
Vol.:(0123456789)1 3

Journal of Membrane Computing (2022) 4:11–20
https://doi.org/10.1007/s41965-021-00090-2

REGULAR PAPER

Array P systems and pure 2D context‑free grammars with independent
mode of rewriting

Somnath Bera1 · Rodica Ceterchi2 · Sastha Sriram3 · K. G. Subramanian4 

Received: 15 September 2021 / Accepted: 12 November 2021 / Published online: 26 November 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2021

Abstract
Rewriting array P systems for generation of rectangular picture arrays have been considered with the rules in membranes
and the application of the rules as in a pure 2D context-free grammar (P2DCFG) and its variants. Here, we introduce in
P2DCFG, a different mode of rewriting of an array, which we call as independent mode. We then consider rewriting array
P systems involving P2DCFG type of rules but with the independent mode of rewriting. We show that the array generative
power is increased in the framework of P systems. This framework also allows for the treatment of the so-called “extended”
array grammars.

Keywords  Two dimensional languages · Pure context-free grammars · P systems

1  Introduction

Based on pure context-free grammars [15] which have been
extensively investigated for their language generating power,
a simple but effective non-isometric 2D grammar model,
called pure 2D context-free grammar (P2DCFG) was intro-
duced in [29, 30] in the area of two-dimensional picture
languages [12, 20, 21, 33], to generate rectangular picture
array languages. In a P2DCFG, all symbols in any column
or any row of the rectangular array are rewritten at a time
by equal length strings, thus maintaining the array to be
rectangular. Several properties [1, 2] and variants [14, 31]
of P2DCFG have been studied.

On the other hand, in the area of membrane computing
[18, 19], a computing model based on the membrane struc-
ture and the functioning of living cells, was introduced by
Păun in [17] and is now referred to as P system. This area of
membrane computing has seen a vast growth both in terms
of theoretical results [19] and application studies [34].

Formal language theory [22, 23], which is a classical area
of theoretical computer science, has close connections with
membrane computing. The two areas of membrane comput-
ing and two-dimensional picture array grammars were linked
in [4] by developing an array P system for dealing with the
problem of generation of two dimensional (2D) objects or
picture arrays based on Chomsky type array grammars of the
isometric variety. Several models of array P systems (see, for
example, [5, 28, 32]) have been subsequently introduced and
studied in the area of two-dimensional picture languages.

Freund [10] has given a very clear and detailed descrip-
tion of different derivation modes in P systems as well as a
discussion of the role of halting conditions in the context of
computational power of P systems. Here we consider pure
2D context-free grammars (P2DCFG), which belong to the
non-isometric variety of array grammars, with a variation
in the mode of rewriting of a picture array, which we call as
independent mode. In a P2DCFG, at a step of a derivation,
all the symbols in a column or in a row of a rectangular array
are to be rewritten but in the independent mode, a single
symbol but any symbol in each of the columns or in each of
the rows is rewritten at a step of a derivation. The resulting

Somnath Bera, Rodica Ceterchi, Sastha Sriram and K. G.
Subramanian contributed equally to this work.

 *	 K. G. Subramanian
	 kgsmani1948@gmail.com

1	 School of Advanced Sciences‑Mathematics, Vellore Institute
of Technology, Chennai 600 127, Tamil Nadu, India

2	 Faculty of Mathematics and Computer Science, University
of Bucharest, 14 Academiei St, Bucharest 010014, Romania

3	 Department of Mathematics, School of Arts, Sciences,
Humanities and Education, SASTRA Deemed University,
Tanjore 613 401, Tamil Nadu, India

4	 School of Mathematics, Computer Science and Engineering,
Liverpool Hope University, Hope Park, Liverpool L16 9JD,
UK

http://orcid.org/0000-0001-8726-5850
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-021-00090-2&domain=pdf

12	 S. Bera et al.

1 3

class of picture languages is shown to be incomparable with
the family of picture languages generated by P2DCFG. We
then consider an array P system with objects in the regions
of this P system as rectangular picture arrays and rules to
generate picture arrays as P2DCFG kind of rules but with an
independent mode of rewriting. We show that the use of two
membranes gives more picture array generative power. We
also provide an application of this array P system in gener-
ating certain floor designs, referred to as “kolam” patterns.

2 � Preliminaries

Let T be a finite alphabet. A word or a string w = w1w2 ⋯wn,
(n ≥ 1) over T is a finite sequence of symbols from T. We
denote by len(w), the length of the word w. The set of all
words over T, including the empty word � with no symbols,
is denoted by T∗ . We call words of T∗ also as row words. For
any word w = a1a2 ⋯ an , we denote by wt the word w written
vertically as follows and call wt as a column word:

Since the transpose of a row is a column and vice versa, we
have (wt)t = w.

A rectangular m × n array M over T, called picture
array, is of the form

where each pij ∈ T , 1 ≤ i ≤ m, 1 ≤ j ≤ n . The set of all
picture arrays over T is denoted by T∗∗ , which includes the
empty array � . We write T++ = T∗∗ − {�}.

We refer to [22, 23] for concepts related to formal lan-
guages and to [20, 21] for array grammars. For notions
related to P Systems we refer to [17, 18]. We now recall
a pure 2D context-free grammar introduced in [29, 30].

Definition 1  A pure 2D context-free grammar (P2DCFG) is
a 4-tuple G = (T ,P1,P2, I) where

i)	 T is a finite set of symbols;
ii)	 P1 is a finite set of column tables c, where c is a finite set

of context-free rules of the form a → �, a ∈ T , � ∈ T∗
satisfying the property that for any two rules a → �,
b → � in c, we have len(�) = len(�) ; i.e. the words �
and � have equal length;

a1
a2
⋮

an

.

M =

p11 ⋯ p1n
⋮ ⋱ ⋮

pm1 ⋯ pmn

iii)	P2 is a finite set of row tables r, where r is a finite set of
rules of the form d → � t, d ∈ T , � ∈ T∗ such that for any
two rules d → � t, e → �t in r, we have len(�) = len(�);

iv)	 I ⊆ T∗∗ − {𝜆} is a finite set of initial (axiom) arrays.

A derivation in a P2DCFG G is defined as follows: For
p, q ∈ T∗∗, q is derived in G from a picture p, written p ⇒ q,
either (i) by rewriting in parallel all the symbols in a column
of p, rewriting each symbol by a rule in some column table
or (ii) by rewriting in parallel all the symbols in a row of p,
rewriting each symbol by a rule in some row table. All the
rules used to rewrite a column (or a row) of symbols should
belong to the same table. The reflexive, transitive closure of
⇒ is denoted by ⇒∗ .

The picture language generated by G is the set of pic-
ture arrays L(G) = {M ∈ T∗∗ ∣ M0 ⇒

∗ M for some M0 ∈ I}.
The family of picture languages generated by P2DCFGs is
denoted by P2DCFL.

Example 1  Consider the P2DCFG G1 = (T ,P1,P2, {M0})
where T = {a, b, d, e} , P1 = {c1, c2},P2 = {r} where
c1 = {a → ab, d → da}, c2 = {a → a, d → e},

r =

{

d →
a

d
, a →

b

a

}

 , and M0 =

a b b

a b b

d a a

.

G1 generates a picture language L1 consisting of picture
arrays p of size (m, n), m, n ≥ 3 with p(i, 1) = p(m, j) = a,
for 1 ≤ i ≤ m − 1, 2 ≤ j ≤ n; p(m, 1) = d or p(m, 1) = e;
p(i, j) = b, otherwise. We note that a derivation in G1, start-
ing from the axiom array M0, generates picture arrays of
the forms

since the column table c1 is applicable to only the leftmost
column (a⋯ ad)t, rewriting in parallel all the symbols a and
d in that column, thereby adding the symbol b to the imme-
diate right of each a while adding the symbol a to the imme-
diate right of d. Likewise, the row table r is applicable to
only the bottommost row and adds a row of the form ab⋯ b
just above it. Likewise the column table c2 is applicable to
only the leftmost column (a⋯ ad)t, rewriting in parallel all
the symbols a as a itself but changing d in that column as e,
and after this no table of rules is applicable.

a b ⋯ b a b ⋯ b

⋮ ⋮ ⋱ ⋮ and ⋮ ⋮ ⋱ ⋮

a b ⋯ b a b ⋯ b

d a ⋯ a e a ⋯ a

13Array P systems and pure 2D context‑free grammars with independent mode of rewriting﻿	

1 3

3 � Pure 2D context‑free grammar
in independent mode

We now introduce a different mode of rewriting in a pure 2D
context-free grammar, which we call as independent mode,
based on a corresponding notion in the study of two-dimen-
sional insertion systems considered in [11].

Definition 2  A pure 2D context-free grammar in independ-
ent mode (abbreviated as IP2DCFG), GI = (T ,P1,P2, I)
has its components T ,P1,P2, I as in the P2DCFG in Defini-
tion 1, with a difference in the mode of rewriting of a picture
array, which we call as independent mode, and which is done
as described below:

A direct derivation of a picture array M2 from an m × n
picture array M1, written as M1 ⇒i M2, is done in the follow-
ing manner: In applying the rules of a row (respy. column)
table r (respy. c) to the m × n picture array M1, only one
symbol in each of the m rows (respy. n columns) is rewrit-
ten at a time and it can be any symbol in that row (respy.
column). All the symbols (chosen for rewriting) should have
rules in the row table r (respy. column table c). Otherwise,
the table of rules is not applicable. If a picture array Y is
obtained from a picture array X using a IP2DCFG, through
a sequence of direct derivation steps, we write X ⇒

∗
i
Y . Note

that the lengths of the right sides of all the rules in a column
table (respy. a row table), are the same and so the derived
array is also a rectangular array.

The picture language generated by a IP2DCFG GI is
the set of picture arrays L(G) = {M ∈ T∗∗ ∣ M0 ⇒

∗
i
M for

some M0 ∈ I}. The family of picture languages generated
by IP2DCFGs is denoted by IP2DCFL.

We illustrate with an example.

Example 2  Consider the IP2DCFG G2 = (T ,P1,P2, {M0})
where T = {a, b, d, e, x} , P1 = {c1, c2},P2 = {r} where
c1 = {a → ab, x → xx, d → bd}, c2 = {a → a, x → x, d → e},

r =

{

a →
a

b
, x →

x

x
, d →

b

d

}

 , and

M0 =

a b b

b x b

b b d

.

G2 generates a picture language L2 consisting of pic-
ture arrays p of size m × n, m, n ≥ 3 with p(1, 1) = a,
p(1, j) = p(i, 1) = b, fo r 2 ≤ j ≤ n a n d 2 ≤ i ≤ m,
p(m, j) = p(i, n) = b, for 2 ≤ j ≤ n − 1 and 2 ≤ i ≤ m − 1,
p(m, n) = d or e, p(i, j) = x, otherwise. We note that a
derivation in G2, starting from the axiom array M0, generates
picture arrays of the forms

A sample derivation M0 ⇒
∗
i
M using the tables c1, r, r, c2 in

this order in independent mode is shown in Fig. 1.
We have indicated the symbols rewritten by enclosing

these in rectangular boxes. Note that when a column table
of rules is used, a symbol in each row (not necessarily in the
same column) is rewritten while a symbol in each column
(not necessarily in the same row) is rewritten when a row
table of rules is used.

Theorem 1  The families of P2DCFL and IP2DCFL are
incomparable but not disjoint.

Proof  That the families are not disjoint can be seen from the
picture language consisting of m × n (m, n ≥ 2) picture arrays
p over {a} where p(i, j) = a, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n,
which is generated by a P2DCFG as well as a IP2DCFG
with a column table of rules c = {a → aa}, a row table of

rules
{

a →
a

a

}

 and axiom array a a

a a
.

The incomparability can be seen as follows: Consider
the picture language Labd consisting of 3 × n, (n ≥ 3) pic-
ture arrays p1, p2 such that (i) p1(1, 1) = p1(2, 1) = a,
p1(3, 1) = d, p1(3, j) = a, 2 ≤ j ≤ n and p1(i, j) = b, oth-
erwise and (i i) p2(1, 1) = p2(2, 1) = b, p2(3, 1) = d,

a b ⋯ b b a b ⋯ b b

b x ⋯ x b b x ⋯ x b

⋮ ⋮ ⋱ ⋮ ⋮ and ⋮ ⋮ ⋱ ⋮ ⋮

b x ⋯ x b b x ⋯ x b

b b ⋯ b d b b ⋯ b e

.

Fig. 1   Derivation M
0
⇒

∗
i
M

14	 S. Bera et al.

1 3

p2(3, j) = b, 2 ≤ j ≤ n and p2(i, j) = a, otherwise. Two arrays
M1 and M2 of Labd are shown below.

The picture language Labd is in P2DCFL gener-
ated by a P2DCFG with two column tables of rules
c1 = {a → ab, d → da}, c2 = {b → ba, d → db} and axiom
arrays

But it can be seen that this picture language Labd is not in
IP2DCFL. In fact, if we assume that Labd can be generated
by a IP2DCFG, then arrays of the form p1 can be generated
in the independent mode only by a column table of rules
c = {b → bb, d → da}, since rules for rewriting a can not
be included in such a table as it will result in picture arrays
not in the language. But then the column table c could be
applied to a picture array of the form p2 in the independent
mode, again resulting in picture arrays not in the language.
Similar reasoning can be done for picture arrays p2. This
shows that Labd cannot be generated by any IP2DCFG.

On the other hand, consider the picture language L′
consisting of 2 × n, (n ≥ 4) picture arrays q such that
q(1, 2) = q(2, 3) = a, q(i, j) = b, otherwise. An array in L′
is shown below:

The picture language L′ is in IP2DCFL generated by a IP2D-
CFG with an axiom array b a b b

b b a b
 and a column table

c = {a → ab}. It cannot be generated by any P2DCFG. If
there is such a P2DCFG, then due to the requirement that
in a P2DCFG, all symbols in a single column should be
rewritten at a time, this grammar should have column tables
of rules to rewrite one or more of the columns b

b
, a
b
 and b

a
.

This means that the grammar should have a column table
having a pure context-free rule to rewrite only b and / or a
column table of pure context-free rules to rewrite a and b.
But it is clear that having such column tables of rules, the
grammar will generate picture arrays not in the language L′.
For instance a column table with rule for b will allow rewrit-
ing of the first column of b′s as well, yielding picture arrays
not in the language. 	� ◻

M1 =

a b ⋯ b

a b ⋯ b

d a ⋯ a

and M2 =

b a ⋯ a

b a ⋯ a

d b ⋯ b

.

a b b

a b b

d a a

and

b a a

b a a

d b b

.

b a b b ⋯ b

b b a b ⋯ b
.

4 � Array P system based on IP2DCFG

We now introduce an array P system model with the mem-
branes of the P system containing picture array objects and
column or row tables of rules as in IP2DCFG in the sense
that the rewriting is in independent mode.

Definition 3  An array P system (of degree m ≥ 1 ) with
IP2DCFG kind of rules is a construct

where T is the alphabet consisting of terminal symbols, �
is a membrane structure with m membranes labelled in a
one-to-one manner with 1, 2,⋯ ,m ; A1,⋯ ,Am are finite sets
(can be empty) of rectangular picture arrays over T with Ai in
the membrane or region labelled i for 1 ≤ i ≤ m ; R1,⋯ ,Rm
are finite sets of column tables or row tables of context-free
rules over T (as in a IP2DCFG) with Ri in the membrane or
region labelled i for 1 ≤ i ≤ m. A region can contain both
column tables of rules and row tables of rules. The applica-
tion of a column or row table is as done in a IP2DCFG. The
tables have attached targets here, out, in, inj (in general, here
is omitted) and io is the label of the output membrane which
is an elementary membrane of �.

A computation in Π is done as in an array-rewriting P
system [4] with the successful computations being the halt-
ing ones; each rectangular picture array in each region of the
system, which can be rewritten by a column table of rules
or a row table of rules, associated with that region, should
be rewritten. This means that a region can contain column
tables of rules and/or row tables of rules but one table (col-
umn or row) of rules is applied at a time to a picture array
and the rewriting is done as in a IP2DCFG. The picture
array obtained by rewriting is retained in the same region if
the target associated with the table used is here or sent to an
immediate outer region (respy. directly inner region, nonde-
terministically chosen), if the target is out (respy. in). If the
target is inj then the array is immediately sent to a directly
inner membrane with label j. If no internal membrane exists
in a region, then a table with the target indication in cannot
be used.

A computation is successful only if it stops, that is, a con-
figuration, called a halting configuration, is reached where
no table of rules can be applied to the existing arrays in
the regions. The result of a successful computation consists
of rectangular picture arrays over T collected in the output
membrane with label io in the halting configuration. Note
that all the picture arrays that stay at the output membrane in
the halting configuration will belong to the picture language
since there are only one kind of symbols, namely terminal
symbols.

Π = (T ,�,A1,⋯ ,Am,R1,⋯ ,Rm, io),

15Array P systems and pure 2D context‑free grammars with independent mode of rewriting﻿	

1 3

The set of all picture arrays generated by such a system
Π is denoted by IAL(Π) . The family of all array languages
IAL(Π) generated by such systems Π as above, with at most
m membranes, is denoted by IAPm(IP2DCFG).

Example 3  Consider the picture language Lsq consist-
ing of square sized n × n, n ≥ 3, picture arrays p with
p(1, 1) = a, p(1, j) = p(i, 1) = b, for 2 ≤ j ≤ n and 2 ≤ i ≤ n,
p(n, j) = p(i, n) = b, for 2 ≤ j ≤ n − 1 and 2 ≤ i ≤ n − 1,
p(n, n) = e, p(i, j) = x, otherwise. A picture array in Lsq is
shown below.

We construct an array P system Πsq with only one membrane
and with the only region containing tables having IP2DCFG
kind of rules applied in independent mode. Πsq is given by

where

i)	 T = {a, b, d1, d2, e, x}

ii)	 � = [1]1

iii)	 A1 = {

a b b

b x b

b b d1

},

iv)	 R1 consists of a row table r and two column tables c1 and
c2 , each with target here. The tables of rules are given as
follows:

In the array P system Πsq, the only membrane or region
labelled 1 which is also the output membrane, initially,
contains the array

If the applicable column table c2 is applied, then the array
generated is

a b ⋯ b b

b x ⋯ x b

b x ⋯ x b

⋮ ⋮ ⋱ ⋮ ⋮

b x ⋯ x b

b b ⋯ b e

Πsq = (T ,�,A1,R1, 1),

c1 = {a → ab, d1 → bd2, x → xx}, c2
= {a → a, d1 → e, x → x},

r = {a →
a

b
, x →

x

x
, d2 →

b

d1
}.

a b b

b x b

b b d1

.

which is collected in the language as membrane 1 is the
output membrane and no table of rules is applicable in the
region at this moment with the computation coming to a
halt. If the column table c1 (instead of c2 ) is applied to the
axiom array in region 1, then the array generated is

The row table r can be applied now which generates the
array

and the process can be repeated. Application of the rules
of c1 followed by the rules of r with both the tables of rules
applied an equal number of times yields the n × n array (for
some n ≥ 3)

If the column table c2 is applied during the process instead
of c1 in region 1, the array

is generated changing the symbol d1 to e in the array. The
computation comes to a halt and the array is collected in the
language generated by Πsq. Note that the generated array at
the halting configuration will have an equal number of rows
and columns and will be an element of Lsq. Thus the system
Πsq generates the language Lsq.

We now examine the generative power of the array-
rewriting P system with IP2DCFG kind of rules in inde-
pendent mode of derivation.

T h e o ‑
rem 2  IP2DCFL ⊂ IAP1(IP2DCFG) ⊂ IAP2(IP2DCFG).

a b b

b x b

b b e

a b b b

b x x b

b b b d2

.

a b b b

b x x b

b x x b

b b b d1

a b ⋯ b b

b x ⋯ x b

⋮ ⋮ ⋱ ⋮ ⋮

b x ⋯ x b

b b ⋯ b d1

a b ⋯ b b

b x ⋯ x b

⋮ ⋮ ⋱ ⋮ ⋮

b x ⋯ x b

b b ⋯ b e

16	 S. Bera et al.

1 3

Proof  The inclusion IP2DCFL ⊆ IAP1(IP2DCFG) can be
seen as follows: Let L ∈ IP2DCFL and GI = (T ,P1,P2, I)
be an IP2DCFG generating L. We construct an array
P system of degree 1 with IP2DCFG kind of rules,
Π = (T ∪ T , [1]1,A,R, 1) where T = {a ∣ a ∈ T}. In other
words the alphabet of Π contains all the symbols of the
alphabet T of GI and in addition contains the “barred” ver-
sion of every symbol of T; A contains all the picture arrays
of I but every symbol in each picture array of I is replaced by
its barred version. Likewise R contains all the column tables
of P1 and all the row tables of P2 but each symbol in the
right and left sides of every rule in the tables, is replaced by
the corresponding barred symbol. In addition R contains a
new column table c = {a → a ∣ a ∈ T}. We denote by M the
array obtained from the array M by replacing each symbol of
M by the corresponding barred symbol. It can be seen that
for every direct derivation M1 ⇒i M2 in GI , there is a compu-
tation in Π with the array M1 generating M2 which then gen-
erates M2 by the application of the rules of the column table
c as many times as needed and the computation halts. Hence
every picture array in L generated in GI from an axiom array
in I is also computed by Π . Thus L ∈ IAP1(IP2DCFG). 	
� ◻

The proper inclusion follows from the picture
array language Lsq in Example 3 which shows that
Lsq ∈ IAP1(IP2DCFG). On the other hand this picture lan-
guage cannot be generated by any IP2DCFG since we need
to have some control on the application of column table of
rules and row table of rules to maintain the square shape
of the picture arrays generated by a IP2DCFG. We can use
some “intermediate” symbols to alternate the application
of the column and row tables of rules but then this will
result in picture arrays not in the language.

The inclusion IAP1(IP2DCFG) ⊆ IAP2(IP2DCFG) in
the statement of the theorem follows from the definition
of the family IAPm(IP2DCFG). For the proper inclusion
we consider the language Lab consisting of picture arrays
p of size m × (4n + 2), m ≥ 2 , n ≥ 1, where p is such that
every row of p is of the form xanbnanbny (n ≥ 1) over the
terminal symbols {x, y, a, b} . The language Lab belongs
to IAP2(IP2DCFG) generated by the P system with two
membranes having the membrane structure [1 [2]2]1 and
the only axiom array

in membrane 1 initially. Membrane 1 has a row table r with
target here and two column tables c1, c2 with target in. Mem-
brane 2, which is the output membrane, has a column table c3
with target out and another column table c4 with target here.

The tables of rules are given below:

x d e y

x d e y

r = {x →
x

x
, a →

a

a
, b →

b

b
, y →

y

y
, d →

d

d
, e →

e

e
},

c1 = {d → adb}  , c2 = {e → ab}  , c3 = {e → aeb}  ,
c4 = {d → ab}.

A computation can start with an application of the rules
of the column table c1 or c2 in membrane 1 to the axiom
array. If the rules of the column table c1 in membrane 1
are applied to the axiom array, then the generated array

will be sent to membrane 2 and if the rules of the column
table c3 are applied, then the generated array is

which is sent back to membrane 1. This process can repeat.
The rules of the row table r in membrane 1 can be applied
any number of times when the array is in membrane 1 at any
step of a computation. The application of the rules of the row
table r will increase the number of rows of the array by one
and the array will remain in membrane 1 itself. After the
application of the rules of c1 in membrane 1 and the rules of
c3 in membrane 2, with both the tables of rules applied an
equal number of times, say, n − 1 times (n ≥ 1) with the rules
of the row table r applied m + 2, (m ≥ 0) times during the
process, the array arriving in membrane 1 will have m + 2
rows and will be of the form given below:

If the rules of the column table c2 are now applied in mem-
brane 1 to the array mentioned above (instead of c1 ), the
generated array

is sent to membrane 2. Here only the column table c4 is
applicable generating the array

which is collected in the language as the computation halts.
On the other hand, if in membrane 1 at any step of a

computation, the rules of the column table c1 are appli-
cable and applied, then the generated array is sent to the
inner membrane 2 and if the rules of the column table
c4 are applied which replaces the symbol d by ab in the

x a d b e y

x a d b e y

x a d b a e b y

x a d b a e b y

x a(n−1) d b(n−1) a(n−1) e b(n−1) y

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x a(n−1) d b(n−1) a(n−1) e b(n−1) y

x a(n−1) d b(n−1) an bn y

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x a(n−1) d b(n−1) an bn y

x an bn an bn y

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x an bn an bn y

17Array P systems and pure 2D context‑free grammars with independent mode of rewriting﻿	

1 3

rows, then the array remains there but the computation
does not halt as the rules of the column table c3 are appli-
cable generating and sending the resulting array to mem-
brane 1. Here the rules of the column table c2 are only
applicable with the resulting array sent to the region 2
and the computation halts. Here again it is collected in
the language. Note that no other sequence of application
of the rules of the tables will be a correct sequence. Thus
the picture language Lab is generated and hence belongs
to IAP2(IP2DCFG). This picture language cannot belong
to IAP1(IP2DCFG) as there is only one membrane and so
the technique of alternately generating the first “block” of
andbn and the second “block” of anebn using “intermedi-
ate” symbols, cannot be managed for ever as the number
of rows can keep increasing, thus forcing the cardinality of
the alphabet of “intermediate” symbols to grow infinitely.

Remark  Analogous to the statement in Theo-
rem 2, in the case of P2DCFL [29, 30], we have
P2DCFL ⊂ AP1(P2DCFG) ⊂ AP2(P2DCFG), which cor-
rects the erroneous statements in [32, Theorem 1, Page
1905]. The proof of this statement is similar to the proof of
Theorem 2.

Based on splicing system, which is a theoretical model
of DNA recombination proposed by Head [13], Berstel
et al. [3] introduced flat splicing system, which is a vari-
ant of splicing system and which involves the operation
known as flat splicing on words. A picture array generating
model, called array flat splicing system (AFS), was intro-
duced and investigated in [16] by defining the operation
of flat splicing to picture arrays. Informally expressed, the
idea is that between two adjacent columns (or to the left /
right of a column) in a rectangular array M, a rectangular
array N having the same number of rows as M and with a
specific “prefix array” and / or a specific “suffix array” gets
inserted by the “flat splicing rules”. The family of picture
array languages generated by AFS is denoted by L(AFS).
Now we exhibit a picture array language that cannot be
generated by any AFS but can be generated by an array P
system as in Definition 3, with IP2DCFG kind of rules and
only one membrane. For a formal definition of AFS and for
an illustration of how this system works, we refer to [16].

Theorem 3  IAP1(IP2DCFG) ⧵ L(AFS) ≠ �.

Proof  We consider the picture language Lxy consisting of
n × n, (n ≥ 3) picture arrays p such that each of the first
(n − 1) rows of p has the word xany, (n ≥ 1) and the last row
has the word panq, (n ≥ 3) over the terminal symbols
{x, y, p, q, a} . This picture language Lxy is not in L(AFS) as it
cannot be generated by any AFS. In fact if we assume that

there is an AFS generating Lxy , then the array
x a y

x a y

p a q

 should

be an axiom array. An n × n array in Lxy has (n − 2), n ≥ 3
middle columns of a′s and to generate such arrays, the AFS
needs to insert an array over a but such arrays are not mem-
bers of the picture language Lxy . On the other hand, inserting

the axiom array
x a y

x a y

p a q

 into itself, or an array of the language

into this axiom array, will yield an array with more than one
column of the form (x⋯ xp)t as well as column of the form
(y⋯ yq)t and hence such an array cannot be an element of
Lxy . 	� ◻

5 � Array P systems and extended 2D
grammars

An earliest two-dimensional picture array generating model
introduced by the Siromoney group [25], originally called
context-free matrix grammar [26] and subsequently referred
to as 2DCFG in [22], involves two phases of rewriting. The
first phase generates strings over “intermediate” symbols
using context-free string grammar rules and in the second
phase, these strings are rewritten by groups of normal form
regular grammar rules such as a group of nonterminal rules
of the form A → aB or a group of terminal rules of the form
A → a in the vertical direction to produce the columns of a
rectangular picture array over a set of terminal symbols. The
“intermediate” symbols of the first phase will be the start
nonterminal symbols in the second phase. This model has
been extensively used in 2D grammar studies.

An extension of this 2D grammar was introduced in [27].
We do not give here the formal definition of this extended 2D
grammars but informally mention the details in the extended
model. The first phase is similar to the Siromoney matrix
grammar [26] but the second phase has tables of rules which
are sets of normal form regular nonterminal rules or sets of
normal form regular terminal rules. An applicable table of
rules is used (applied) for the rewriting in the second phase.
We will call the extended 2D grammar model as T2DCFG
or T2DCSG depending on whether the first phase involves a
context-free grammar or a context-sensitive grammar. The
corresponding families of picture languages are denoted by
T2DCFL and T2DCSL. We now compare the array P system
considered here with these extended 2D grammars.

Theorem 4  (i) IAP2(IP2DCFG) ∩ T2DCSL ≠ �.

(ii) IAP2(IP2DCFG) ⧵ T2DCFL ≠ �.

Proof  We consider the picture language L consisting of
m × (4n + 2), (m ≥ 4, n ≥ 1) picture arrays p such that the

18	 S. Bera et al.

1 3

first row of p is of the form xanbnanbny (n ≥ 1) and the next
few rows are of the form xz4ny (n ≥ 1) followed by a row of
the form qz4nr(n ≥ 1) and the remaining rows are of the form
sz4nt (n ≥ 1) over the terminal symbols {x, y, q, r, s, t, z, a, b} .
This picture language is in T2DCSL but is not in T2DCFL
since the first row is a strictly context-sensitive language.
In fact the corresponding T2DCSG will generate in the first
phase the CSL {XAnBnAnBnY ∣ n ≥ 1} where X, Y, A, B are
“intermediate” symbols which will serve as the start sym-
bols for the second phase. The tables of rules in the sec-
ond phase are t1 = {X → xX,A → aZ,B → bZ, Y → yY},
t2 = {X → xX1, Z → zZ, Y → yY1},
t3 = {X1 → xX1, Z → zZ, Y1 → yY1},
t4 = {X1 → qU, Z → zZ, Y1 → rV},
t5 = {U → sU, Z → zZ,V → tV}, a n d
t6 = {U → s,Z → z,V → t}. Application of the rules of the
table t1 will generate the first row xanbnanbny of the array p.
This can be followed by the application of the rules of the
table t2 once and t3 certain number of times, yielding the
rows of the form xz4ny till the rules of the table t4 are applied.
This will yield the row qz4nr. Likewise using the table t5 the
rows of the form sz4nt are generated and the derivation ends
when the table t6 is used generating the required array. 	
� ◻

The language L belongs to IAP2(IP2DCFG) generated
by the P system with two membranes having the mem-
brane structure [1 [2]2]1 and the only axiom array

in membrane 1 initially. Membrane 1 has two row tables
r1, r2 with target here and two column tables c1, c3 with tar-
get in. Membrane 2 has a column table c2 with target out
and another column table c4 with target here. The output
membrane is 2.

T h e t a b l e s o f r u l e s a r e g i ve n b e l ow :
r1 = {x →

x

x
, z →

z

z
, y →

y

y
}, r2 = {s →

s

s
, z →

z

z
, t →

t

t
},

c1 = {d → adb, z → zzz}   , c2 = {e → aeb, z → zzz}   ,
c3 = {e → ab, z → zz} , c4 = {d → ab, z → zz} . At any step
of a computation, application of the rules of the row tables
r1, r2 will add the rows xz4ny and sz4nt independently any
number of times above and below the row qz4nr with the
array remaining in membrane 1. A computation starts with
an application of the rules of the column table c1 in mem-
brane 1 to the axiom array, sending the generated array

x d e y

x z z y

q z z r

s z z t

to membrane 2. If the rules of the column table c2 in mem-
brane 2, are applied, then the generated array

will be sent back to membrane 1. This process can repeat.
If in membrane 1, the rules of the column table c3 (instead
of c1 ) are applied, then the generated array is sent to the
inner membrane 2 where the rules of the column table c4 are
applied which replaces the symbol d by ab in the first row
and replaces one symbol z in each of the remaining rows by
zz. The resulting array is in the form of the picture array p,
which remains in the output region 2 and the computation
halts. Here it is collected in the language. Thus the picture
language L is generated. Note that no other correct sequence
of applications of the tables of rules is possible.

6 � Generation of floor designs

As an application of the array P System model considered
in Sect. 4, we use a well-known technique [24] developed to
generate certain interesting classes of floor designs, called
“kolam patterns” [24, 26]. The idea is that with each sym-
bol a of a rectangular picture array which is considered to
occupy a unit square in the rectangular grid, a primitive pic-
ture pattern i(a) of the “kolam pattern” is associated. The
picture array is then interpreted as a “kolam pattern” replac-
ing the symbols in the picture array generated by the array
P system, by the corresponding primitive picture patterns,
to yield the required “kolam pattern”.

We illustrate this by considering the picture lan-
guage Lkolam consisting of n × n, n ≥ 3 picture arrays p
such that p(1, 1) = a, p(1, n) = y, p(n, 1) = x, p(n, n) = e,
p(1, j) = q, p(n, j) = r, f o r 2 ≤ j ≤ n − 1,
p(i, 1) = s, p(i, n) = t, for 2 ≤ i ≤ n − 1, p(i, j) = d, other-
wise. A picture array of Lkolam is shown below.

The corresponding “kolam pattern” with the “kolam” primi-
tives used, is shown in Fig. 2. Lkolam is generated by an array
P system as in Definition 2 with membrane structure

x a d b e y

x z z z z y

q z z z z r

s z z z z t

x a d b a e b y

x z z z z z z y

q z z z z z z r

s z z z z z z t

a q q q y

s d d d t

s d d d t

s d d d t

x r r r e

19Array P systems and pure 2D context‑free grammars with independent mode of rewriting﻿	

1 3

[1 [2]2]1 , two column tables c1, c2 in region 1 and a row table
r in region 2 given by c1 = {a → aq, d → dd, b → rb},

c2 = {a → a, d → d, b → e}, r =
{

a →
a

s
, d →

d

d
, b →

t

b

}

with c1, c2 having target in and r having target out. The only
initial axiom array in membrane 1, is

The primitive picture patterns associated with q, r, s, t, d are
shown in Fig. 2 and i(a) = i(e) = i(x) = i(y) = blank.

7 � Conclusions and future work

We have introduced here a new rewriting mode in pure 2D
context-free grammars, called independent mode, for the
generation of certain picture array languages, inspired from
two-dimensional insertion systems with independent mode
considered in [11]. We have shown the incomparability of
the two classes of array languages, namely P2DCFL [29,
30] and IP2DCFL, introduced here. Using P systems as a
control mechanism for array rewriting, we have generated
square pictures of a certain type (Example 3) using only one
membrane and target agreement for rules. We also sketch an
application of this formalism of P2DCFG with independ-
ent mode to the generation of certain simple floor designs,
known as “kolam” patterns. It will be of interest to compare
the array models considered here with other kinds of array
grammars [4, 6–9] which is for future work.

Acknowledgements  An earlier version of this paper was presented in
the International conference on Membrane Computing (ICMC 2021).
The comments of the reviewers on the conference version and the

M0 =

a q y

s d t

x r b

.

journal version were very helpful in preparing this improved revised
version.

Declarations 

Funding  No funding was received for conducting this study.

Conflict of interest  The authors declare no conflict of interest.

References

	 1.	 Bersani, M. M., Frigeri, A., & Cherubini, A. (2011). On some
classes of 2D languages and their relations. In J.K. Aggarwal,
et al. (Eds.) Combinatorial Image Analysis (vol. 4958, pp. 222–
234). Lecture Notes on Computer Science.

	 2.	 Bersani, M. M., Frigeri, A., & Cherubini, A. (2013). Expressive-
ness and complexity of regular pure two-dimensional context-free
languages. International Journal of Computer Mathematics, 90,
1708–1733.

	 3.	 Berstel, J., Boasson, L., & Fagnot, I. (2012). Splicing systems and
the Chomsky hierarchy. Theoretical Computer Science, 436, 2–22.

	 4.	 Ceterchi, R., Mutyam, M., Pǎun, Gh., & Subramanian, K.G.
(2003). Array—rewriting P systems. Natural Computing, 2,
229–249.

	 5.	 Ceterchi, R., Subramanian, K.G., & Venkat, I. P. (2015) . Systems
with Parallel Rewriting for Chain Code Picture Languages. In A.
Beckmann, V. Mitrana, M. Soskova (Eds.) Evolving Computabil-
ity. CiE 2015. Lecture Notes in Computer Science (vol. 9136, pp.
145–155). Champaign: Springer.

	 6.	 Fernau, H., Freund, R., Schmid, M. L., Subramanian, K. G., &
Wiederhold, P. (2015). Contextual array grammars and array P
systems. Annals of Mathematics and Artificial Intelligence, 75,
5–26.

	 7.	 Freund, R. (1994) . Control mechanisms on #-context-free array
grammars. In Gh. Pǎun (Ed.) Mathematical Aspects of Natural
and Formal Languages (pp. 97–137). Singapore: World Scientific.

	 8.	 Freund, R. (2000). Array Grammars. Technical Rep. 15/00,
Research Group on Mathematical Linguistics (p. 164), Rovira i
Virgili University, Tarragona.

Fig. 2   A kolam pattern with its
primitives

20	 S. Bera et al.

1 3

	 9.	 Freund, R., Paun, Gh., & Rozenberg, G., et al. (2007). Contex-
tual array grammars. In K. G. Subramanian (Ed.), Formal Mod-
els (pp. 112–136). Languages and Applications: World Scientific
Publishing.

	10.	 Freund, R. (2020). How derivation modes and halting conditions
may influence the computational power of P systems. Journal of
Membrane Computing, 2, 14–25.

	11.	 Fujioka, K. (2014) . A two-dimensional extension of insertion
systems. A.-H. Dediu et al. (Eds.) TPNC 2014, Lecture Notes on
Computer Science (vol. 8890, pp. 181–192).

	12.	 Giammarresi, D., & Restivo, A. (1997) . Two-dimensional lan-
guages, In G. Rozenberg and A. Salomaa (Eds.) Handbook of
Formal Languages (vol. 3, pp. 215–267). Berlin: Springer.

	13.	 Head, T. (1987). Formal language theory and DNA: an analysis
of the generative capacity of specific recombinant behaviours.
Bulletin of Mathematical Biology, 49, 735–759.

	14.	 Křivka, Z., Martín-Vide, C., Meduna, A., & Subramanian, K.G.
(2014). A variant of pure two-dimensional context-free grammars
generating picture languages. In R.P. Barneva, V.E. Brimkov, J.
Slapal (Eds.) Combinatorial Image Analysis (vol. 8466, pp. 123–
133). Lecture Notes Computer Science. Heidelberg: Springer

	15.	 Maurer, H. A., Salomaa, A., & Wood, D. (1980). Pure grammars.
Information Control, 44, 47–72.

	16.	 Pan, L., Nagar, A. K., Subramanian, K. G., & Song, B. (2016).
Picture array generation using flat splicing operation. Journal of
Computational and Theoretical Nanoscience, 13, 3568–3577.

	17.	 Pǎun, Gh. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61, 108–143.

	18.	 Pǎun, Gh. (2000). Membrane Computing: An Introduction. Berlin:
Springer.

	19.	 Pǎun, Gh., Rozenberg, G., & Salomaa, A. (2010). The Oxford
Handbook of Membrane Computing. New York: Oxford Univer-
sity Press.

	20.	 Rosenfeld, A. (1979). Picture Languages—Formal Models for
Picture Recognition. New York: Academic Press.

	21.	 Rosenfeld, A., & Siromoney, R. (1993). Picture languages—a
survey. Languages of Design, 1, 229–245.

	22.	 Rozenberg, G., Salomaa. A. (1997). (Eds.) Handbook of Formal
Languages (vol. 1–3). Berlin: Springer.

	23.	 Salomaa, A. (1973). Formal Languages. London: Academic Press.

	24.	 Siromoney, G., Siromoney, R., & Krithivasan, K. (1974). Array
grammars and kolam. Computer Graphics Image Processing.,
3(1), 63–82.

	25.	 Siromoney, R. (1991). Contributions of Professor Gift Siromoney
in the area of pattern recognition. IETE Journal of Research,
37(5–6), 409–418.

	26.	 Siromoney, G., Siromoney, R., & Krithivasan, K. (1972). Abstract
families of matrices and picture languages. Computer Graphics
Image Processing, 1, 234–307.

	27.	 Siromoney, R., Subramanian, K. G., & Rangarajan, K. (1977).
Parallel/Sequential rectangular arrays with tables. International
Journal of Computer Mathematics, 6, 143–158.

	28.	 Subramanian, K. G. (2007). P systems and picture languages. Lec-
ture Notes in Computer Science, 4664, 99–109.

	29.	 Subramanian, K. G., Ali, R. M., Geethalakshmi, M., & Nagar,
A. K. (2009). Pure 2D picture grammars and languages. Discrete
Applied Mathematics, 157(16), 3401–3411.

	30.	 Subramanian, K. G., Nagar, A. K., & Geethalakshmi, M. (2008).
Pure 2D picture grammars (P2DPG) and P2DPG with regular
control. In Brimkov, et al. (Eds.), Combinatorial Image Analysis.
Lecture Notes on Computer Science (vol. 4958, pp. 330–341).

	31.	 Subramanian, K. G., Geethalakshmi, M., David, N. G., & Nagar,
A. K. (2015). Picture array generation using pure 2D context-
free grammar rules. Lecture Notes on Computer Science, 9448,
187–201.

	32.	 Subramanian, K. G., Pan, L., Lee, S. K., & Nagar, A. K. (2010). A
P system model with pure context-free rules for picture array gen-
eration. Mathematical and Computer Modelling, 52, 1901–1909.

	33.	 Wang, P. S. P. (1989). Array Grammars, Patterns and Recogniz-
ers. Singapore: World Scientific.

	34.	 Zhang, G., Pérez-Jiménez, M.J., & Păun, Gh. (2017). Real-life
Applications with Membrane Computing. In Emergence, Com-
plexity and Computation Series

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Array P systems and pure 2D context-free grammars with independent mode of rewriting
	Abstract
	1 Introduction
	2 Preliminaries
	3 Pure 2D context-free grammar in independent mode
	4 Array P system based on IP2DCFG
	5 Array P systems and extended 2D grammars
	6 Generation of floor designs
	7 Conclusions and future work
	Acknowledgements
	References

