neural P systems
	2.1 Syntax of
	2.2 Semantic interpreter for working with all possible traces
	2.3 Interpreter for based on random choice

	3 Spiking neural P systems with inhibitory rules
	3.1 Interpreter for working with all possible traces
	3.2 Interpreter for based on random choice

	4 Spiking neural P systems with structural plasticity
	4.1 Interpreter for working with all possible traces
	4.2 Interpreter for based on random choice

	5 Conclusion
	References

