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Abstract
There have been a few NP-hard problems solved using cP systems including the travelling  salesman problem. However, these 
problems are typically in NP rather than higher in the polynomial time hierarchy. In this paper, we solve QSAT (also known 
as TQBF), which is a well-known PSPACE-complete problem. Compared to other extant confluent P systems solutions, our 
deterministic cP solution only uses a small constant number of custom alphabet symbols (19), a small constant number of 
rules (10) and a small constant upper limit of membrane nesting depth (6), independent of the problem size.
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1 Introduction

There are many computational complexity classes from log 
space to exponential and beyond. Many of these classes are 
not known to be equal or not. One of the millennial prize 
problems is dedicated to knowing whether P equals NP. The 
class NP has many complete problems such as the maximum 
independence set, the travelling salesman, and satisfiability 
problems. NP is one of the lowest levels of the polynomial-
time hierarchy which characterises many different classes 
within PSPACE. One of the most famous PSPACE-complete 
problems is the Quantified Boolean Satisfiability (QSAT) 
problem, also known as the True Quantified Boolean For-
mula (TQBF) problem.

P systems proposed in [1] are a parallel and distributed 
model of computation based on a membrane structure. Fol-
lowing this work, many different variants of P systems were 
proposed including P systems with active membranes [2], 
spiking neural P systems [3], tissue P systems [4] and P 
systems with compound terms (cP systems). A large number 
of hard problems have been shown to be able to be solved 
in polynomial time with P systems. For example, in [2], it 
was shown how P systems with active membranes are able 
to solve NP complete problems in linear time.

cP systems are a variant of P systems that use high-level 
rewriting rules, based on one-way first-order syntactic uni-
fication (which is similar to pattern matching in functional 
programming). cP systems usually have smaller alphabets 
and rulesets than other P systems; however, the rules are 
more complex. cP systems have been used: to solve NP-
hard problems such as the travelling salesman problem [5], 
to model distributed problems [6], and with recent research 
focused on verification [7]. In this paper, we demonstrate 
that cP systems can not only solve NP-hard problems in lin-
ear time, but also PSPACE-complete problems in polyno-
mial time, with QSAT (i.e. TQBF) being solvable in linear 
time.

Our solution is—as far as we know—the first using 
cP systems; it uses ten rules and a constant custom alphabet 
of size 19. Our solution is deterministic, so we do not com-
pare it here with nonconfluent solutions, such as [8]. (This 
could be the topic of further investigations.) We note that our 
solution is not the first confluent solution to PSPACE-com-
plete problems using P systems. Previous solutions exist that 
follow similar ideas, such as [9–12]. Our solution utilises 
partial evaluation when generating the possible candidate 
solutions to the problem, allowing our solution to minimise 
the number of clauses being used. As shown in Table 1, our 
solution substantially improves the extant results, on several 
criteria: alphabet size, number of rules and membrane nest-
ing depth—all small constants, independent of the problem 
size.

Rule templates are groupings of similar rules, only dif-
fering by symbol indices. When counting rule templates 
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and rules, we did not consider the numbers of repeated cop-
ies placed in different membranes/neurons. If we were to 
include such occurrence counts, the number of rules would 
increase drastically, for the other extant solutions. For exam-
ple, the solution to QSAT in [9] would have O(22n) rules, if 
we count the rules in every neuron. cP systems do not have 
such a exponential blow-up, and all these characteristics are 
small constants.

In Sect.  2, we discuss the background of this specific 
problem and how cP systems work. In Sect.  3, we present 
and discuss our ruleset to solve the QSAT problem.

2  Background

In this section, we cover cP systems and a brief explanation 
of the QSAT problem. For a more thorough introduction to 
cP systems, see [13].

2.1  QSAT

A Boolean formula is an expression involving Boolean 
variables and Boolean operations. For more information on 
Boolean formulae, see [14]. An NP-complete problem is 
the Boolean satisfiability problem (SAT), which determines 
if the variables of a given Boolean formula can be assigned 
Boolean values that evaluate the formula to true.

A Boolean formula is in conjunctive normal form (CNF) 
if it is expressed as a conjunction ( ∧ ) of clauses. A clause 
is a disjunction ( ∨ ) of literals. A literal is a variable or its 
negation (here indicated by overbars). For example, the fol-
lowing Boolean formula is in CNF:

The SAT formulae assume implicit existential quantifiers on 
all variables. The existential quantifier ( ∃ ) results are true if 
one of the possible assignments of the variables allows the 
formula to be true. Thus, the above formula is interpreted as:

(x1 ∨ x2) ∧ (x1 ∨ x̄2).

∃x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2).

A quantified Boolean formula is a Boolean formula where 
variables can be explicitly and independently quantified, 
with existential or universal quantifiers. The universal quan-
tifier ( ∀ ) results true if every possible assignment of the 
variables results in the formula being true.

Without loss of generality, we use a restricted version 
of quantified Boolean formulae that are assumed to be in 
fully quantified prenex normal form. Prenex normal form 
(PNF) means that the quantified variables are all factored 
out before the Boolean formula. Fully quantified means 
that every variable in the Boolean formula has a quanti-
fier. This leads to the problem TQBF, as presented in [14]:

As shown in [15], TQBF is a PSPACE-complete problem. 
Without loss of generality, here we only use Boolean for-
mulae which are also in CNF form, a further restricted ver-
sion which is still PSPACE-complete. This problem is usu-
ally referred to as QSAT, where [9–12] also make the same 
assumptions.

For example, the following two formulae are fully quan-
tified Boolean formulae in CNF and PNF:

Solving QSAT for a given formula � can be done, as shown 
in [14], with the recursive algorithm (pseudocode) presented 
here in Table 2, slightly adapted, where we separate � in 
three components: q—the stack of quantifiers; p—the stack 
of variables; and f the Boolean expression itself (the unquan-
tified matrix).

The given algorithm systematically explores all pos-
sible combinations of variable assignments and evaluates 
the formula according to the given quantifiers. In the top-
down pass, expressions f [x ∶= 0] , f [x ∶= 1] indicate sub-
stitutions in f of x by 0 (i.e. false), respectively, by 1 (i.e. 
true). In the bottom-up pass, ( ∃ ) is associated with ( ∨ ), 
and ( ∀ ) with ( ∧ ), as straightforward arguments indicate.

TQBF

= {� ∣ � is a ���� fully quantified Boolean formula in PNF}.

(1)∀x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2).

(2)∃x1 ∀x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2).

Table 1  Comparison of our solution with pre-existing confluent P system solutions, where n is the number of variables and m the number of 
clauses

Solution (year) # Rule tem-
plates

# Rules # Custom alphabet symbols Membrane 
nesting 
depth

Linear solution for QSAT (2006) [11] 40 O(m) O(nm) O(n)

Uniform solution of QSAT (2007) [12] 33 O(mn) O(nm) O(n)

Deterministic solution to QSAT (2010) [9] 20 O(n) O(n) O(n)

Solving QSAT in sublinear nesting depth (2018) [10] 27 O(mn) O(n log n) O(n∕ log n)

QSAT cP system (2020) 10 10 19 (also 6 states) 6
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The candidate solutions of Formulae (1, 2) can be vis-
ualised on the trees shown in Figures 1, 2: (a) lists the 
quantified variables, top–down, one per tree layer; (b) is 
the top–down construction of the tree, showing variable 
assignments; and (c) is the bottom–up evaluation of the 
tree, applying ∨ for ∃ and ∧ for ∀.

A sequential execution of the recursive solution makes a 
preorder traversal of the complete tree, using O(n) space and 
O(2n) runtime steps, where n is the number of quantifiers (or 
variables) in the prefix, and also the number of tree levels 
below the root.

Note that Formulae (1, 2) only differ in quantifiers. Thus, 
Figs. 1, 2 differ only in their quantifiers lists (a) and evalu-
ation results in otherwise isomorphic tress (c), while trees 
(b) are identical.

The recursion of the algorithm in Table 2 can be unrolled 
by straightforward techniques. The nonrecursive solution in 
Table 3 creates each layer of the tree successively, while 
implicitly discarding the previous layer. Variables in p are 
processed during the top–down pass, so p is simply succes-
sively popped. Quantifiers in q are required during the bot-
tom–up pass, so, during the top–down pass, q is successively 
reversed into q′.

F is an ordered list of Boolean expressions, correspond-
ing to the nodes of the corresponding layer in the underlying 
virtual tree. Initially, F = (f ) , a singleton list containing the 
formula given by the problem. F changes 2n + 1 times, by 
way of the higher-order function map: (i) during the n top-
down steps, each expression f ∈ F is replaced by the sub-
stitutions pair f [x ∶= 0], f [x ∶= 1] ; (ii) at the leaves level, 
when all variables have been assigned, each f is replaced by 
its evaluated Boolean value; and (iii) during the n bottom–up 
steps, each consecutive pair of Boolean values is replaced 
by either an ∧ or ∨ result, depending on the corresponding 
quantifier, ∀ or ∃ . (This quantifier was saved in q′ during the 
top-down pass.)

Assuming that enough processing elements are availa-
ble, a parallel execution of this nonrecursive solution trades 
space for time, running in O(n) time and using O(2n) space. 
Our cP solution follows the same process as the nonrecursive 
solution in Table 3.

2.2  cP systems

P systems, also known as membrane computing, is a generic 
framework for designing computational models inspired by 
biology. Similar to many other P systems variants, cP sys-
tems (i) assume access to unbounded resources, such as 
space and computing power; (ii) organise top-level cells into 
digraph-like structures (Fig. 3); and (iii) evolve by applying 
formal multiset rewriting rules, with additional messaging 
primitives between top cells.

Table 2  Recursive 
algorithm for QSAT: 
q = quantifiers ; p = variables ; 
f = unquantified Boolean expression

(a) (b) (c)

Fig. 1  QSAT tree for Formula (1): ∀x
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cP top cells contain multisets of atoms and labelled sub-
cells, which are compound objects similar to ground terms 
used in logic programming (Prolog). However, unlike Pro-
log terms, cP terms are strictly multiset based, thus totally 

unordered and allowing repetitions. Collectively, cP cells 
(top cells and sub-cells) correspond to cells or membranes 
used by other P system variants.

cP rules are high level, supporting one-way first-order 
syntactic unification (which is similar to pattern matching 
in functional programming). Unlike other P systems vari-
ants, only cP top cells have rewriting rules. Sub-cells in 
cP systems do NOT have own rules and are only used to 
represent local data.

We now present a brief overview of cP systems, only 
focusing on the details needed here, specifically ignor-
ing the inter-top-cell relations and messaging rules, as our 
solution here consists of one single top-cell.

Using a BNF-like notation, Tables 4 and 5 describe 
basic structures of cP systems, as used in this paper. The 
grammar presented in Table 4 describes the contents for 
top cells and sub-cells, i.e., how data are stored in cP mul-
tisets. The grammar presented in Table 5 describes the 
high-level rewriting rules for cP systems.

Table 3  Nonrecursive 
pseudocode—layer by 
layer in both sequential 
and parallel modes: 
q = quantifiers ; p = variables ; 
F = list of unquantified Boolean expressions

Fig. 3  High-level view of our top-level cell, as initialised for Formula 
(1) (Cf. Table 8)

Table 4  BNF grammar for cP 
top cells
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We use standard conventions: the symbol � denotes the 
empty multiset; dots (‘… ’) represent zero or more repeti-
tions; atoms are denoted by lower case characters (letters 
or other symbols); and variables are denoted by uppercase 
letters, except the special discard variable, denoted by an 
underscore ( ).

Top cells have states and contain multisets of literal atoms 
and recursively nested compound terms called sub-cells. 
Functors are sub-cell labels, and their multiset arguments 
are enclosed in parentheses “()” Top-cell contents are all 
ground, i.e. cannot contain variables.

Rules are applied in state-based weak priority order (see 
example 5 in Sect. 2.3) and contain compound terms called 
vterms, which are similar to the sub-cell terms, but with 
one critical distinction: vterms may also include variables. 
State-based weak priority order enables simple but powerful 
application flow control, specifically branching (if then else) 
and various looping constructs.

As already mentioned, rules are applied using pattern 
matching unification between terms, and specifically unifica-
tion between variables and other terms (atom or compound). 
Rules can be applied in two modes: in exactly-once (1) or 
max-parallel mode (+).

As usually, before a rule can be applied, it must match, by 
way of unification, all conditions specified by its left-hand 
side, and its promoter and inhibitor constraints. There are 
two cases: (i) vterm arguments enclosed in round paren-
theses ’()’ require complete match and (i) vterm arguments 
enclosed in curly braces ’{}’ require partial match, of only 
the specified contents. The second feature is not frequently 
needed, but enables partial sub-cell transformations simi-
lar to those of other P system variants, without locking 
the whole sub-cell; this is further described under the title 
microsurgery.

We emphasise that cP terms and vterms are strictly based 
on multisets. However, we can straightforwardly emulate 
other structures, such as numbers and even ordered lists. 
Essentially, numbers can be represented as multisets solely 
consisting of repeated occurrences of a designated unary 
digit, typically 1. We do not use lists here, so this topic is 
not discussed.

Terms with repeated arguments seem to require an order 
concept. However, we consider that these are just conveni-
ent shorthands to nested multiset-based labelled terms. 

For example, the term a(bc)(de) is actually a shorthand for 
a(bc ⋅ (de)) , where the dot functor ( ⋅ ) is system provided. 
Thus, if a is a sub-cell at nesting depth 1, then b and d are at 
nesting depths 2 and 3, respectively.

We conclude this subsection by noting that, unlike most 
other P system variants, cP terms and rules allow crisp algo-
rithm descriptions, with constant-size alphabets, constant-
size rulesets and bounded membrane nesting, independent 
of the size of the problem and number of cells in the system. 
The cP semantics will be further clarified in the following 
subsection, by way of examples.

2.3  Examples of cP rules

We now present a few simple but typical rules for 
cP systems. 

1. Change state from s0 to s1 and rewrite one pair of a and 
b into one c, provided that at least one p is present (and 
will stay unchanged in the cell):

  s0 a b →1 s1 c ∣ p
2. Change state from s0 to s1 and rewrite all a, b pairs into 

c’s, in the max-parallel mode, provided that at least one 
p is present:

  s0 a b →+ s1 c ∣ p
3. Change state from s0 to s1 , rewrite one compound term 

a() by adding one 1 to its contents; variable X is unified 
to the actual contents of a.

  s0 a(X) →1 s1 a(X1)
  If the current a already has two copies of 1, i.e. a(11) , 

then the result will be an updated copy with three 1’s, 
i.e. a(111)—thereby incrementing its base 1 contents.

4. Conditionally change state from s0 to s1 , rewrite one 
compound term a() by removing one 1 from its contents, 
if there is at least one 1 among its contents.

  s0 a(Y1) →1 s1 a(Y)
  For example, if the current a already has three cop-

ies of 1 , i.e. a(111) , the result will be an updated copy 
with two 1’s, i.e. a(11)—thereby decrementing its base 
1 contents. The rule does NOT apply if the cell does not 
contain at least one 1.

Table 5  Restricted BNF 
grammar for cP rules, omitting 
inter-cell messaging and other 
features not used here
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5. A complex operation, highlighting the weak priority 
order, with resulting state depending on the current cell 
contents.

  s0 a →1 s1 e     (1)
  s0 b →1 s2 f     (2)
  s0 c →1 s1 g     (3) 

(a) If the cell contains a and c, then rules (1) and (3) 
apply; new state: s1 , new contents: e and g.

(b) If the cell contains b and c, then only rule (2) 
applies; new state: s2 , new contents: f and c. 
Rule (3) is NOT applicable, because rule (2) has 
already set the target state to s2.

(c) If the cell contains a, b and c, then only rules (1) 
and (3) apply; new state: s1 , new contents: e, b and 
g. Rule (2) is NOT applicable, because rule (1) 
has already set the target state to s1.

6. Microsurgery is denoted by curly braces { } instead of 
round parentheses ( ) and enables processing of parts of 
the inner contents, without locking the rest [16]. Micro-
surgery allows us to use sub-cells in the same style as 
we use our own top cells, and also independent cells in 
other P systems variants. Without microsurgery, this will 
NOT be possible, because sub-cells do NOT have own 
rules—instead, their contents need to be manipulated 
solely by rules of their containing top cells.

  For example, the rules:
  s0 x{a} →+ x{b}
  s0 x{c} →+ x{d}
  applied to the term x(a a c c c e) will in one single 

step result in x(b b d d d e). Without microsurgery, this 
requires more steps and more complex rules.

  Note that microsurgical applications are already the 
default for top cells, where we do apply partial matching, 
without locking all the contents. However, for simplic-
ity, we do not use explicit curly braces for the outermost 
top-cell. For example, these two rules would in fact be 
equivalent:

  s0 a → s0 b ≡ s0 a → s0 b,

3  cP Solution and examples

In this section, we discuss our cP system for solving QSAT 
for n ≥ 1 , and we illustrate its evolution on Formulae (1, 2), 
recalled here:

∀x1 ∃ x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2) (1)
∃x1 ∀ x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2) (2)
We only use one single top-level cell, and we closely  fol-

low the parallel pseudocode algorithm listed in Table 3: a 
layer-by-layer sweep over a virtual tree, in two passes—first 
top-down and then bottom-up.

We use six states, {s1, s2, ..., s6} , where s1 is the initial 
state, and s6 is the final. The ruleset is shown in two list-
ings: the top-down pass in Table 9 and the bottom-up pass 
in Table 11. The evolution corresponding to Formula (1) is 
illustrated in the following tables: Table 8 shows the initial 
cell contents and state; then, Table 10 traces the top–down 
evolution, and Table 12 traces the bottom–up evolution. 
Table 13 traces the bottom–up evolution of the slightly dif-
ferent Formula (2).

3.1  Lookup tables

For efficiency, our cP solution uses two read-only “tables”. 
Four sub-cells y()()() form a lookup table for Boolean iden-
tity and negation operations. Table 6 shows their contents 
and their interpretation.

Eight sub-cells w()()()() form a lookup table for Boolean 
∧ and ∨ operations, the actual operation being selected on 
the corresponding quantifier. Table 7 shows their contents 
and their interpretation.

3.2  Prefixes and tree levels

During the top-down pass, sub-cell �() is a counter that indi-
cates the tree-level depth, initially �(n) , where n is the actual 
number of quantifiers (or variables).

Sub-cells p()(), q()() form 1-based associative arrays that 
encode the given prefix: p()() contains variables, q()() con-
tains quantifiers. These sub-cells are used as “horizontal” 
(not nested) stacks, where the top is indicated by the current 
value of counter �() . During the top-down pass, the top ele-
ments of p()() are temporarily popped into h(), and q()() is 

Table 6  Cells y form a lookup 
table for Boolean identity and 
negation operations: V = �� 
S = +���� K���� K̄

K S V y cells contents

0 + 0 y(0)(+)(0)

0 − 1 y(0)(−)(1)

1 + 1 y(1)(+)(1)

1 − 0 y(1)(−)(0)

Table 7  Cells w form a lookup 
table for Boolean ∨ and ∧ 
operations: V = if Q = ∀ then 
V ′ ∧ V ′′ else V ′ ∨ V ′′

Q V
′
V
′′ V w cells contents

∀ 0 0 0 w(∀)(0)(0)(0)

∀ 0 1 0 w(∀)(0)(1)(0)

∀ 1 0 0 w(∀)(1)(0)(0)

∀ 1 1 1 w(∀)(1)(1)(1)

∃ 0 0 0 w(∃)(0)(0)(0)

∃ 0 1 1 w(∃)(0)(1)(1)

∃ 1 0 1 w(∃)(1)(0)(1)

∃ 1 1 1 w(∃)(1)(1)(1)
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reversed into a similar “horizontal” stack, q�()() , whose top 
is indicated by counter �()—stack q�()() will be used in the 
bottom-up pass.

Stacks p()(), q()(), q�()() closely match their namesake 
variables used in Table 3. Together with their associated 
counters, �() and �() , these play the role of global variables 
controlling the two passes.

3.3  Literals encoding and formula sub‑cells

Formula literals, i.e. variables and their negations, are given 
via sub-cells x()(). We use shorthand notations that closely 
match the mathematical expression and keep our expression 
crisp:

x1 ≡ x(1)(+)

x̄2 ≡ x(11)(−)

This is just a notation convenience, and our rules actually 
assume the longer version when being matched.

Clauses are given via sub-cells c(), having literals as con-
tents, with implicitly assumed Boolean or’s. For example:

(x1 ∨ x̄2) ≡ c(x1x̄2) ≡ c(x(1)(+) x(11)(−))

The contents of c()’s are multisets; thus, the order of lit-
erals is irrelevant, but we usually keep it in our listings, for 
more readability.

Unquantified formulae are given via sub-cells f(). Ini-
tially, sub-cells f() contain just multisets of clauses. For 
example, at the root of the virtual tree, the unquantified part 
of Formula (1) is encoded as:

f (c(x1 x2) c(x1 x̄2))

The contained clauses are partially evaluated during the 
top-down pass, and new contents appear in f() that indicate 
the path to the root and the final value.

Sub-cells a()() form a 1-based associative array that 
indicates a complete path to the root and are used as “hori-
zontal” (not-nested) stacks, with the top indicated by the 
contents of counter �()—similar to the above-mentioned 
global q�()() sub-cells. For example, ignoring its other con-
tents, a formula associated with the node on leftmost path 
01 looks like this:

f (... a(11)(1) a(1)(0))

Table 8  Contents of 
our top-level cell, as 
initialised for Formula (1): 
∀x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2)

Table 9  Top–down rules. 
The three-step loop 
s1 → s2 → s3 → s1 is repeated 
n times, followed by the exit 
s1 → s4
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The contents inside the first parentheses indicate the 
depths (here 2 and 1), while the content inside the second 
parentheses indicates the assigned values (here 1 and 0).

Note that the layers are processed in the order of vari-
ables given by the prefix—this will be discussed shortly. 
This need not be in increasing order, but usually is. Thus, 
the above a()’s may indicate the tree node for x1 = 0, x2 = 1 , 
(Cf. Figures 1, 2).

The a()()’s are created during the top-down pass and 
effectively used during the bottom-up pass, to properly 
match sibling nodes.

At the tree leaves level, the formulae are completely 
evaluated and their values are stored in v() sub-cells. For 
example, under the above-mentioned sample assumptions:

f (v(0)... a(11)(1) a(1)(0))

⟺ (x1 ∨ x2) ∧ (x1 ∨ x̄2)[x1 ∶= 0, x2 ∶= 1] ≡ (0 ∨ 1) ∧ (0 ∨ 1̄) ≡ 0

To help an efficient top-down formula substitution split, 
such as [xi = 0] vs. [xi ∶= 1] , we also use temporary variants 
of f with two distinct arguments, f()().

Cells f() closely match their namesake variables used in 
Table 3.

Table 10  Top–down traces for 
Formula (1, ∀ ∃ ). Continued 
from Table 8. (Cf. tree (b) in 
Figure 1)

Table 11  Bottom–up rules. 
One-step loop s5 → s5 repeated 
n times
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3.4  Top–down pass

The rules for the top–down pass are listed in Table 9. 
Essentially, we have a loop consisting of three steps 
( s1 → s2 → s3 → s1 ) that is repeated n times and a subse-
quent one-step evaluation ( s1 → s4 ). These steps closely fol-
low the top-down pass of the parallel algorithm presented 
in Table 3.

Rules (1, 2, 3) form an if then else construct. If we have 
not yet processed all quantifiers and variables, condition 
detected by a nonempty �() counter, then rule (1) applies, 

resetting our global control variables and starting one more 
loop iteration ( s1 → s2 ). Sub-cell h() is updated to the cur-
rent variable to be substituted, say h(xi) , and its associated 
quantifier is popped into stack q�()() , to be used in the bot-
tom–up pass.

Otherwise, if the quantifiers and variables stacks are 
empty, we exit the loop via rules (2,3), applied in max-par-
allel mode. Formulae f() that after partial evaluations are 
false, detected by at least one empty c() clause are tagged 
by one v(0 ) sub-cell. The other formulae, which are true, are 
tagged by one v(1 ) sub-cell.

Table 12  Bottom–up traces for 
Formula (1, ∀ ∃ ). Continued 
from Table 10. Final result is 
false. (Cf. tree (c) in Figure 1)

Table 13  Bottom–up traces for 
Formula (2, ∃ ∀ ). Continued 
from Table 10, with different 
q�()()’s. Final result is true. (Cf. 
tree (c) in Figure 2)
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Together, rules  (4,5,6) form the main body of the 
top–down loop ( s2 → s3 → s1 ). They run in max-parallel 
mode and create the next level down the tree, discarding the 
current level. Each formula f() is split into two children for-
mulae, by two substitutions, xi ∶= 0, xi ∶= 1 , and new a()() 
sub-cells are created, to record the corresponding tree paths. 
These paths tags a()() will be essentially used during the 
bottom–up pass, when these two children will be recognised 
as siblings and merged together (despite being here thrown 
into an unordered multiset).

Using the lookup table y()()(), rules (5,6) also perform 
straightforward partial evaluations, based on the values that 
are assigned to variable xi.

Table 10 illustrates this top–down pass by traces for For-
mula (1), starting from the initial state shown in Table 8.

3.5  Bottom–up evaluation

The rules for the top–down traversal pass are listed in 
Table 11. Essentially, we have a one-step transition from 
the top–down pass ( s4 → s5 ), followed by a one-step loop 
( s5 → s5 ) that is repeated n times, and a one-step exit to 
the final state ( s5 → s6 ). These steps closely follow the bot-
tom–up pass of the parallel algorithm presented in Table 3.

Rule (7) runs in max-parallel mode and performs a clean-
up step ( s4 → s5 ), removing unwanted material from all sub-
cells f().

Rules (8,9,10) form a repeat until bottom–up loop, with 
the exit condition checked by rules (9,10). This works, as 
we assume that n ≥ 1.

Rule (8) forms the main body of this bottom–up loop, 
s5 → s5 , that is repeated n times and runs in max parallel 
mode. This rule creates the next level up the tree, discarding 
the current level.

Each pair of sibling formulae f() is merged and evaluated, 
using the corresponding quantifier from stack q�()() (which 
was saved during the top–down pass). Because we use mul-
tisets, we cannot a sequence-based pairing, as in Table 3. 
From all f()()’s in the current multiset content, siblings are 
grouped together according to their path to root records, 
given by their contained a()()’s. The evaluation is performed 
with the help from the look-up table w()()()().

Rules (9,10) form an if then else loop end check. If we are 
not yet at the root level, condition detected by a nonempty 
counter � , then rule (9) resumes the loop, s5 → s5 . Other-
wise, rule (10) applies and exits, cleaning all remaining stuff 
and recording the final value in v().

Table 12 illustrates this bottom–up pass by traces for For-
mula (1, ∀ ∃ ), starting from the end state shown in Table 12. 
The evolution for the related Formula (2, ∃ ∀ ) is only mar-
ginally different, but still significantly in the bottom-up pass, 
when we actually use quantifiers; its bottom-up traces are 
shown in Table 13.

3.6  Analysis

Proposition 1 Our solution uses a custom alphabet size of 
19.

The state alphabet is {s1, s2, s3, s4, s5, s6}.
Our custom alphabet is {∃,∀,+,−, 0, 1, f , c, q, q�, p, x, h,

y,w, �,�, a, v}.   ◻

Proposition 2 Our solution uses a ruleset containing ten 
rules.

Top–down pass uses six rules (Table 9), and bottom–up 
pass uses four (Table 11), making a total of ten rules.  
 ◻

Proposition 3 Total runtime is 4n + 3.

Top–down runtime (Table  9): The top–down loop 
s1 → s2 → s3 → s1 runs n times. The transition s1 → s4 runs 
once, making this pass take 3n + 1 steps.

Bottom–up runtime (Table 11): The transitions s4 → s5 
and s5 → s6 run once. The bottom–up loop s5 → s5 runs n 
times, making this pass take n + 2 steps.

Thus, the total runtime is O(n) = 4n + 3 .   ◻

Proposition 4 The evolution of our ruleset is totally 
deterministic.

Rules that are applicable exactly once ( →1 ) use singleton 
terms and do not allow any possible choice. Rules that are 
applicable in the max-parallel mode ( →+ ) make the same 
multiset transformations, regardless of any hypothetical 
application order.   ◻

Proposition 5 Maximum membrane nesting depth is 6.

The largest nesting depth in Table 10 occurs in:

and other similar cells. Denoting nesting depth by � , we 
have: �(f ) = 1 , �(c) = 3 , �(x) = 4 , �(+) = 6 . This example 
is for n = 2 ; however, for larger n, the nesting depth will 
NOT increase, but rather the “horizontal” number of cells 
at existing levels.   ◻

f (0)(c(x2) c(x̄2) a(11)(0) a(1)(0))

≡ f (0)(c(x(11)(+)) c(x(11)(−)) a(11)(0) a(1)(0))
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4  Conclusion and future work

We have presented an efficient deterministic cP solution to 
QSAT that runs in 4n + 3 = O(n) steps, at same order of 
magnitude as the other P system solutions. However, in con-
trast to other confluent P system solutions, our cP solution 
uses a small constant alphabet size (19), a small constant 
number of rules (10) and very small constant membrane 
nesting depth (6), independent on the problem size.

We conclude by noting the following open problems, 
which may need further investigations: Is it possible to 
design an equivalent cP system, still deterministic, “with an 
even smaller nesting depth bound, e.g. three or even two?

How would non-confluent designs affect the power of 
cP systems? Are cP system inhibitors really needed? We 
note that our solution does not use any, and the presence of 
inhibitors will likely negatively affect the simulation runtime 
on existing hardware and software platforms.

Is a sub-linear runtime solution possible, using cP sys-
tems and/or another P systems variant? We note this can be 
viewed as seeing whether cP systems agree with the parallel 
computation thesis [15]. This also leads to the question on 
whether or not cP systems are polynomial equivalent to the 
other P system variants.
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