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Abstract
Spiking neural P systems with polarizations (PSN P systems) use charges (+,−, 0) instead of regular expression to obtain 
excellent computation power and broad application prospect. In this work, astrocyte control mechanism is introduced into 
PSN P systems, spiking neural P systems with polarizations and astrocytes (PASN P systems) are constructed. Astrocytes are 
both excitatory and inhibitory influences on synapses, which can effectively reduce the consumption of computing resources 
(the use of fewer neurons). Because of the effects of astrocytes, PASN P systems are proved to have the computation power 
equivalent to Turing machines in generation and accepting modes. Furthermore, a small universal PASN P system with 82 
neurons is given for computing any Turing computable function, that is, fewer neurons are used to construct the relatively 
simple and universal PASN P systems.
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1 Introduction

Membrane computing, as a current branch of natural com-
puting, aims to abstract computational models (called mem-
brane systems or P systems) from the structure and function 
of living cells and from the cooperation of cell groups such 
as tissues and organs [1, 2]. Membrane computing is charac-
terized by the use of distributed parallel computing to make 
the computation power greater effective and more power [3, 
4]. Membrane computing has developed rapidly since it was 
proposed and has become an emerging research field [5–7]. 
There are three main membrane systems that have been 
extensively studied: cell-like membrane systems, tissue-like 

membrane systems and neural-like membrane systems. More 
detailed information of membrane computing, readers can 
refer to http:// ppage. psyst ems. eu, the latest research results 
and developments can be found.

Spiking neural P systems (SN P systems) are a type of 
neural-like membrane systems in the field of membrane 
computing, which are abstracted by the way that neurons 
send spikes to other neurons through synapses to realize 
information communication [8]. SN P systems can be rep-
resented as directed graph, where the vertices of the directed 
graph represent neurons, and the arcs between the vertices 
of the directed graph represent synapses along which neu-
rons can send spikes to their associated neurons [9]. Each 
neuron contains a certain number of spikes, firing rules and 
forgetting rules. By using the firing rule, the neuron sends 
information in the form of firing spikes to some other neu-
rons, if the neuron makes use of the forgetting rule, a certain 
number of spikes will be cleared from the neuron. Typically, 
there will be an output neuron in the system whose spikes 
can be sent into the environment [10].

SN P systems have been shown to be computationally 
universal as a kind of digital generating and accepting 
devices [11], as language generators [12, 13] and function 
calculators [14, 15]. Inspired by different biological prop-
erties, a quantity of variants of SN P systems have been 
proposed, such as SN P systems with anti-spikes [16], asyn-
chronous SN P systems [17, 18], local synchronized SN P 
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systems [19], SN P systems with rules on synapses [20], 
homogenous SN P systems [21, 22], axonal SN P systems 
[23], SN P systems with scheduled synapses [24], etc. In 
addition, SN P systems can also solve computationally dif-
ficult problems in efficient time (polynomial time or linear 
time), such as ������ ��� problems [25], ��� problems [26, 
27], ������-complete problem [28, 29], and ���������� 
�������� problem [30]. SN P systems and the variants also 
have a number of practical applications, such as combinato-
rial optimization [31], fault diagnosis of power system [32, 
33], knowledge expression and fuzzy reasoning [34, 35].

The software implementation of membrane computing 
is mainly based on the simulation platform developed by 
C + + , Java and other programming languages to simulate 
membrane systems, such as Membrane simulator, SNUPS, 
P − Lingua and MeCoSim [36–38], etc.

Small universal computing devices can use fewer comput-
ing resources (time or space) to construct universal computa-
tional models, which have always been a hot research direc-
tion in the discipline of computer science. A recurrent neural 
network of 886 neurons can simulate any Turing machine 
has been demonstrated in [39]. As computing devices, vari-
ous variants of SN P systems have been proposed, such as 
universal SN P systems with 84 neurons [2], SN P systems 
with anti-spikes with 75 neurons [40], SN P systems with 
homogenous neurons and synapses having 70 neurons [41], 
SN P systems with astrocytes with 57 neurons and 19 astro-
cytes [42], all of the variants have been proved to be Turing 
universal. Most of variants of SN P systems aim to reduce 
computing resources by reducing the number of neurons, 
that is, to reduce the use of space resources in computing 
resources.

In [43], spiking neural P systems with polarizations (PSN 
P systems) were constructed by introducing membrane 
potential, where the rules can be triggered only when the 
polarization condition is satisfied, such systems are more 
consistent with biological phenomena, moreover, a small 
universal PSN P system with 164 neurons was given. How-
ever, the number of neurons required by PSN P systems are 
much larger than the traditional SN P systems and some 
variants of SN P systems, the construction of this kind of 
universal computing model is also complex. In [44], spiking 
neural P systems with polarizations and rules on synapses 
(PSNRS P systems) were proposed, where spiking rules are 
placed on synapses, a small universal PSNRS P system with 
151 neurons were shown to be able to compute any Turing 
computable functions. Obviously, compared with PSN P sys-
tems, PSNRS P systems can simplify the system structure 
and reduce the computing resources.

It is known (see [45]) that astrocytes can release d-serine, 
which plays an important role in the production of long-term 
enhancement of neurons, and release adenosine triphos-
phate, which produces heterosynaptic inhibition of neuronal 

activity. In short, astrocytes are both excitatory and inhibi-
tory influences on synapses. Thus, astrocytes can be used 
to reduce the use of complex parameters to a large extent.

In this work, astrocytes as a control mechanism are intro-
duced into PSN P systems, and make use of the biologi-
cal characteristics of astrocytes to improve PSN P systems. 
Meanwhile, in order to solve an open problem raised in [43], 
we consider using astrocytes to optimize the traditional PSN 
P systems and reduce computing resources, thus a novel 
variant of PSN P systems called PSN P system with astro-
cytes (PASN P systems) is proposed, and the computation 
power of PASN P systems as generating devices and accept-
ing devices is investigated, respectively. In addition, a small 
universal PASN P system is constructed, the results show 
that PASN P systems are equivalent to Turing machines. The 
main contributions of this work are summarized as follows.

• We introduce the control mechanism of astrocytes into 
PSN P systems, and propose a novel variant called PASN 
P systems, where astrocytes connecting different neurons 
are used to optimize computing resources, that is, the 
flexibility of PASN P systems is greatly improved, and 
the structure of such systems is relatively simplified.

• In PASN P systems, astrocytes can control not only the 
spikes at the synapses of neighboring neurons, but also 
the charge corresponding to the firing rules. Therefore, 
utilizing the properties of astrocytes, the computation 
power of PASN P systems is investigated, we prove that 
PASN P systems, as number generating devices and num-
ber accepting devices, are equivalent to Turing machines.

• Simulating the small universal register machine, we give 
a small universal PASN P system with 82 neurons. As a 
computing function, PASN P systems reduce computing 
resources by 82 neurons compared with PSN P systems.

2  PASN P systems

Before introducing the formal definition of PASN P systems, 
the reader is assumed to have some knowledge of formal 
languages and automata. For details, please refer to [46]. The 
conception of polarizations and astrocytes will also be used, 
the details of which can be found in [43, 47].

A PASN P system of degree m ≥ 1 is a tuple

where: 

(1) O = {a} is an alphabet and a indicates the spike;
(2) �i ( 1 ⩽ i ⩽ m ) indicates the neurons, the num-

ber of neurons is m, and the form of each neuron is 
�i = (�i, ni,Ri) , where: 

Π = (O, �1, �2,… , �m, syn, ast1,… , astl, in, out),
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(1) �i ∈ {+, 0,−} indicates the initial charge of the 
neuron �i;

(2) ni indicates that there are n spikes in the neuron �i 
at the initial moment;

(3) Ri is a set of rules for neurons �i , which has the 
following two forms: 

a. �∕ac → a;� , where �, � ∈ {−, 0,+} , c ≥ 1;
b. �∕as → �;� , where �, � ∈ {−, 0,+} , s ≥ 1;

(3) syn ∈ {1, 2,… ,m} × {1, 2,… ,m} a r e  synapse s 
between neurons, with (i, j) ∈ syn , and i, j are the label 
of neurons (1 ⩽ i, j ⩽ m, i ≠ j);

(4) asti ( 1 ⩽ i ⩽ l ) are the label of astrocytes in the form 
asti ∈ (synasti , ti) , synasti ⊆ syn is the set of synapses 
controlled by astrocytes, and ti is the threshold in astro-
cytes;

(5) in, out ∈ {1, 2,… ,m} represent the labels of the input 
neuron and the output neuron in the system, respec-
tively.

PSN P systems differ from the traditional SN P systems 
in the use of rules, the regular expression is replaced 
by the charge state (+,−, 0) . Firing rules have the form 
�∕ac ⟶ a;� , when the neuron �i is charged with � and the 
quantity of spikes in the neuron is not less than c spikes, 
the rule satisfies the running conditions, c spikes are con-
sumed, and a spike and � charge are sent to its adjacent 
neurons. When the rules in the output neuron �out satisfy 
the excitation condition, the calculation result is sent to 
the environment, and the charge sent to the environment 
does not affect the output result. When the input neuron 
�in receives spikes and a charge from the environment, the 
initial execution state of the system is related to the charge 
obtained from the environment. If a neuron �i in the sys-
tem executes the forgetting rule �∕as ⟶ �;� , the neuron 
�i consumes all the spikes and does not send spikes, and 
only sends one of charges over � to its neighbouring neu-
rons. The use of rules within a neuron is determined by 
the polarity of the charge carried by the neuron itself, and 
the change of the charge is as follows.

• Multiple positive charges (+) (resp. (0), (−)) are equiva-
lent to a positive charge (resp. a neutral charge, a nega-
tive charge), and this charge changes in a way that has 
the highest priority.

• If a neuron with a positive charge (+) (resp. a negative 
charge (−) ) receives a negative charge (−) (resp. a posi-
tive charge (+) ), the polarity of the neuron becomes a 
neutral charge (0).

• If a neuron with a positive charge (+) or a negative 
charge (−) receives a neutral charge (0), the polarity of 
the neuron remains the same.

PASN P systems can effectively reduce the use of forgetting 
rules and delay rules by astrocytes control the spikes on the 
protrusions of adjacent neurons, which reduces the use of com-
plex parameters to a large extent. At one point, astrocytes in 
PASN P systems can control not only the spikes at the syn-
apses of neighboring neurons, but also the charge correspond-
ing to the firing rules. Synapse collection synasti can influence 
the synapse (i, j) between ordinary neurons, a threshold value 
ti can determine the excitatory influence or inhibitory influence 
of the astrocytes synapse synasti to the synapse (i, j) between 
neurons. When an astrocyte asti senses k spikes of communica-
tion at the synapses of adjacent neurons, there are three cases 
as follow: if k > ti and asti has an inhibitory influence on adja-
cent synapses, then these k spikes and the charge correspond-
ing to the trigger rule will be removed from the system; if 
k < ti , asti has an excitatory influence to the adjacent synapses, 
then the k spikes and the charge can be sent to the target neu-
ron; if k = ti , the excitatory influence and inhibitory influence 
of astrocyte asti on adjacent synapses are nondeterministic, 
and one of the two influences is chosen non-deterministically.

In addition, a synapse (i, j) can be effected by two or more 
astrocytes, if the astrocytes have excitatory influence to the 
neuron synapse, the spikes can reach the target neuron along 
the neuron synapse. If one of them has an inhibitory influence 
on the neuron synapse, the corresponding spikes are termi-
nated and removed from the system.

PASN P systems work in the generating mode, the time 
interval between two non-zero values are sent to the environ-
ment by the output neuron �out , which is encoded as the cal-
culation result, denoted by N2(Π) . If PASN P systems work in 
the accepting mode, the output neuron �out is removed, and the 
input neuron �in is used to read the external spike sequence. It 
is necessary to recognize that natural numbers are encoded as 
the time interval between two neighbouring spikes, such as a 
spike sequence 10n−11 . When the spike sequence is sent to the 
input neuron, the system starts to calculate until it stops. If the 
calculation result of the system reaches a final configuration, 
it is said that the system has recognized the value n. The set of 
results recognized by Π is denoted by Nacc(Π) [48].

The family of all sets of numbers generated or accepted 
by PASN P systems is denoted by N�PASNP , where 
� ∈ {2, acc} indicates that the system is in the generating 
mode ( � = 2 ) or the accepting mode ( � = acc ). Further-
more, the system Π is used as a computational function and 
the computing resource consumption is calculated [48].

3  The computation power of PASN P 
systems

It is well known that a register machine with three registers 
can precisely generate a recursively enumerable set of natu-
ral numbers that can characterize NRE [48]. In this section, 
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the computation power of SN P systems is investigated, we 
show that PASN P systems can generate all recursively enu-
merable sets of numbers by simulating the register machine.

A register machine is M = (m,H, l0, lh, I) , where m indi-
cates the number of registers; H indicates the set of all 
the instruction labels; l0 indicates the start instruction; lh 
indicates the halt instruction, and I indicates the set of all 
instructions. The specific instruction forms are as follows. 
ADD instruction li ∶ (ADD(r), lj, lk) indicates that a register 
r is incremented by 1, and non-deterministically jumps to 
the instruction lj or lk . SUB instruction li ∶ (SUB(r), lj, lk) 
indicates that if the register r contains a number greater 
than 0, the number stored in the register r minus 1 and the 
instruction lj is executed in the next step; if the register r is 
empty, the instruction lk is executed in the next step. Here 
register 1 is an output register, which stores the computing 
results and sends the result to the environment when the 
calculation halts.

Theorem 1 N2PASNP = NRE

Proof We prove the computation power of PASN P systems 
Π by simulating the register machine M, and only need to 
confirm the inclusion relation N𝛼PASNP ⊇ NRE . The proof 
process of the system in the generation mode includes an 
ADD module, a SUB module, and a FIN module. The cal-
culation result of the system are stored in the register 1. 
During the system format conversion process, there is no 
corresponding SUB instruction for the register 1 to perform 

the subtraction operation. When system landscape transfer 
is stopped, only register 1 is non-empty. In system Π , each 
register r has a one-to-one correspondence with a neuron 
�r in an ADD or SUB module, and an instruction li in H is 
associated with a neuron �li (subscripts denote neurons in 
the proof process). It must be clear that when the register r 
stores a number whose size is n, and then the quantitative 
relationship contained in the corresponding spike reserve in 
neuron �r corresponds to 2n. It is worth noting that in each 
computing module, two auxiliary neurons �r(1) and �r(2) are 
used to represent the register r.

ADD module: simulating an ADD instruction 
li ∶ (���(r), lj, lk).

ADD module as shown in Fig. 1. At step t, suppose neu-
ron �li receives a spike and then rule 0∕a ⟶ a;+ reaches 
the firing condition, a spike and a positive charge are sent by 
neuron �li to neuron �

l
(1)

i

, �
l
(2)

i

 , respectively. It is important to 
note that the threshold t of the astrocyte astli is equal to the 
k spikes on synapse (li, l

(1)

i
) , satisfying the condition k = t . 

Since astli has an excitatory or inhibitory influence on syn-
apse (li, l

(1)

i
) , which needs to be considered in two cases.

Case I: At step t + 1 , when astli has an excitatory influence 
on the synapse, then a spike and a positive charge are sent 
to neurons �

l
(1)

i

 and �
l
(2)

i

 along (li, l
(1)

i
) and (li, l

(2)

i
) . At step 

t + 2 , astli senses a total of two spikes transmitted on syn-

apses (l(1)
i
, l
(2)

i
) , (l(2)

i
, lk) , and the number of spikes is greater 

than the threshold in astli , so the two spikes and charge can-
not reach the target neuron and are deleted from the system. 

Fig. 1  ADD module: simulating 
li ∶ (���(r), lj, lk)
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At the same time, a spike and a neutral charge are sent to 
neurons �r(1) and �r(2) along (li, r(1)) and (li, r(2)) , which means 
that the register r is incremented by 1. And rule +∕a ⟶ a;0 
in neuron �

l
(1)

i

 reaches the firing condition, and after applica-
tion, a spike and a neutral charge are sent to neuron �lj along 
the synapse (l(1)

i
, lj) . In the next step, the neuron �lj is fired 

and the system starts to simulate the lj instruction.
Case II: At step t + 1 , a spike and a positive charge are 

removed when astli has an inhibitory influence on synapse 
(li, l

(1)

i
) . At step t + 2 , a spike and a natural charge is applied 

by neuron �
l
(2)

i

 with rule +∕a ⟶ a;0 , both of them are sent 
to neurons �lk , �r(1) and �r(2) through synapses (l(2)

i
, lk) , 

(l
(2)

i
, r(1)) and (l(2)

i
, r(2)) . In the next step, the neuron �lk is fired 

and the system starts to simulate the lk instruction.
So far, the simulation of the ADD module is completed, 

the register r can be incremented by 1, and the lk or lj instruc-
tion can be executed non-deterministically. The operation 
processes of ADD module are shown in Table 1.

SUB module:  simulating a SUB instruction 
li ∶ (���(r), lj, lk).

SUB module as shown in Fig. 2, it is assumed that at step 
t, the neuron �li is activated after receiving a spike. Since it 
needs to check the empty or non-empty state of the register r, 
the astrocytes astli check the number of spikes at the adjacent 
synapses is different, two situations need to be considered.

Case I: When the register r is empty, no spikes are deliv-
ered on the synapses (r(1), r(2)) and (r(2), r(1)) . At step t + 1 , 
rule 0∕a ⟶ a;+ in neuron �li reaches the firing condition, 
a spike and positive charge are sent to neurons �

l
(1)

i

 and �
l
(2)

i

 . 
At step t + 2 , astli senses two spikes transmission on adjacent 
synapses (l(1)

i
, lk) and (l(2)

i
, l
(3)

i
) , the number of spikes is less 

than the threshold in astli , and the spikes can reach target 
neuron. Rule +∕a ⟶ a;0 in neuron �

l
(1)

i

 reaches the firing 
condition, a spike and a neutral charge are sent to neurons 
�
l
(3)

i

 and �lk . Rule 0∕a ⟶ �;− in neuron �
l
(2)

i

 reaches the firing 
condition, a negative charge is sent to neuron �

l
(3)

i

 . When 

Table 1  The numbers of spikes 
and polarity of neurons in add 
module (see Fig. 1) during the 
simulation with neuron �lj and 
�lk finally activated

Neuron

 Step �astli
�li

�r(1) �r(2) �
l
(1)

i

�
l
(2)

i

�lj �lk

t − (a, 0) (0, 0) (0, 0) (0,+) (0,+) (0, 0) (0, 0)
t + 1 Excitatory (0, 0) (a, 0) (a, 0) (a,+) (a,+) (0, 0) (0, 0)
t + 2 Inhibitory (0, 0) (a, 0) (a, 0) (0,+) (0,+) (a, 0) (0, 0)
t − (a, 0) (0, 0) (0, 0) (0,+) (0,+) (0, 0) (0, 0)
t + 1 Inhibitory (0, 0) (a, 0) (a, 0) (0,+) (a,+) (0, 0) (0, 0)
t + 2 Excitatory (0, 0) (a, 0) (a, 0) (0,+) (0,+) (0, 0) (a, 0)

Fig. 2  SUB module: simulating 
li ∶ (���(r), lj, lk)
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neuron �
l
(3)

i

 received a negative charge and a neutral charge, 
it takes negative charge and stored a spike. At step t + 3 , rule 
−∕a ⟶ �;0 in neuron �

l
(3)

i

 reaches the firing condition, a 
neutral charge is sent to neuron �lj , but neuron �lj does not 
satisfy the excitation condition in the next step. Simultane-
ously, the neuron �lk is fired and the system starts to simulate 
the lk instruction.

Case II: When the state of the register r in the SUB mod-
ule is non-empty, there are two spikes passing on the syn-
apses (r(1), r(2)) and (r(2), r(1)) . Unlike CaseI, at step t + 2 , astli 
senses the adjacent synapses (r(1), r(2)) , (r(2), r(1)) , (l(1)

i
, lk) and 

(l
(2)

i
, l
(3)

i
) each has spike delivery. The number of spikes is 

greater than the threshold in astli , causing astli to have an 
inhibitory influence on adjacent synapses, and all spikes 
involved will be forgotten. Only neuron �

l
(3)

i

 receives a spike 
and a neutral charge from neuron �

l
(1)

i

 . At step t + 3 , rule 
0∕a ⟶ a;0 in neuron �

l
(3)

i

 reaches the firing condition, a 
spike and a neutral charge are sent to neuron lj . At this point, 
the neuron �lj is fired and the system starts to simulate the lj 
instruction in the next step.

So far, the SUB module can be accurately simulated, if 
the register r is in a non-empty state, subtract 1 from the 
register r and jump to the lj instruction; if the register r is 
empty, it directly jumps to the lk instruction. The operation 
processes of SUB module are shown in Table 2.

It is worth noting that there is no mutual influence 
between ADD module and SUB module, and only the cor-
responding neuron �lj or �lk needs to be excited. However, 
there is mutual influence between the SUB modules. Specifi-
cally, if there are multiple SUB instructions li acting on reg-
ister r, then all astrocytes astli can control synapses (r(1), r(2)) 
and (r(2), r(1)) . When simulating the SUB instruction 
li ∶ (SUB(r), lj, lk) ), astrocyte astli has a stimulating effect on 
the synapses (r(1), r(2)) and (r(2), r(1)) , and the spike can reach 
the target neuron smoothly. When simulating the ADD 
instruction li ∶ (ADD(r), lj, lk) ), the interaction between the 

SUB modules does not cause the wrong calculation process 
of the system Π.

FIN module(outputting the result of the computation)
FIN module as shown in Fig. 3, which is used to output 

the result of the computation. Assuming that at step t, neuron 
�lh

 receives a spike. At step t + 1 , neuron �lh is activated, 
which uses the rule 0∕a ⟶ a;+ to reach the firing condi-
tion, a spike and a positive charge are sent to neurons �

l
(1)

h

 , 
�
l
(2)

h

 , �
l
(3)

h

 , respectively. When neurons �
l
(2)

h

 and �
l
(3)

h

 received a 
positive charge, them take neutral charge and stored a spike. 
At step t + 2 , ast(1)

lh
 checks that the number of spikes deliv-

ered on synapses (r(1), r(2)), (r(2), r(1)) , (l(2)
h
, out) and (l(2)

h
, l
(4)

h
) 

are greater than the threshold in ast(1)
lh

 , then these spikes are 
removed from the system, that is to say, the register r per-
forms a subtraction operation by 1. Simultaneously, rule 
+∕a ⟶ a;0 in neuron �

l
(1)

h

 reaches the firing condition, a 
spike and a neutral charge are sent to neuron out. At step 
t + 3 , a spike is sent to the external environment by the neu-
ron �out.

From step t + 2 , neurons �
l
(2)

h

 , �
l
(3)

h

 will transmit spikes 
cyclically, two neurons keep one spike all the time, the 
median value of register r is decremented by 1 at each step 
by ast(1)

lh
 . Until step t + n + 2 , the number of spikes in the 

corresponding neuron of the register is exhausted, and the 
number of spikes on the adjacent synapses sensed by ast(1)

lh
 

is less than its threshold. Rule 0∕a ⟶ a;0 in neuron �
l
(2)

h

 
reaches the firing condition that sends a spike and a neutral 
charge to neurons �out and �

l
(4)

h

 , respectively. At step t + n + 3 , 
rule 0∕a ⟶ �;− in neuron �

l
(4)

h

 reaches the firing condition 
that sends a negative charge to neurons �

l
(2)

h

 and �
l
(3)

h

 to help 
them return to the initial polarizations, and neurons �

l
(2)

h

 and 
�
l
(3)

h

 stop exchanging spikes. At the same time, the second 
spike is sent to the outside of the module by neuron �out , and 
the system’s format conversion is stopped. Time interval 
calculation of the first two spikes: (t + n + 3) − (t + 3) = n , 

Table 2  The numbers of spikes 
and polarity of neurons in SUB 
module (see Fig. 2) when the 
simulation with register �r is 
empty or not empty

Step of register r is empty Step of register r is non-empty

 Neuron t t + 1 t + 2 t + 3 t t + 1 t + 2 t + 3

�r(1) (0, 0) (0, 0) (0, 0) (0, 0) (an, 0) (an, 0) (an−1, 0) (an−1, 0)

�r(2) (0, 0) (0, 0) (0, 0) (0, 0) (an, 0) (an, 0) (an−1, 0) (an−1, 0)

�li (a, 0) (0, 0) (0, 0) (0, 0) (a, 0) (0, 0) (0, 0) (0, 0)
�astli

− − Excitatory − − − Inhibitory −

�
l
(1)

i

(0,+) (a,+) (0,+) (0,+) (0,+) (a,+) (0,+) (0,+)

�
l
(2)

i

(0,+) (a,+) (0,+) (0,+) (0,+) (a,+) (0,+) (0,+)

�
l
(3)

i

(0, 0) (0, 0) (a,−) (0, 0) (0, 0) (0, 0) (a, 0) (0, 0)
�lk (0, 0) (0, 0) (a, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
�lj (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (a, 0)
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which just corresponds to the calculation result in register 1. 
The operation processes of FIN module are shown in 
Table 3.

According to the above description of each module and 
its working principle, it is obvious that the system Π can 
simulate the calculation process of the register machine M 
correctly. Therefore, N2(Π) = N(M) . The proof is over.  
 ◻

Theorem 2 NaccPASNP = NRE

Proof In the accepting mode, to prove the computation 
power of PASN P systems, it is only necessary to prove the 
inclusion relation NaccPASNP ⊇ NRE , which is obtained by 
the register machine M determined by the simulation of the 
system Π� . System Π� is improved from system Π in genera-
tion mode. The system Π� proof process in the accepting 

mode includes an INPUT module, a deterministic ADD 
module and a SUB module, and the calculation result of the 
system is stored in the register 1. During the system format 
conversion process, there is no corresponding SUB instruc-
tion for the register 1 to perform the subtraction operation. 
When system landscape transfer is stopped, only register 1 
is non-empty. In the system Π� , each register r has a one-to-
one correspondence with a neuron �r in the ADD or SUB 
module, and an instruction li in H is associated with a neuron 
�li

 . It must be clear that when the register r stores a number 
whose size is n, then the quantitative relationship contained 
in the corresponding spike reserve in the neuron �r corre-
sponds to 2n.

The INPUT module of the system is shown in Fig. 4. At 
step t, the first spike is introduced from outside the system by 
the input neuron �in . At step t + 1 , the spikes on the synapses 
(in, in1) , (in, in2) are sensed by ast(1)

in
 , the number of spikes is 

Fig. 3  FIN Module(ending the computation)

Table 3  The numbers of spikes 
and polarity of neurons in fin 
module (see Fig. 3) during 
the process of outputting the 
computational result

Step

 Neuron t t + 1 t + 2 t + 3 ⋯ t + n + 2 t + n + 3

�r(1) (an, 0) (an, 0) (an−1, 0) (an−2, 0) ⋯ (0, 0) (0, 0)
�r(2) (an, 0) (an, 0) (an−1, 0) (an−2, 0) ⋯ (0, 0) (0, 0)
�lh (a, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
�
ast

(1)

lh

− − Inhibitory Inhibitory Inhibitory Excitatory Excitatory
�
l
(1)

h

(0, 0) (a,+) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
�
l
(2)

h

(0,−) (a, 0) (a, 0) (a, 0) (a, 0) (a, 0) (a,−)

�
l
(3)

h

(0,−) (a, 0) (a, 0) (a, 0) (a, 0) (a, 0) (a,−)

�
l
(4)

h

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (a, 0) (a, 0)
�out (0, 0) (0, 0) (a, 0) Output (0, 0) (a, 0) Output
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less than the threshold, and rule 0∕a ⟶ a;+ in neuron �in 
reaches the firing condition, a spike and a positive charge 
are sent to neurons �in1 , �in2 , �in3 and �in4 . From step t + 2 , 
neurons �in1 , �in2 exchange spike information with each other 
in each subsequent time unit, and neurons �in2 pass through 
the corresponding synapses (in2, 1(1)) and (in2, 1(2)) send two 
spikes to register 1.

At the end of step t + n , the second spike enters the sys-
tem. At step t + n + 1 , ast(1)

in
 checks that the number of spikes 

delivered on synapses (in, in1) , (in, in2) , (in1, in2) , (in2, in1) 
are greater than the threshold in ast(1)

in
 , then these spikes 

are removed from the system. At the same moment, rule 
0∕a ⟶ a;+ within neuron �in reaches the firing condition 
and sends a spike and a positive charge to neuron �in3 and 
neuron �in4 . At step t + n + 2 , rule +∕a2 ⟶ �;− in neuron 
�in3

 reaches the firing condition, a negative charge are sent 
to neuron �in1 and �in3 , the neurons are reset to their initial 
charge state. Rule +∕a2 ⟶ a;0 in neuron �in4 reaches the 

firing condition, a spike and neutral charge are sent to neuron 
�1(1) , �1(2) , and �l0 . At this point, the system will jump to the 
l0 instruction. The operation processes of INPUT module of 
Π� are shown in Table 4.

As shown in Fig.  5, the deterministic ADD mod-
ule is mainly used to simulate the ADD instruction 
li ∶ (ADD(r), lj) . The operation process of the ADD module 
will not be described here.

The SUB module of the system Π� will continue to use the 
module shown in Fig. 2. Regarding the stop of the system 
Π� , the Fin module is removed from the system, and when 
the register machine runs to the halting instruction lh in the 
accepting mode, there is no rule available in the neuron �lh , 
that is, the system halts.

According to the above proof, the register machine can 
be correctly simulated by the system Π� under the accepting 
mode, and the theorem is proved.   ◻

Fig. 4  INPUT Module of Π�

Table 4  The numbers of spikes 
and polarity of neurons in input 
module (see Fig. 4)

Step

 Neuron t t + 1 t + 2 ⋯ t + n t + n + 1 t + n + 2

�1(1) (0, 0) (0, 0) (a, 0) ⋯ (an−2, 0) (an−1, 0) (an, 0)

�1(2) (0, 0) (0, 0) (a, 0) ⋯ (an−2, 0) (an−1, 0) (an, 0)

�in (a, 0) (0, 0) (0, 0) (0, 0) (a, 0) (0, 0) (0, 0)
�
ast

(1)

in

− Excitatory Excitatory Excitatory Excitatory Inhibitory −

�in1 (0,−) (a, 0) (a, 0) (a, 0) (a, 0) (0, 0) (0,−)

�in2 (0,−) (a, 0) (a, 0) (a, 0) (a, 0) (0, 0) (0,−)

�in3 (0,+) (a,+) (a,+) (a,+) (a,+) (a2,+) (0,+)

�in4 (0,+) (a,+) (a,+) (a,+) (a,+) (a2,+) (0,+)

�l0 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (a, 0)

Fig. 5  ADD Module of Π�
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4  A small universal PASN P system

In this section, a small universal model of PASN P sys-
tems Π�� is constructed as a computational function, which 
is based on the above research content in this work. The 
small universal register machine as a calculation function 
is determined [48], and its structure is shown in Fig. 6.

T h e  u n i ve r s a l  r e g i s t e r  m a ch i n e  fo r m  i s 
Mu = (8,H, l0, lh, I) , and the register machine contains 
eight registers and a total of 23 instructions. The ADD 
instruction of the register machine M in the accepting or 
recognition mode is determined, and the ADD instruction 
is written as li ∶ (ADD(r), lj) . According to register 0 in 
PASN P systems constructed in this paper is used to store 
data. PASNP systems does not allow subtraction opera-
tions acting on the register where the computation result is 
placed, but instruction l19 in Fig. 6 obviously does not meet 
this requirement, and the register machine M needs to be 
modified. By adding the register 8, the halting instruction 
is modified as follows:

The content in register is 0 transferred to register 8 through 
the above instructions. In the calculation process, the value 
stored in register 8 only increases. Under the condition that 
the other definition forms are not changed, the modified reg-
ister machine M′

u
 contains 9 registers and 25 instructions, 

and the result obtained when the system format transfer is 
terminated will be stored in the register 8.

l22 ∶ (SUB(0), l23, l
�

h
), l23 ∶ (ADD(8), l22), l�

h
∶ HLAT

Theorem 3 There is a universal PASN P system with 65 neu-
rons for computable functions.

Proof To prove the small universal system Π�� as a function 
calculation, it is necessary to make it simulate the register 
machine M′

u
 . The proof process includes INPUT module, 

deterministic ADD module, SUB module, ADD–ADD mod-
ule, ADD–SUB module, SUB–ADD module and OUTPUT 
module. In the system Π�� , the obtained calculation results 
are stored in the register 8, and finally output to the out-
side of the system by the OUTPUT module. In the process 
of system format conversion, the instruction operation on 
the register 8 will not reduce its content, that is, there is no 
corresponding SUB instruction on it to perform the SUB 
operation. In the system Π�� , each register r has a one-to-
one correspondence with a neuron �r in the ADD or SUB 
module and an instruction li in H is associated with a neuron 
�li . It must be clear that when the register r stores a number 
with a size of n, then the quantitative relationship contained 
in the corresponding spike reserve in the neuron �r corre-
sponds to 2n.

The INPUT module of the system Π�� as shown in Fig. 7. 
In the INPUT module, the neuron �in identifies the spike 
train 10g(x)−110y−11 , and finally 2g(x), and 2y spikes are 
stored in the neuron �1 , �2 correspondingly. When neuron 
�in receives the first spike in which rule 0∕a ⟶ a;+ reaches 
the firing condition, a spike and a positive charge are sent to 
neuron �in1 , �in2 , �in3 , �in6 and �in7 . A total of two spikes on the 
synapses (in, in1) , (in, in2) , are smaller than the threshold in 
the astrocyte ast(1)

in
 and the spikes can reach the target neuron. 

At the next moment, rule 0∕a ⟶ a;0 in the neuron �in1 and 
�in2 reaches the firing condition and transmits a spike and 
a neutral charge to each other. Moreover, sends two spikes 
and neutral polarity to neuron �1 at each step until neuron �in 
receives the second spike, register 1 contains the value 2g(x).

When the neuron �in receives the second spike, astro-
cytes ast(1)

in
 senses four spikes in adjacent synapses synapses 

(in, in1) , (in, in2) , (in1, in2) , (in2, in1) , that greater than the 
threshold of astrocytes ast(1)

in
 , the synapse is inhibited. At the 

same time, neuron �in3 receives the second spike in which 
rule +∕a2 ⟶ a;0 reaches the firing condition, a spike and 
a neutral charge are sent to neuron �in4 , �in5 . A total of two 
spikes on the synapses (in3, in4) , (in3, in5) , are smaller than 
the threshold in the astrocyte ast(1)

in
 and the spikes can reach 

the target neuron. At the next moment, rule 0∕a ⟶ a;0 in 
the neuron �in4 and �in5 reaches the firing condition and trans-
mits a spike and a neutral charge to each other. Moreover, 
sends two spikes and neutral charge to neuron �2 at each 
step. When a third spike enters the system, ast(1)

in
 checks that 

the number of spikes delivered on synapses (in, in1) , (in, in2) , 
(in4, in5) , (in5, in4) are greater than the threshold in ast(1)

in
 , 

then these spikes are removed from the system. Neuron �2 
Fig. 6  The small universal register machine Mu
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no longer receives spikes and has a number of 2y spikes 
stored in it.

After the third spike enters neuron �in6 , rule +∕a3 ⟶ �;− 
in neuron �in7 reaches the firing condition, a negative charge 
are sent to neurons �in1 , �in2 , �in4 and �in5 , the polarizations 
of neurons returned to the initial state. Rule +∕a3 ⟶ a;0 
reaches the firing condition, a spike and a neutral charge are 
sent to neuron �l0 . At this point, the system will jump to the 
l0 instruction of the register machine M′

u
.

The deterministic ADD module in the system Π�� is 
shown in Fig. 5. For the SUB instruction executes the SUB 
instruction shown in 2. The OUTPUT module is improved 
on the basis of the module shown in Fig. 3, and the label of 
neuron �r is modified to a certain label (8, 0), other neurons 
remain unchanged, and the calculation results are output 
using the improved module.

According to each module of the small universal system 
Π�� , the small universal system contains a total of 105 neu-
rons. The introduction of system resources is as follows.

• 9 × 2 neurons correspond to 18 registers,
• 25 neurons correspond to 25 instruction labels,
• 1 × 10 auxiliary neurons correspond to 10 ADD instruc-

tion modules,
• 3 × 14 auxiliary neurons correspond to 42 SUB instruc-

tion modules,
• 5 neurons in the INPUT module,
• 5 neurons in the OUTPUT module,

In view of the above results, it can still be improved through 
instruction optimization, and the results as follows. For 
consecutive ADD instructions: l17 ∶ (ADD(2), l21) and 
l21 ∶ (ADD(3), l18) , the model constructed after optimization 

is recorded as ADD–ADD. In this optimization model, the 
ADD module corresponding to the l21 instruction can be 
omitted, save 1 neuron. As shown in Fig. 8.

For the continuous ADD and SUB instructions rep-
resented as follows, the optimized model is denoted as 
ADD–SUB, and the form is defined as: li ∶ (ADD(r�), lg) , 
lg ∶ (SUB(r��), lj, lk) . After optimization, a total of two neu-
rons are saved. As shown in Fig. 9, the operation process 
of the improved model will not be described in detail here.

l5 ∶ (ADD(5), l6), l6 ∶ (SUB(7), l7, l8)

l9 ∶ (ADD(6), l10), l10 ∶ (SUB(4), l0, l11)

Fig. 7  INPUT Module of Π��

Fig. 8  ADD–ADD Module of Π��
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Regarding continuous SUB and ADD instructions, there 
are six related instructions, which are usually formally 
defined as lg ∶ (SUB(r�), lj, lk) , li ∶ (ADD(r��), lg) , the ADD 
instructions which can be optimized are l1 , l5 , l7 , l9 , l16 , l22 , 
save a total of six neurons. Continuous SUB and ADD 
instructions, the optimized model is recorded as SUB–ADD, 
as shown in Fig. 10.

Subtraction instructions can be divided into three 
categories: 

(1) l0:(SUB(1), l1, l2), l3:(SUB(5), l2, l4),
l4:(SUB(6), l5, l3) 
l6:(SUB(7), l7, l8), l8:(SUB(6), l9, l10),
l11:(SUB(5), l12, l13) 
l12:(SUB(5), l14, l15), l14:(SUB(5), l16, l17),
lh:(SUB(0), l22, l′h)

(2) l10:(SUB(4), l0, l11), l18:(SUB(4), l0, lh),
l19:(SUB(0), l0, l18)

(3) l13 ∶ (SUB(2), l18, l19), l15 ∶ (SUB(3), l18, l20)

For the first set of SUB instructions, an auxiliary neuron can 
be shared between different SUB instructions, as shown in 
Fig. 11. For the second and third groups of subtraction SUB, 
two auxiliary neurons can be shared between different SUB 
instructions, as shown in Fig. 12. By grouping subtraction 
instructions. Save a total of 14 neurons.

The proof process of the module will not be repeated, but 
it should be pointed out that the two modules SUB–ADD 
and ADD–SUB are both optimization models based on the 
SUB module. Therefore, by using ADD–ADD, ADD–SUB, 
SUB–ADD, and SUB–SUB optimization instructions, a total 
of 23 neurons are saved. Reduced computing resource con-
sumption of small universal systems from 105 to 82.   ◻

Fig. 9  ADD–SUB Module of Π��

Fig. 10  SUB–ADD Module of Π��

Fig. 11  SUB–SUB Module of 
Π�� share one neurons
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5  Conclusion and discussion

In this work, the control mechanism of astrocytes is added 
to PSN P systems to construct PASN P systems. As number 
generating devices and number accepting devices, PASN P 
systems are proved to be equivalent to Turing machines. In 
addition, a small universal PASN P system is constructed as 
a computing function, which is used to simulate the modified 
small universal register machine M′

u
 , we demonstrate that the 

small universal system uses 82 neurons, a reduction of 82 
neurons compared to the small universal SN P system with 
polarization proposed in [43] and a reduction of 69 neurons 
compared to the small universal SN P system with polariza-
tion and rules on synapses proposed in [44]. Therefore, it 
is of great significance to put forward PASN P systems and 
prove its Turing universality.

PASN P systems inherit the advantages of ASN P sys-
tems and PSN P systems. In applications, the advantage of 
PASN P systems can also be used to characterize NRE in 
both synchronous mode and asynchronous mode, or to build 
basic logic gates and Boolean circuits [42]. PAS P systems 
have great advantages to solve the real-life problems, such 
as recognition of handwritten digit letters recognition of 
handwritten numerals [49], autonomous robot control [50], 
and information processing and learning [51], that is worth 
investigating.

Based on PASN P systems, some topics and open prob-
lems are suggested. For instance, whether the number of 
neurons can be reduced by using extended rules or increas-
ing the use of astrocytes. It would also be interesting to 
design regular expressions that express polarization behav-
ior, or try to incorporate learning strategies into PASN P 
systems to solving practical engineering problems.
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