
Vol.:(0123456789)1 3

Journal of Membrane Computing (2020) 2:355–368
https://doi.org/10.1007/s41965-020-00050-2

REGULAR PAPER

A formal framework for spiking neural P systems

Sergey Verlan1  · Rudolf Freund2  · Artiom Alhazov3  · Sergiu Ivanov4  · Linqiang Pan5 

Received: 16 June 2020 / Accepted: 30 September 2020 / Published online: 23 October 2020
© Springer Nature Singapore Pte Ltd. 2020

Abstract
Spiking neural P systems are a class of distributed parallel computing models, inspired by the way in which neurons process
information and communicate with each other by means of spikes. In 2007, Freund and Verlan developed a formal framework
for P systems to capture most of the essential features of P systems and to define their functioning in a formal way. In this
work, we present an extension of the formal framework related to spiking neural P systems by considering the applicability
of each rule to be controlled by specific conditions on the current contents of the cells. The main objective of this exten-
sion is to also capture spiking neural P systems in the formal framework. Another goal of our extension is to incorporate
the notions of input and output. Finally, we also show that in the case of spiking neural P systems, the rules have a rather
simple form and in that way spiking neural P systems correspond to vector addition systems where the application of rules
is controlled by semi-linear sets.

Keywords  Natural computing · Membrane computing · Spiking neural P system · Formal framework

1  Introduction

Based on the biological background of neurons sending elec-
trical impulses along axons to other neurons, spiking neural
P systems were introduced in [17]. In spiking neural P sys-
tems, the contents of a cell—a neuron—consists of a number
of so-called spikes. The rules assigned to a cell allow for
sending information to other neurons in the form of spikes
corresponding to electrical impulses, which are summed up
in the target cells. The application of the rules depends on
the current contents of the neuron and in the general case is
described by a filter language (e.g., a regular set).

As inspired from biology, the cell sending out spikes may
be closed for a specific time period corresponding to the
refractory period of a neuron. During this refractory period,
the neuron is closed for new input and cannot get excited—
fire—for spiking. As already shown in [14], considering such
a delay usually is not needed to obtain the desired results,
hence, we will not consider this feature in the following.

Since their introduction, many variants of spiking neu-
ral P systems have been considered. As a first example, we
cite spiking neural P systems with extended rules [6], which
allow the rules to produce more than one spike in each step.
Another example are extended spiking neural P systems,
which allow the rules to send different numbers of spikes

 *	 Sergey Verlan
	 verlan@u‑pec.fr

	 Rudolf Freund
	 rudi@emcc.at

	 Artiom Alhazov
	 artiom@math.md

	 Sergiu Ivanov
	 sergiu.ivanov@univ‑evry.fr

	 Linqiang Pan
	 lqpan@mail.hust.edu.cn

1	 Univ Paris Est Creteil, LACL, F‑94010 Creteil, France
2	 Faculty of Informatics, TU Wien, Favoritenstraße 9–11,

1040 Wien, Austria
3	 Vladimir Andrunachievici Institute of Mathematics

and Computer Science, Academiei 5, MD‑2028 Chişinău,
Moldova

4	 IBISC, Univ. Évry, Université Paris-Saclay, 23 Boulevard de
France, 91025 Évry, France

5	 Key Laboratory of Image Information Processing
and Intelligent Control of Education Ministry of China,
School of Artificial Intelligence and Automation, Huazhong
University of Science and Technology, Wuhan 430074,
Hubei, China

http://orcid.org/0000-0001-7800-1618
https://orcid.org/0000-0003-1255-1953
https://orcid.org/0000-0002-6184-3971
https://orcid.org/0000-0002-1537-6508
https://orcid.org/0000-0002-4554-455X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-020-00050-2&domain=pdf

356	 S. Verlan et al.

1 3

along the axons to different neurons depending on the rule
applied in a cell [2].

Cell-like spiking neural P systems reflect the feature of a
hierarchical arrangement of neurons in cell-like P systems
[36]. Spiking neural P systems with structural plasticity
incorporate the idea of self-organization and self-adaptiv-
ity from artificial neural networks [3, 4]. Spiking neural P
systems with communication on request are inspired by the
request-response patterns in parallel cooperating grammar
systems [20, 34]. Spiking neural P systems with polariza-
tions are inspired by polarized cell membranes of a neu-
ron [35]. Coupled neural P systems follow Eckhorn’s neu-
ron model [24].

In the basic model of spiking neural P systems, at each
step, for each cell with applicable rules, one of the rules non-
deterministically is chosen to be applied, while all neurons
work simultaneously in the sense that each cell in which a
rule can be applied must apply one of the rules applicable in
the neuron. This condition for the standard derivation mode
of spiking neural P systems—sequential application of rules
in each cell, but maximal parallelism on the level of the
whole system—may be alleviated by considering asynchro-
nous [5] (any subset of the cells applies a rule) or sequential
[13] (only one cell applies a rule) spiking neural P systems.

With regard to the complexity of communication, the
systems in [6] allow more than one spike to be sent along
an axon, whereas in [2] the number of spikes sent along dif-
ferent axons even depends on the applied rule.

A first overview on results for spiking neural P systems
can be found in Chapter 13 of the Handbook of Membrane
Computing [26]. A rather extensive bibliography on spiking
neural P systems was published in the first volume of the
Bulletin of the International Membrane Computing Society
2016, see [22]. A recent survey can be found in [27].

The richness of variants of spiking neural P systems calls
for the introduction of a unifying framework, capturing the
various possible features on a common formal basis. Such
formal groundwork typically ensures that the semantics is
consistent across different definitions, and thereby allows
for comparing different extensions and ingredients. In [11],
a formal framework for P systems was already developed
bringing a formal basis for comparing different variants and
discussing numerous extensions for P systems, see [7, 9, 10,
12, 30]. Here, we continue this line of research by extending
the formal framework to capture several basic features of
spiking neural P systems, but also allowing for many other
new variants and extensions.

The paper is organized as follows. Section 2 recalls
notions from formal language theory. Section 3 introduces
the extensions we propose to the formal framework. It con-
tains all necessary definitions (sometimes recalling those
from [11]). Section 4 simplifies the notations and the defi-
nitions for the case of spiking neural P systems, i.e., using

a single letter alphabet. Section 5 shows how different
extensions of the model of spiking neural P systems can be
expressed in the new framework.

We remark that a preliminary version of this paper was
presented in 2019 at the Conference of Membrane Comput-
ing (CMC 2019) in Curtea de Argeş [31].

2 � Preliminaries

The set of natural numbers, i.e., the set of non-negative
integers, is denoted by ℕ . Moreover, ℕ∞ ∶= ℕ ∪ {∞} . The
finite set of natural numbers {1,… , n} will also be written
as [1..n]. We will use the standard notation 2[1..n] to denote
the set of subsets of numbers from 1 to n.

The set of all finite multisets over the set V is denoted by
V◦ and the set of vectors of finite multisets over V of dimen-
sion n by V◦n . The set of finite languages over the alphabet
T is denoted by FIN(T) , the set of regular languages over
the alphabet T by REG(T) . The families of finite and regular
languages over arbitrary alphabets are denoted by FIN and
REG , respectively. In general, we use the notation F(T) to
specify a family of languages of a specific type over the
alphabet T and F to specify the family of languages of that
specific type. The corresponding families of multiset lan-
guages are denoted by F(T)◦ and F◦ , respectively.

We remark that regular expressions are a way to specify
regular languages. The regular expressions over an alpha-
bet T are denoted by REGEX(T) . For any E ∈ REGEX(T) ,
L(E) ⊆ T∗ denotes the regular language over T correspond-
ing to the regular expression E, whereas L◦(E) ⊆ T◦ denotes
the corresponding regular multiset language. We remark that
if |T| = 1 , then L◦(E) can be identified with L(E).

3 � The definition of the formal framework

We extend the definitions from [11] in order to be able to
handle control conditions, as for example the regular con-
ditions used in the standard definition of many variants of
spiking neural P systems. We also remark that our definition
will only include spiking neural P systems without delays.
While it may not be too difficult to integrate the notion of
delay in the definition, it makes all corresponding notations
much more complex. Not considering delays is not very
restrictive, as it was shown in [14] that for any spiking neu-
ral P system with delays there exists an equivalent spiking
neural P system without delays. We would like to notice that
the corresponding proofs are not constructive, so in practice
it might be extremely difficult to transform a system with
delays into a system without delays. Another remark con-
cerns the use of forgetting rules. They are special in the spik-
ing framework, as normally any spiking rule should produce

357A formal framework for spiking neural P systems﻿	

1 3

at least one spike, whereas forgetting rules just consume the
finite number of spikes present in the underlying neuron.
In our framework, there is no such restriction, so forgetting
rules just correspond to rules with empty right-hand side.

3.1 � Basic structure

We start with a new definition of an interaction rule.

Definition 1  Let V be an alphabet and n > 0 . An interaction
rule of dimension n is defined as

where X =
(
X1,… ,Xn

)
 , Y =

(
Y1,… , Yn

)
 , Xi, Yi ∈ V◦ ,

1 ≤ i ≤ n , are n-vectors of multisets over V, and K ⊆ V◦n ,
i.e., K consists of n-vectors with components from V◦.

Remark 1  In spiking neural P systems, the control condition
K usually is the Cartesian product of independent regular
sets Ki ⊆ V◦ , where each Ki is given by a regular expression
Ei ∈ REGEX(V) such that L◦(Ei) = Ki , 1 ≤ i ≤ n.

Moreover, in that case, the rule (X → Y;K) can be writ-
ten as

because each rule is assigned to a specific neuron i, i.e., we
are only interested in the contents of neuron i and whether
this contents fulfills the control condition to be in L◦(Ei) or
not.

Since in most of the cases the corresponding vectors are
sparse, we will also use the notation

for a rule (X → Y;K) . For any 1 ≤ i ≤ n , whenever possible,
we will omit (i,Ki) , if Ki = ℕ , and we will also not indicate
(i,Xi) or (i, Yi) when such a multiset is empty.

Remark 2  To keep computability, in spiking neural P sys-
tems, the control condition K usually is assumed to be a
recursive set; compare this with the concepts of control sets
elaborated in [8] as part of a general framework for regulated
rewriting.

Next, we adapt the definition of a network of cells from
[11] in order to incorporate specific concepts for control
languages as well as for input and output:

Definition 2  An F -controlled network of cells of degree
n ≥ 1 is a construct:

(X → Y;K)

i ∶
(
Xi → Y;Ki

)

(1,X1)… (n,Xn) → (1, Y1)… (n, Yn);(1,K1)… (n,Kn)

where

1.	 n is the number of cells;
2.	 V is a finite alphabet;
3.	 w =

(
w1,… ,wn

)
 , where wi ∈ V◦ , for 1 ≤ i ≤ n , is the

finite multiset initially assigned to cell i;
4.	 cin ⊆ {1,… , n} is the set of input cells;
5.	 cout ⊆ {1,… , n} is the set of output cells;
6.	 R is a finite set of interaction rules of the form given in

Definition 1;
7.	 F is a family of control languages containing at least all

the sets K appearing in the rules in R.

In most variants of P systems, the notion of environ-
ment is used, which can be seen as an unlimited storage of
objects of some type. At the same time, the case of spiking
neural P systems is a notorious example of a variant of P
systems that does not use this concept. Since our aim is to
consider an extension of the formal framework introduced
in [11] we give the corresponding definitions in order to
complete the picture.

Definition 3  An F -controlled network of cells of degree
n ≥ 1 with environment is a construct:

where

1.	 � is an F -controlled network of cells of degree n,
2.	 ��� =

(
���1,… , ���n

)
 , ��� i ⊆ V  , for 1 ≤ i ≤ n , is the set

of symbols occurring infinitely often in cell i (in most
of the cases, only one cell, called the environment, will
contain symbols occurring with infinite multiplicity);

We now adapt the definition of a configuration from [11]:

Definition 4  Consider an F -controlled network of cells
� =

(
n,V ,w, cin, cout,R

)
 . Then a configuration C of � is

an n-tuple
(
u1,… , un

)
 of finite multisets over V with ui ∈ V◦ ,

1 ≤ i ≤ n.

When using the environment, as in [11], the definition is
slightly different:

Definition 5  Consider an F-controlled network of cells with
environment:

� =
(
n,V ,w, cin, cout,R

)

���� = (� , ���)

���� =
(
(n,V ,w, cin, cout,R), ���

)
.

358	 S. Verlan et al.

1 3

A full configuration C of ���� is an n-tuple
(
u1,… , un

)
 of

(possibly) infinite multisets over V with ui ∈ V◦ ∪ V{∞} ,
1 ≤ i ≤ n.

We will also consider the configuration �� �� =
(
u�
1
,… , u�

n

)

as the finite part of the full configuration of ���� , i.e., satisfy-
ing ui = u�

i
∪ ��� i

∞ and u�
i
∩ ��� i = � , 1 ≤ i ≤ n.

3.2 � Rule application and derivation modes

The next definition defines the applicability of a rule, again
adapting the corresponding definition from [11] by replacing
permitting and forbidding conditions by control languages.

Definition 6  We say that an interaction rule r = (X → Y;K)
is eligible for the configuration C with C = (u1,… , un) if and
only if for all i, 1 ≤ i ≤ n , we have

–	 Xi ⊆ ui ( Xi is a submultiset of ui ) and
–	 ui ∈ Ki ( ui belongs to the control language Ki).

When using environment, the eligibility condition should
be completed by an additional item: ui ∩

(
V − Infi

)
≠ � , for

at least one i, 1 ≤ i ≤ n . This explicitly forbids to apply a
rule that uses infinite symbols only in its left-hand side, thus
allowing for properly defining the applicability condition for
unbounded derivation modes. However, the classical spiking
derivation mode is bounded, disallowing parallelism inside a
neuron (as discussed later), hence, in such a particular case
this additional requirement is not needed, and even rules
with empty left-hand side make sense.

The application of a group of rules and the definition of
the derivation modes can be taken over from [11] as well;
some important details are recalled below.

Definition 7  Let � be an F-controlled network of cells and
C be a configuration over � . Let R′ be a multiset of rules
from Eligible(� ,C) , i.e., a multiset of eligible rules. Moreo-
ver, let

If X ⊆ C , we say that the multiset of rules R′ is applicable
to C.

Hence, in order for a multiset of rules to be applicable,
each rule should be eligible, and moreover, there should be
enough objects in the configuration to cover the sum of all
left-hand sides of the rules in R′.

The set of all multisets of rules applicable to C is
denoted by Appl(� ,C) . It is clear that in general the car-
dinality of this set may be greater than one, i.e., usually

X =
∑

(Xr→Yr ;Kr)∈R
�

Xr.

for a configuration C there are several different multisets
of rules that can be applied to C. In particular, for a mul-
tiset of rules R′ any submultiset R′′ ⊆ R′ also belongs to
Appl(� ,C).

Example 1  Let V = {a, b, c} and n = 3 . Consider rule
r ∶ (X → Y;K) , where X = (a, b, �) , Y = (�, �, c) and
K = (K1,K2,K3) , where K1 = L◦((a2)∗) , K2 = L◦(b(b2)∗) and
K3 = L◦(c+) . Then r is applicable only in configurations hav-
ing an even number of a’s in cell 1, an odd number of b’s in
cell 2 and having no symbols c in cell 3.

The notion of a derivation mode allows for specifying
which types of multisets of rules we are interested in for
the computation.

Definition 8  A derivation mode � is a restriction of the set of
multisets of applicable rules. For an F -controlled network
of cells and C being a configuration over � , in general

denotes the set of multisets of rules in � applicable to the
configuration C according to the derivation mode �.

The derivation mode acts like a filter allowing for keep-
ing only multisets with specific properties. The simplest
way to define a derivation mode is using a set restriction.

In that sense, the simplest mode is the sequential deriva-
tion mode (seq) which allows the application of a single
rule only:

On the other hand, a derivation mode used in many variants
of P systems is the maximally parallel derivation mode max,
according to [11] defined as follows:

The traditional derivation mode used in spiking P systems
can be interpreted as using a special derivation mode called
min1 in [11].

We start with the rules being grouped in partitions; in
spiking neural P systems each partition normally corre-
sponds to the union of rules from one neuron. In the deriva-
tion mode min1 , from each partition a single rule is taken,
whereas as many rules as possible from different partitions
have to be chosen. In fact this means that on the level of the
cells we apply rules in a sequential way, whereas seen from
the level of the system the partitions have to be used in a
maximal way. This is already emphasized in the first paper
on spiking neural P systems [17].

Appl(𝛱 ,C, 𝛿) ⊆ Appl(𝛱 ,C)

Appl(� ,C, seq) = {R ∈ Appl(� ,C) ∣ |R| = 1}.

Appl(𝛱 ,C, max) ={R ∈ Appl(𝛱 ,C) ∣ ∄R� ∈ Appl(𝛱 ,C)

such that R� ⊃ R}.

359A formal framework for spiking neural P systems﻿	

1 3

Now let us suppose that the set of rules R contains n
partitions (neurons) denoted by Ri , 1 ≤ i ≤ n . Then the
derivation mode min1 is defined as follows:

We remark that if one considers a different partitioning,
where each rule belongs to a different partition (hence there
is one rule per partition), then the corresponding min1 deri-
vation mode is called set-maximal (or also flat) derivation
mode [21, 32].

Definition 9  In the following, an F -controlled network of
cells of degree n working over the alphabet V in the deriva-
tion mode � is written as

with � =
(
n,V ,w, cin, cout,R

)
 being as in Definition 2.

The class of all F-controlled networks of cells of degree
n working over the alphabet V in the derivation mode � is
denoted by

3.3 � Computation and input/output

In [11], the computation of a network of cells is performed
as a sequence of applications of applicable multisets of
rules, starting from some initial configuration, until a halt-
ing condition is met, for example, the standard total halt-
ing, when no rule is applicable anymore. In the case of
spiking neural P systems and the generalized model of F
-controlled networks of cells as considered in this paper,
also a transducer-like strategy is used to transform an
input into an output. Since the definitions from [11] can-
not handle this aspect, we now present a different notion
of computation.

First, we adapt the definition from [11] for the result of
the application of a multiset of rules.

Definition 10  Consider a network of cells

from ��(n,V ,F, �) as well as a configuration C over � ′
and a multiset of rules R� ∈ Appl(� ,C, �) . We define the
configuration being the result of applying R′ to C as

Appl(𝛱 ,C, min1)

= {R ∈ Appl(𝛱 ,C) ∣ |R ∩ Ri| ≤ 1 for all 1 ≤ i ≤ n and

∄R� ∈ Appl(𝛱 ,C) such that R� ⊃ R and

|R� ∩ Ri| ≤ 1 for all 1 ≤ i ≤ n}.

� � = (� , �) =
(
n,V ,w, cin, cout,R, �

)

��(n,V ,F, �).

� � = (� , �) =
(
n,V ,w, cin, cout,R, �

)

Now, we have to elaborate on the notion of a compu-
tation in � ′ . In an informal way, it starts with the initial
configuration, and in each step t ≥ 0 it may use the contents
of the input cells, which is “fed” by a (recursive) function
����� , and in each step it (possibly) also produces a result
using a recursive function ������ . For traditional variants
of P systems the input function is either empty except at the
beginning of a computation (no input is fed into the sys-
tem during the computation) or very restricted with only a
bounded number of symbols fed into the input cells during
a sequence of computation steps. The output function will
monitor the applicability of rules and then will yield a result
when no rule is applicable anymore (corresponding to the
condition of total halting).

Definition 11  For a given system � � ∈ ��(n,V ,F, �) ,
� � = (� , �) , � =

(
n,V ,w, cin, cout,R

)
 , an input function for

� ′ is a function 𝖨𝗇𝗉𝗎𝗍(� �) ∶ ℕ → V◦n fulfilling the condi-
tion that for all i ∉ cin the component i of the resulting input
vector in V◦n has to be the empty multiset, which means that
at any time only the input cells can receive an input.

Definition 12  Let � � ∈ ��(n,V ,F, �) , � � = (� , �) ,
� =

(
n,V ,w, cin, cout,R

)
 . Then a computation of � ′ using

an input function �����(� �) is performed as follows:

We remark that due to the definition of the input func-
tion �����(� �) , the defined computation may be considered
as infinite, even if Appl(� ,Cj, �) is empty for some j ≥ 0 .
However, in most cases we consider only a finite portion of
the computation, basically until no more rules are applicable,
in which case the (infinite) remainder of the input sequence
is not relevant anymore. Moreover, as already mentioned
above, in most cases the input function is assumed to only
yield non-empty vectors for a finite number of time steps.

Example 2  The standard variant of the computation used in
P systems starts from an initial configuration and iterates the
choice and the application of some multiset of rules. In this
case, the input function is defined as follows:

For all t ≥ 0 , �����(� �)(t) = �n , where ∅n denotes the
n-vector containing only the empty multiset in every com-
ponent. We should call this case empty input.

Apply
(
� �,C,R�

)

=

(
C −

∑

(Xr→Yr ;Kr)∈R
�

Xr +
∑

(Xr→Yr ;Kr)∈R
�

Yr

)

C0 = w + �����(� �)(0)

Cj+1 = �����(� �)(j + 1) + Apply(� �,Cj,R
�),

R� ∈ Appl(� ,Cj, �)

360	 S. Verlan et al.

1 3

Example 3  In some variants of P systems (e.g., some vari-
ants of P automata) as well as in standard variants of spik-
ing neural P systems, the computation starts from an initial
configuration and an initial input, and then just iterates the
choice and the application of some multiset of rules in each
computation step until no rule can be applied anymore. In
this case, the input function �����(� �) is defined as follows:

–	 �����(� �)(0) is the initial input added to the initial vector
w, and

–	 �����(� �)(t) = �n for all t > 0.

This variant may be called a P system with initial input.
Example 4  A spike train input is an input function �����(� �)
satisfying the following property:

We also say that the value of the input is t2 − t1.

We remark that, according to the definitions given above,
also the input cells keep the non-consumed multisets from
the previous steps. It is possible to use a different strategy
by emptying the input cells in cin in every step:

For that purpose, we first define an additional function
� ∶ V◦n × 2[1..n] → V◦n such that �(X, c) empties all com-
ponents of X = (X1,… ,Xn) that are not indicated in c (it is
similar to a projection, where instead of deleting compo-
nents their value is set to ∅ ); formally:

We will also use the notation �(X,¬c) in order to define
the application of � to the complement of c with respect to
[1..n].

Now, we can define a computation with a transient input.

Definition 13  Let � � ∈ ��(n,V ,F, �) , � � = (� , �) ,
� =

(
n,V ,w, cin, cout,R

)
 . Then a computation with transient

input of � ′ is a computation performed as follows using a
transient input function �����(� �) , j ≥ 0:

A system with a transient input is useful for some appli-
cations, e.g., for image processing or deep learning, as it
becomes simpler to feed the data into the system.

The result of the computation, or the output, is defined
as the result of the corresponding output function over the
time series of the values of output cells. The output function

∃t1, t2 ≥ 0, t1 < t2 ∶

{
�����(𝛱 �)(t) ≠ �n t ∈ {t1, t2}
�����(𝛱 �)(t) = �n t ∉ {t1, t2}

∀1 ≤ i ≤ n, �(X, c)i =

{
Xi, if i ∈ c

�, otherwise

C0 = w + �����(� �)(0)

Cj+1 = �����(� �)(j + 1) + �(Apply(� �,Cj,R
�),¬cin),

R� ∈ Appl(� ,Cj, �)

has a memory and can decide on a value based on the whole
history of the computation, which means that the output is
a time series, too. Moreover, the output function may need
(nearly) the entire description of the system, i.e., the number
of cells n, the alphabet V, the set of output cells cout , as well
as the derivation mode � in order to correctly compute the
result(s) of a given computation. Such a complex descrip-
tion is necessary to accommodate generating, accepting and
transducer-like output strategies. For concrete cases, the
definition of the output may be much simpler.

Definition 14  Consider � � ∈ ��(n,V ,F, �) , with
� � = (� , �) , � =

(
n,V ,w, cin, cout,R

)
.

Moreover, let C = C0,… ,Ck,… be a computation of
� ′ on the sequence of inputs given by an input function
�����(� �) . Then, let us denote by C(t) the finite sequence of
configurations C0,… ,Ct , i.e., C(t) = C0,… ,Ct.

An output function for � ′ for a computation C is a
function 𝖮𝗎𝗍𝗉𝗎𝗍(� �,C) ∶ ℕ → S where S is the set con-
taining all possible outputs for computations of � ′ . Such
a function yields a possible result in every time step, i.e.,
������(� �,C)(t) , which in fact, for any t ≥ 0 , can also be
considered as the result of the finite computation C(t). We
may write this fact as

There may be many variants how to obtain the result of an
(infinite) computation C of � ′ ; for example, we may restrict
ourselves to finite computations by using an additional con-
dition for transforming an infinite computation to a single
result, e.g., we use the result of the output function at the
moment at which the computation halts.

Another solution is to use the following convention: we
expect the output function to produce only a finite number
of non-empty results, i.e., for any computation C there exists
a tC ≥ 0 such that R(t) is empty for all t > tC . Then the total
result obtained by the computation C is just the union of the
corresponding values obtained from the first tC computation
steps.

Example 5  A traditional output concept for P systems yields
the result in the output cell(s) when a halting configuration
is reached (total halting). This can be described using the
following output function:

�(Ct, cout) still is a vector of dimension n, with only possi-
bly non-empty components i for i ∈ cout . If instead of � we
use the projection �cout ∶ V◦n → V◦|cout| , which projects an
n-vector v of multisets over V to a vector of dimension |cout|
only containing the components of v from cout , then all the

R(t) = ������(� �,C(t))(t)

������(� �,C(t))(t) =

{
�(Ct, cout) if Appl(� ,Ct, �) = �
� otherwise

361A formal framework for spiking neural P systems﻿	

1 3

results are vectors of multisets over V of dimension |cout| . In
the simplest case, when cout designates a single output cell,
then the result is just the multiset which is contained in this
cell at the end of a halting computation.

Remark 3  In the simplified definition of the output function
as described in the example elaborated above, in every com-
putation step we only need to check for a halting condition,
and if the halting condition is satisfied then we just collect
the results, in most of the cases given by the contents of the
output cell(s).

Example 6  One of the traditional output strategies in spiking
neural P systems is to count the time difference between two
consecutive spikes of the output neuron (using rules that
produce spikes). This can be mimicked by using the output
function which for each time step t ≥ 0 checks if in the out-
put cell there is a non-empty contents at time t1 for the first
time and a non-empty contents at time t2 for the second time,
which means that the output cell is empty for all other time
steps t < t2, t ≠ t1 . In this case, the result of the computation
is the value t2 − t1.

Example 7  Another common output strategy is the deci-
sion output, used in acceptor variants of P systems. It is
based on checking deterministic computations on a specific
input for total halting, but yields only a Boolean value from
{����, �����} , i.e., when at some step there are no more appli-
cable rules, the function yields ���� (in which case we call
the computation to be accepting), otherwise it yields �����
(in which case we call the computation to be rejecting). We
remark that with such a definition we even need not get a
partial recursive function.

4 � Spiking neural P systems

In the case of spiking neural P systems the definitions given
in the preceding section can be simplified using the observa-
tion that the alphabet of the system contains a single object
a, also called a spike. In this case, the contents of each cell
just corresponds to a natural number, and the whole configu-
ration is an n-vector of natural numbers, i.e., in the follow-
ing, for any M ⊆ ℕ we will not distinguish between a set of
multisets over {a} {am ∣ m ∈ M} and its corresponding set
of natural numbers M.

Moreover, the control sets are regular, which over a one
letter alphabet means that they correspond to semi-linear
sets of numbers. Hence, in total, a generalized version
of traditional spiking neural P systems of degree n thus
can be seen as the family of REG◦({a})-controlled net-
works of cells of degree n working over the alphabet {a} ,
under the derivation mode min1(cells) , where min1(cells)

denotes the derivation mode min1 with the partitions being
exactly the rules in each neuron. According to the defini-
tions elaborated in the previous section, spiking neural
P systems of degree n are networks of cells in the family
��(n, {a},REG◦({a}), min1(cells)).

Following the restrictions for rules in traditional spiking
neural P systems, the rules assigned to a neuron i are of the
form

where Xi ∈ {a}∗ , Y ∈ {a}∗n , Yi = � (which indicates that
self-loops are not allowed, i.e., the neuron which spikes
cannot receive spikes itself), and Ki ⊆ {a}∗ . Such a specific
rule then can be written in a different way with vectors of
integer numbers:

where Xi = axi , Yj = ayj , 1 ≤ j ≤ n , ( Yi = � corresponds to
yi = 0 ) and Ki = {am ∣ m ∈ Mi} . We observe that by defini-
tion, the only negative value will be −xi , whereas in order
to make the rule eligible for an application in a multiset of
rules, it is required that xi does not exceed the number ui in
neuron i and ui ∈ Mi.

We emphasize that only this very special kind of rules is
allowed in the systems of ��(n, {a},REG◦({a}), min1(cells))

.
Moreover, there is an even more restricted variant reflect-

ing the most restricted standard definition of spiking neural
P systems in the literature, where only one spike can be sent
along the axons to other neurons, i.e., in rules of the form in
Eq. 2, yj ∈ {0, 1} for all 1 ≤ j ≤ n , j ≠ i . The family of such
systems with all these restrictions on the rules is denoted by
��(n, {a},REG◦({a}), min1(cells1)).

For a rule as defined in Eq. 2, we will also use the fol-
lowing notation:

with �� denoting the semi-linear sets (of natural numbers),
possibly also taking into account all the restrictions as dis-
cussed above. This notation only keeps the i-th component
of the control vector, thereby coming even closer to how
spiking rules are traditionally written as

where a regular expression Ei for Mi is used, i.e., L◦(Ei) = Ki ,
and the connection structure (the synapses) between the neu-
rons has to be specified in the definition of the spiking neural
P system; this structure is assumed to be fixed.

In terms of the Eq. (1) such rule is written as

(1)
(
(�,… ,Xi,… , �) → Y;

(
{a}∗,… ,Ki,… , {a}∗

))

(2)
(
ℕ,… ,Mi,…ℕ

)
∕
(
y1,… ,−xi,… , yn

)
,

(3)i ∶ Mi∕Z, where Mi ∈ ��, Z ∈ ℤ
n

(4)i ∶ Ei∕a
xi → a

(
�,… ,Xi,… , � → Y;

(
{a}∗,… ,Ki,… , {a}∗

))

362	 S. Verlan et al.

1 3

where the regular set Ki is defined by L◦(Ei) = Ki and the
components j for which Yj may be a are given by the con-
nection structure of the system.

The following example shows how the original defini-
tion for a rule in a spiking neural P system can be trans-
lated into our framework:

Example 8  Consider the standard spiking neural P system � ′
having a total of four cells, with cell 1 connected to cells 2
and 3, � � ∈ ��(n, {a},REG◦({a}), min1(cells1)).

The spiking rule (a2 + a3)∗∕a2 → a in cell 1, with the
regular expression (a2 + a3)∗ corresponding to the regular
control set L◦((a2 + a3)∗) now can be written as follows
using notation (2):

Using notation (3), we would write 1 ∶ M1∕(−2, 1, 1, 0).

Since the rule applicability is controlled by semi-linear
sets, it is easily possible to decide which (multisets of)
rules might compete for being executed. This is high-
lighted by the following normal form.

Definition 15   A spiking neural P system in
��(n, {a},REG◦({a}), min1(cells1)) is said to be in a nor-
mal form if the following conditions hold:

–	 for any rule i : M/Z, with Z(i) = k assigned to neuron i,
and any x ∈ M , xi ≥ |k|,

–	 for any two rules i ∶ M1∕Z1 and i ∶ M2∕Z2 in the same
neuron i, either M1 = M2 or M1 ∩M2 = �.

The next theorem shows that we can effectively con-
struct an equivalent system in normal form for any spiking
neural P system in ��(n, {a},REG◦({a}), min1(cells1)).

Theorem 1  For any spiking neural P system � in
��(n, {a},REG◦({a}), min1(cells1)) , we can e f fe c -
tively construct an equivalent system � ′ from
��(n, {a},REG◦({a}), min1(cells1)) in normal form such
that all computations in � can be simulated by computa-
tions in � ′ in real time and vice versa, i.e. there is a bijec-
tive mapping � between any reachable configurations of
� and � ′ such that C ⟹ C1 implies �(C) ⟹ �(C1) and
conversely.

Proof  The first condition is easy to be satisfied as the set
M is semi-linear and therefore the set {x ∈ M ∣ xi ≥ |k|} is
semi-linear, too; moreover, the applicability condition any-
way requires the cell to contain at least k spikes.

(M1,ℕ,ℕ,ℕ)∕(−2, 1, 1, 0),

whereM1 = {2n + 3k ∣ n, k ≥ 0, n + k > 0}.

For the second condition it is enough to observe that the
sets A = M1 ∩M2 , B = M1⧵M2 , and C = M2⧵M1 are semi-
linear. Then the two rules from the condition can be replaced
by A∕Z1 and A∕Z2 as well as B∕Z1 , and C∕Z2 . 	� ◻

Example 9  Consider the spiking neural P system depicted
on Fig. 1. It has an input neuron labeled by 1 and no output
neurons. The system uses a spike train input and a Boolean
output function based on the halting condition (it outputs
���� if the system halts, see Example 7). Hence, the system
works as an acceptor (using the decision output strategy) in
the following way: with the first spike arriving in the input
cell in the first step, the system starts spiking in a cycle of
three steps with different configurations. It halts and outputs
���� if the difference between the times at which the two
spikes of the input spike train arrived was a multiple of 3,
and thus forced the system to halt. Otherwise the system
does not reach a halting configuration, and thus we consider,
as it is commonly done in the literature, that the correspond-
ing output is �����.

The rules of the system can be written as follows using
notation (2), with labels x.y for the rules in neuron x:

Using notation (3), these rules can be written in an even
simpler way:

1.1 ∶({1},ℕ,ℕ,ℕ)∕(−1, 1, 0, 1)

2.1 ∶(ℕ, {1},ℕ,ℕ)∕(0,−1, 1, 0) 2.2 ∶ (ℕ, {3},ℕ,ℕ)∕(0,−3, 0, 0)

3.1 ∶(ℕ,ℕ, {1},ℕ)∕(0, 0,−1, 1) 3.2 ∶ (ℕ,ℕ, {3},ℕ)∕(0, 0,−3, 0)

4.1 ∶(ℕ,ℕ,ℕ, {1})∕(1, 0, 0,−1) 4.2 ∶ (ℕ,ℕ,ℕ, {2})∕(1, 0, 0,−2)

1.1 ∶{1}∕(−1, 1, 0, 1)

2.1 ∶{1}∕(0,−1, 1, 0) 2.2 ∶ {3}∕(0,−3, 0, 0)

3.1 ∶{1}∕(0, 0,−1, 1) 3.2 ∶ {3}∕(0, 0,−3, 0)

4.1 ∶{1}∕(1, 0, 0,−1) 4.2 ∶ {2}∕(1, 0, 0,−2)

Fig. 1   A spiking neural P system recognizing numbers divisible by 3

363A formal framework for spiking neural P systems﻿	

1 3

We observe that the system recognizes input sequences with
an initial part of the form 0∗1(000)k1 , k ≥ 1 , i.e., the time
between the two input spikes represents a number divisible
by 3.

As long as the input is 0, the 4-vector describing the con-
figuration is (0, 0, 2, 0). With the first spike arriving in neu-
ron 1, we get the following sequence of configurations using
the spiking rules in the four neurons, assuming 3k time steps,
k ≥ 1 , until the second spike arrives in neuron 1:

(1, 0, 2, 0)
(0, 1, 2, 1)
(0, 1, 3, 0)
(0, 0, 1, 0)

Then the system loops in neurons 2, 3, and 4 as follows:

(0, 0, 0, 1)
(0, 1, 0, 0)
(0, 0, 1, 0)

Finally, when the second spike arrives in neuron 1 at the
right time, we end up with the following sequence, which
finally yields a halting configuration:

(1, 0, 0, 1)
(0, 2, 0, 1)
(0, 3, 0, 0)
(0, 0, 0, 0)

The interested reader may verify that in all other cases
where the time between the two spikes arriving in the
input neuron 1 is not divisible by 3 yields a non-halting
computation.

In the more general setting of this paper, rules need not be
assigned to single cells (neurons). Hence, we can use a more
general form of spiking rules for systems in the families
��(n, {a},REG◦({a}), �):

Remark 4   We a l so remark t ha t sys tems in
��(n, {a},REG◦({a}), seq) could be interpreted as vector
addition systems with regular control: given a configura-
tion, i.e., a vector of natural numbers v, applying the rule
M/Z can be interpreted as adding Z to v provided the regular
condition M is fulfilled and the result v + Z is an n-vector of
natural numbers.

In this more general setting, loops are allowed, arbi-
trary numbers of spikes may be sent to different neurons,

(5)M∕Z, whereM ∈ ��n, Z ∈ ℤ
n

and these numbers may even differ depending on the cho-
sen rule(s). Such extended spiking neural P systems have
already been considered in [2].

Based on Theorem 1, it is possible to obtain an inter-
esting insight on the functioning of the basic variant of
spiking neural P systems. We recall that a spiking P system
evolves in the derivation mode min1 with the partitions
defined cell-wise, i.e. from each neuron (cell) at most one
rule is selected, and rules from several neurons (cells) can
be executed in parallel. Since the application of each rule
is governed by a regular control set K and since the com-
plement of K is also regular, it is possible to construct
complementary regular sets for every rule. Then it is pos-
sible to write a series of rules each of them corresponding
to the action of any combination of the initial rules, using
the corresponding regular control sets. More precisely, for
any combination of individual rules from each neuron, it is
possible to construct a single general rule that will check
whether the chosen rules are applicable. Moreover, if in
the normal form there are no identical control sets for any
two rules in a cell, then the resulting system is determin-
istic as it is possible for each rule to extend the regular
control set with the complement of all other regular sets
in order to verify that no other rule is applicable.

In sum, our general framework for spiking neural P
systems has allowed us to show that, using more general
rules, spiking neural P systems in fact can be seen as work-
ing in the sequential derivation mode, without any paral-
lelism, as exhibited above.

As a conclusion we obtain the following theorem and
the related corollary expressing the result of the theorem in
terms of families of networks of cells with regular control.

Theorem 2  For any spiking neural P system � in
��(n, {a},REG◦({a}), min1(cells1)) we can effectively
construct an equivalent spiking neural P system � ′ in
��(n, {a},REG◦({a}), seq) such that any computation in �
can be simulated in real time by a computation in � ′ and
vice versa.

Corollary 1  For any n ≥ 1,

Example 10  Consider the following system � from
��(n, {a},REG◦({a}), min1(cells1)) as shown in Fig. 2 using
the standard notation of rules in the neurons (where � is used
to denote forgetting rules):

These are the rules of �:

��(n, {a},REG◦({a}), min1(cells1)) ⊆ ��(n, {a},

REG◦({a}), seq).

1.1 ∶ a2∕a → a 1.2 ∶ a → �

2.1 ∶ a → a 2.2 ∶ a3 → �

364	 S. Verlan et al.

1 3

Consider the sets S1 = {1} , S2 = {2} , S3 = {3} as well as
their complements denoted by a bar, e.g. S̄1 = ℕ⧵{1} . In
the general notation according to Eq. 5, these rules can be
written in the following form:

Since it is possible to have at most two rules run in parallel
in � , this gives the following combinations of rules to be
considered in an equivalent system � ′ to be constructed with
� ′ in ��(n, {a},REG◦({a}), seq):

–	 only one of the rules is applicable
–	 rules 1.1 and 2.1 or 2.2 are applicable
–	 rules 1.2 and 2.1 or 2.2 are applicable

This yields the following rules for � ′:

The obtained system � ′ is sequential but has the same
behavior as the initial system � which was working in the
derivation mode min1.

5 � Extensions

In this section we briefly discuss several extensions of the
basic model as well as further variants to be investigated
more deeply in the future.

1.1 ∶ (S2,ℕ)∕(−1, 1) 1.2 ∶ (S1,ℕ)∕(−1, 0)

2.1 ∶ (ℕ, S1)∕(1,−1) 2.2 ∶ (ℕ, S3)(0,−3)

A1.1 ∶ (S2, S̄1 ∪ S̄3)∕(−1, 1) A1.2 ∶ (S1, S̄1 ∪ S̄3)∕(−1, 0)
A2.1 ∶ (S̄1 ∪ S̄2, S1)∕(1,−1) A2.2 ∶ (S̄1 ∪ S̄2, S3)∕(0,−3)
B1.1+2.1 ∶ (S2, S1)(0, 0) B1.1+2.2 ∶ (S2, S3)(−1,−2)
B1.2+2.1 ∶ (S1, S1)(0,−1) B1.2+2.2 ∶ (S1, S3)(−1,−3)

5.1 � Extended rules

Generalizing the rules as in (5) is a natural way to extend
spiking neural P systems. One of the first variants typically
considered are spiking neural P systems with extended rules
(for short, SNPe systems, [6]), having rules of the form
i ∶ E∕am → an . When applied, each of the connected cells
will receive an spikes in the next step, in contrast to the basic
rule i ∶ E∕am → a which only allows for sending one spike
along each axon. It is easy to see that this can be simulated
using general rules as exhibited in the following. For the
examples, we suppose that there are two other cells con-
nected to the cell where the rules are applied. Moreover,
in the description of these examples we do not distinguish
between the regular expression E and the corresponding
semi-linear set:

The second basic type of extended rules considers weights
attached to synapses (axons), namely spiking neural P
systems with weighted synapses [23]. Then each cell will
receive the number of spikes corresponding to the indicated
weight. Using general rules this variant can be simulated
as follows:

Using the general rules in extended spiking neural P systems
(for short, ESNP systems) as introduced in [2], each rule
may send different numbers of spikes along the axons to
other cells, and these different amounts of spikes may even
depend on the applied rule. A simpler concept of this kind is
considered in [25] as spiking neural P systems with multiple
channels. An example for this third type of extended rules is
depicted in Fig. 3c.

5.2 � Non‑natural numbers of spikes

It is obvious that the vectors of natural numbers used to
represent rules and the configurations can be replaced by
integer, real, or complex vectors. This allows for using quite
powerful transformations. In this case, the control sets are no

(E,ℕ,ℕ)∕(−m, n, n), see Fig. 3a.

(E,ℕ,ℕ)∕(−m, n, k), see Fig. 3b.

1.1 : a2/a → a
1.2 : a → λ

1
2.1 : a → a
2.2 : a3 → λ

2

Fig. 2   Spiking neural P system � from Example 10

Fig. 3   Different extended spiking rules: (a) extended (sending an over
all synapses); (b) weights on synapses (sending ak over the synapse
with weight k); (c) generalized rules in the formal framework (allow

for choosing different amounts of spikes to be sent over specified syn-
apses, may even depend on the applied rule)

365A formal framework for spiking neural P systems﻿	

1 3

longer sets of natural numbers (for example, semi-linear sets
of natural numbers), but have to be sets over the underlying
scalars (integer, real, or complex). Moreover, we may also
use predicates over the corresponding domains.

There exist already several models where the number of
spikes is not a natural number. The best known one is the
model using anti-spikes, for example see one recent paper
[29]. Anti-spikes correspond to “negative” spikes that anni-
hilate if they are in the same neuron with normal spikes.
Such a model can be directly simulated using general rules
working with integer vectors. In fact, if the annihilation rule
has priority over all other rules, a neuron may contain either
only spikes or only anti-spikes, which corresponds to having
positive or negative integers.

Another model [33] uses a variant of extended rules with
real weights on synapses. This can be simulated using real
vectors, however the corresponding control sets have to be
replaced by sets of real numbers or real-number predicates.
In [33], equality predicates on real numbers are used, allow-
ing for classifying the value of the cell below or above some
fixed real threshold. More precisely, neurons (cells) contain
real values and rules are of the form T∕d → 1 , where T and
d are real numbers. The rule is applied if the value in the
neuron (cell) is exactly T, and with the application of the
rule the new value of the neuron (cell) then becomes T − d .
The unit “spike” is multiplied by real weights present on
synapses, and then added to the corresponding cells. If some
cell has the value below T, then only values of zero are trans-
mitted. This behavior can be obtained by using the following
rules written in our framework (we suppose that cell 1 is
connected to cells 2 and 3 using synapses with weights w1
and w2):

where ℝ<T = {x ∈ ℝ ∣ x < T} . The second rule allows the
computation to progress even while the value in the cell is
below T.

5.3 � Astrocytes

In spiking neural P systems with astrocytes two networks
interleave—a normal spiking neural P system and a second
network of cells interacting with the axons of the first one.
An astrocyte senses several axons. Depending on the signals
(numbers of spikes) sent through these astrocyte-axon con-
nections, the number of spikes allowed to pass through each
of the axons is determined.

For example, the astrocyte may define an upper bound k
on the total number of spikes allowed to go through an axon.
In this case, if more than k spikes attempt to pass, they are
discarded and nothing reaches the target cells. One can also

({T},ℝ,ℝ)∕(−d,w1,w2) (ℝ<T ,ℝ,ℝ)∕(0, 0, 0)

consider different semantics, in which the astrocyte could
determine the lower bound on the number of allowed spikes,
or even more generally, implement a function giving the
numbers of allowed spikes based on the number of spikes
scheduled for the given axon.

In the case in which only one rule application per neuron
is allowed at any step, astrocytes can be directly modelled
using general rules. The simulation is based on the fact that
it is possible to precompute in advance the number of spikes
that can be generated by any combination of rules, since the
number of rules in any given neuron is finite.

For example, consider two axons leaving from neuron 1
and an astrocyte sensing these two axons going to neurons
2 and 3. The application of a rule

without the astrocyte controlling the axons would describe
the application of a spiking rule in neuron 1 consuming m
spikes, with m ∈ E1 , and sending p spikes to cell 2 and q
spikes to cell 3. Using a simple astrocyte with lower bound
k, i.e., only allowing the spikes to pass along the axons if
their sum is at least k, this can be expressed by the rules

5.4 � Families of control languages

Already with the definition of the families of networks of
cell ��(n,V ,F, �) it has become clear that we may con-
sider various different families F of control languages, not
only regular ones. For controlling the application of rules,
other classes of formal languages can be used, for example,
even subregular classes. In many variants of spiking neural
P systems considered so far, F = FIN({a}) ∪ {{a∗}} is suf-
ficient, for example, see [14]. With F = FIN({a}) , usually
only semi-linear sets can be obtained.

On the other hand, more complicated types of control
languages may be considered, too. To give a weird example
(e.g., see [8]), let L be any recursive language over the alpha-
bet V, i.e., L ∈ REC◦(V) , and construct a simple system in
��(n,V ,REC◦(V), seq) as follows:

Example 11  Let L ∈ REC◦(V) . Then consider the system

in ��(n,V ,REC◦(V), seq) with initial input, i.e., at time 0
a multiset from V◦ is provided. There are only two rules in
R ( a ∈ V):

(E1,ℕ,ℕ)∕(−m, p, q)

(E1,ℕ,ℕ)∕(−m, p, q) if p + q ≥ k, and

(E1,ℕ,ℕ)∕(−m, 0, 0) otherwise.

� =
(
2,V ,w = (�, �), cin = {1}, cout = {2},R, seq

)

(L, �)∕(0, 1) and (V◦⧵L, �)∕(0, 2)

366	 S. Verlan et al.

1 3

The output function checks the contents of the output cell
after one computation step, after which the system must
halt in any case. Just one symbol a in cell 2 indicates that
the input multiset has been recognized as a member of L,
whereas two symbols a indicate that the input multiset has
been recognized not being a member of L. Looking at � as
a recognizer system, one symbol a in cell 2 indicates accept-
ance, whereas two symbols a indicate rejection.

We remark that the construction for � also works for any
other family of languages F over V, thus yielding a system
in ��(n,V ,F, seq).

5.5 � Derivation modes

For systems in ��(n,V ,F, �) , also varying the derivation
mode � needs further investigation. For example, spiking
neural P systems working in the maximally parallel mode
� = max seem to be a promising target.

Interesting models related to ��(n,V ,F, �) are spiking
neural P systems with white hole rules [1] and spiking neural
P systems with exhaustive use of rules [15, 18], but there are
several technical details to be considered carefully, hence a
thorough discussion of such models must be postponed for
future research.

6 � Conclusion

The generalization of spiking neural P systems proposed in
this paper allows us to describe many spiking-based models
in a uniform way. In the same way as the formal framework
for static P systems [11], this approach may open new direc-
tions for future research, including the comparison between
different spiking models and the introduction of new fea-
tures. As possible examples we would like to mention sys-
tems working with real numbers as well as systems with a
probabilistic evolution.

Another conclusion that can be drawn from using our
formalization is that spiking neural P systems in fact can be
seen as working in the sequential derivation mode, without
any parallelism, as shown in Theorem 2.

It seems worthwhile to continue the development of the
formal framework for spiking neural P systems with different
degrees of parallelism, for example the kind of local paral-
lelism reflected by the exhaustive use of rules, as proposed
in [15, 18], where in each neuron, an applicable rule must be
used as many times as possible. The so-called “white hole
rules” were introduced in [1]; they allow for using the whole
contents of a neuron and then sending it to other neurons.

Most of the results presented in this paper were obtained
for the case V = {a} . It is a challenging task for future
research to consider the case with |V| > 1 in more detail.
Some initial research on spiking neural P systems with sev-
eral types of spikes was done in [16, 28], where arbitrary
alphabets of symbols are used. Another possibility is to
consider control conditions over ℤ or ℝ , extending the ideas
from [9]. Spiking neural P systems with anti-spikes [19]
are an example for the first condition, where two types of
symbols (i.e., spikes and anti-spikes) are considered with
V = {a, ā} corresponding to a positive and a negative value
of the spike a used in control conditions and rules.

We believe that the formal framework for spiking neu-
ral P systems offers a general, uniform, and straightforward
perspective on these families of devices. This theoretical
tool should be able to efficiently guide further exploration
of these models of computing.

Acknowledgements  The ideas for this paper were discussed during
the stay of Artiom Alhazov and Rudolf Freund in Paris at Créteil with
Sergey Verlan in summer 2018, while Rudolf Freund was a guest pro-
fessor supported by the Université Paris Est Créteil.

Compliance with ethical standards 

Conflicts of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

	 1.	 Alhazov, A., Freund, R., Ivanov, S., Oswald, M., & Verlan,
S. (2015). Extended spiking neural P systems with white hole
rules. In Proceedings of the Thirteenth Brainstorming Week on
Membrane Computing (pp. 45–62). Sevilla, ETS de Ingeniería
Informática, 2–6 de Febrero, 2015.

	 2.	 Alhazov, A., Freund, R., Oswald, M., & Slavkovik, M. (2006).
Extended spiking neural P systems. In H. J. Hoogeboom, Gh.
Păun, G. Rozenberg, A. Salomaa (Eds.), Membrane Computing,
7th International Workshop, WMC 2006, Leiden, The Nether-
lands, July 17–21, 2006, Revised, Selected, and Invited Papers,
Lecture Notes in Computer Science (Vol. 4361, pp. 123–134).
Springer: Berlin. https​://doi.org/10.1007/11963​516_8

	 3.	 Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017).
Spiking neural P systems with scheduled synapses. IEEE Transac-
tions on Nanobioscience, 16(8), 792–801.

	 4.	 Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T.
(2015). Spiking neural P systems with structural plasticity. Neural
Computing and Applications, 26(8), 1905–1917.

	 5.	 Cavaliere, M., Ibarra, O. H., Păun, Gh, Egecioglu, O., Ionescu, M.,
& Woodworth, S. (2009). Asynchronous spiking neural P systems.
Theoretical Computer Science, 410(24–25), 2352–2364.

	 6.	 Chen, H., Ionescu, M., Ishdorj, T. O., Păun, A., Păun, Gh, & Pérez-
Jiménez, M. (2008). Spiking neural P systems with extended rules:
Universality and languages. Natural Computing, 7(2), 147–166.

https://doi.org/10.1007/11963516_8

367A formal framework for spiking neural P systems﻿	

1 3

	 7.	 Csuhaj-Varjú, E., & Verlan, S. (2017). Bi-simulation between P colo-
nies and P systems with multi-stable catalysts. In M. Gheorghe, G.
Rozenberg, A. Salomaa, C. Zandron (Eds.), Membrane Computing
- 18th International Conference, CMC 2017, Bradford, UK, July
25–28, 2017, Revised Selected Papers, Lecture Notes in Computer
Science (Vol. 10725, pp. 105–117). Springer: Berlin.

	 8.	 Freund, R. (2019). A general framework for sequential grammars
with control mechanisms. In M. Hospodár, G. Jirásková, S. Kon-
stantinidis (Eds.), Descriptional Complexity of Formal Systems -
21st IFIP WG 1.02 International Conference, DCFS 2019, Košice,
Slovakia, July 17–19, 2019, Proceedings, Lecture Notes in Com-
puter Science (Vol. 11612, pp. 1–34). Springer: Berlin. https​://doi.
org/10.1007/978-3-030-23247​-4_1

	 9.	 Freund, R., Ivanov, S., & Verlan, S. (2015). P systems with general-
ized multisets over totally ordered Abelian groups. In G. Rozen-
berg, A. Salomaa, J. M. Sempere, C. Zandron (Eds.), Membrane
Computing - 16th International Conference, CMC 2015, Valencia,
Spain, August 17–21, 2015, Revised Selected Papers, Lecture Notes
in Computer Science (Vol. 9504, pp. 117–136). Springer: Berlin.
https​://doi.org/10.1007/978-3-319-28475​-0_9

	10.	 Freund, R., Pérez-Hurtado, I., Riscos-Núñez, A., & Verlan, S.
(2013). A formalization of membrane systems with dynamically
evolving structures. International Journal of Computer Mathemat-
ics, 90(4), 801–815. https​://doi.org/10.1080/00207​160.2012.74889​
9.

	11.	 Freund, R., & Verlan, S. (2007). A formal framework for static (tis-
sue) P systems. In G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozen-
berg, A. Salomaa (Eds.), Membrane Computing, 8th International
Workshop, WMC 2007, Thessaloniki, Greece, June 25–28, 2007
Revised Selected and Invited Papers, Lecture Notes in Computer
Science (Vol. 4860, pp. 271–284). Springer: Berlin. https​://doi.
org/10.1007/978-3-540-77312​-2_17

	12.	 Freund, R., & Verlan, S. (2011). (tissue) P systems working in the
k-restricted minimally or maximally parallel transition mode. Natu-
ral Computing, 10(2), 821–833.

	13.	 Ibarra, O. H., Păun, A., & Rodríguez-Patón, A. (2009). Sequential
SNP systems based on min/max spike number. Theoretical Com-
puter Science, 410(30–32), 2982–2991.

	14.	 Ibarra, O. H., Păun, A., Păun, Gh, Rodríguez-Patón, A., Sosík, P.,
& Woodworth, S. (2007). Normal forms for spiking neural P sys-
tems. Theoretical Computer Science, 372(2–3), 196–217. https​://
doi.org/10.1016/j.tcs.2006.11.025.

	15.	 Ionescu, M., Păun, Gh, & Yokomori, T. (2007). Spiking neural P
systems with an exhaustive use of rules. International Journal of
Unconventional Computing, 3(2), 135–154.

	16.	 Ionescu, M., Păun, Gh., Pérez Jiménez, M.d.J., & Rodríguez Patón,
A. (2011). Spiking neural P systems with several types of spikes. In
Proceedings of the Ninth Brainstorming Week on Membrane Com-
puting (pp. 183–192). Sevilla, ETS de Ingeniería Informática. Fénix
Editora.

	17.	 Ionescu, M., Păun, Gh, & Yokomori, T. (2006). Spiking neural P
systems. Fundamenta Informaticae, 71(2–3), 279–308.

	18.	 Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking
neural P system with generalized use of rules. Journal of Membrane
Computing, 1(4), 270–278.

	19.	 Pan, L., & Păun, Gh. (2009). Spiking neural P systems with anti-
spikes. International Journal of Computers Communications &
Control, 4(3), 273–282.

	20.	 Pan, L., Păun, Gh, Zhang, G., & Neri, F. (2017). Spiking neural P
systems with communication on request. International Journal of
Neural Systems, 27(08), 1750042.

	21.	 Pan, L., Păun, Gh, & Song, B. (2016). Flat maximal parallelism in P
systems with promoters. Theoretical Computer Science, 623, 83–91.
https​://doi.org/10.1016/j.tcs.2015.10.027.

	22.	 Pan, L., Wu, T., & Zhang, Z. (2016). A bibliography of spiking
neural P systems. Bulletin of the International Membrane Comput-
ing Society, 1, 63–78.

	23.	 Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural P
systems with weighted synapses. Neural Processing Letters, 35(1),
13–27.

	24.	 Peng, H., & Wang, J. (2019). Coupled neural P systems. IEEE
Transactions on Neural Networks and Learning Systems, 30(6),
1672–1682.

	25.	 Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., et al.
(2017). Spiking neural P systems with multiple channels. Neural
Networks, 95, 66–71. https​://doi.org/10.1016/j.neune​t.2017.08.003.

	26.	 Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford
Handbook of Membrane Computing. Oxford, England: Oxford Uni-
versity Press.

	27.	 Rong, H., Wu, T., Pan, L., & Zhang, G. (2018). Spiking neural P
systems: Theoretical results and applications. In: C. G. Díaz, A.
Riscos-Núñez, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Enjoy-
ing Natural Computing - Essays Dedicated to Mario de Jesús Pérez-
Jiménez on the Occasion of His 70th Birthday, Lecture Notes in
Computer Science (Vol. 11270, pp. 256–268). Springer: Berlin. https​
://doi.org/10.1007/978-3-030-00265​-7_20

	28.	 Song, T., Rodríguez-Patón, A., Zheng, P., & Zeng, X. (2017). Spik-
ing neural P systems with colored spikes. IEEE Transactions on
Cognitive and Developmental Systems, 10(4), 1106–1115.

	29.	 Song, X., Wang, J., Peng, H., Ning, G., Sun, Z., Wang, T., et al.
(2018). Spiking neural P systems with multiple channels and anti-
spikes. BioSystems, 169–170, 13–19. https​://doi.org/10.1016/j.biosy​
stems​.2018.05.004.

	30.	 Verlan, S. (2013). Using the formal framework for P systems. In A.
Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin, G. Rozenberg,
A. Salomaa (Eds.), Membrane Computing - 14th International Con-
ference, CMC 2013, Chişinău, Republic of Moldova, August 20-23,
2013, Revised Selected Papers, Lecture Notes in Computer Science
(Vol. 8340, pp. 56–79). Springer: Berlin. Invited paper

	31.	 Verlan, S., Freund, R., Alhazov, A., & Pan, L. (2019). A formal
framework for spiking neural P systems. In Gh. Păun (Ed.), Proceed-
ings of the 20th International Conference on Membrane Comput-
ing, CMC20, August 5–8, 2019, Curtea de Argeş, Romania (pp.
523–535).

	32.	 Verlan, S., & Quiros, J. (2012). Fast hardware implementations of P
systems. In E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salo-
maa, G. Vaszil (Eds.), Membrane Computing - 13th International
Conference, CMC 2012, Budapest, Hungary, August 28-31, 2012,
Revised Selected Papers, Lecture Notes in Computer Science (Vol.
7762, pp. 404–423). Springer: Berlin.

	33.	 Wang, J., Hoogeboom, H. J., Pan, L., Păun, Gh, & Pérez-Jiménez,
M. J. (2010). Spiking neural P systems with weights. Neural Compu-
tation, 22(10), 2615–2646. https​://doi.org/10.1162/NECO_a_00022​
.

	34.	 Wu, T., Bîlbîe, F. D., Păun, A., Pan, L., & Neri, F. (2018). Simplified
and yet Turing universal spiking neural P systems with communica-
tion on request. International Journal of Neural Systems, 28(08),
1850013.

	35.	 Wu, T., Păun, A., Zhang, Z., & Pan, L. (2018). Spiking neural P
systems with polarizations. IEEE Transactions on Neural Networks
and Learning Systems, 29(8), 3349–3360.

	36.	 Wu, T., Zhang, Z., Păun, Gh, & Pan, L. (2016). Cell-like spiking
neural P systems. Theoretical Computer Science, 623, 180–189.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-23247-4_1
https://doi.org/10.1007/978-3-030-23247-4_1
https://doi.org/10.1007/978-3-319-28475-0_9
https://doi.org/10.1080/00207160.2012.748899
https://doi.org/10.1080/00207160.2012.748899
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1016/j.tcs.2006.11.025
https://doi.org/10.1016/j.tcs.2006.11.025
https://doi.org/10.1016/j.tcs.2015.10.027
https://doi.org/10.1016/j.neunet.2017.08.003
https://doi.org/10.1007/978-3-030-00265-7_20
https://doi.org/10.1007/978-3-030-00265-7_20
https://doi.org/10.1016/j.biosystems.2018.05.004
https://doi.org/10.1016/j.biosystems.2018.05.004
https://doi.org/10.1162/NECO_a_00022

368	 S. Verlan et al.

1 3

Sergey Verlan  received his PhD
in Computer Science at the Uni-
versity of Metz, France (2004).
He obtained a habilitation in
Computer Science in 2010. Cur-
rently he is an associated profes-
sor at the University of Paris Est
Créteil (France). His research
interests belong to the area of
theoretical computer science and
natural computing. He has
expertise in the area of formal
language theory, DNA comput-
ing, membrane computing, mod-
eling of biological systems and
hardware design.

Rudolf Freund  works at the Insti-
tute for Logic and Computation,
TU Wien, Austria. His research
interests include Theory of Com-
putation, Computing in Mathe-
matics, Natural Science, Engi-
neering and Medicine, and
Artificial Intelligence. Currently
he especially works in the area of
Membrane Computing.

Artiom Alhazov  is a principal
researcher at the Vladimir
Andrunachievici Institute of
Mathematics and Computer Sci-
ence. He has achieved over 300
publications including over 60
ones in journals, together with
over 60 co-authors. By the time
of publication of this paper
Google Scholar reported his
h-index was 25. He got his PhD
thesis in Spain in 2006 and, after
some postdoc positions in Fin-
land, Japan, and Italy, he
defended his Habilitation thesis
in Moldova in 2013. His main

research visits have been to Austria, China and France. His research
interests are centered in Theoretical Computer Science, including but

not limited to descriptional complexity parameters of small computa-
tionally universal systems from a wide variety of formal models of
parallel distributed processing of strings and multisets, giving special
focus on membrane systems.

Sergiu Ivanov  is an associate
professor (maître de confé-
rences) of computer science at
the Department of Computer
Science of Université d’Évry,
Université Paris-Saclay. He is
currently member of the IBISC
Laboratory and belongs to team
COSMO, who study the funda-
mental properties of complex
systems, and notably biological
systems. He defended his PhD
thesis focused on the computa-
tional power of biologically-
inspired models of computing at
Université Paris-Est in 2015.

His principal research interest lies in applying formal models to gain
insight into medical and biological problems. He is currently working
on employing formal networks to help infer cancer therapies and better
understand the molecular and evolutionary causes of this disease (e.g.,
resilience, atavistic theory of cancer, etc.). Dr. Sergiu Ivanov’s main
research domains are: precision medicine, theoretical biology, complex
systems, and bio-inspired models of computing.

Linqiang Pan  received his Ph.D.
degree from Nanjing University,
China, in 2000. He has been a
professor with the Huazhong
University of Science and Tech-
nology, Wuhan, China, since
2004. His current research inter-
ests include membrane comput-
ing, DNA nanotechnology, and
systems biology.

	A formal framework for spiking neural P systems
	Abstract
	1 Introduction
	2 Preliminaries
	3 The definition of the formal framework
	3.1 Basic structure
	3.2 Rule application and derivation modes
	3.3 Computation and inputoutput

	4 Spiking neural P systems
	5 Extensions
	5.1 Extended rules
	5.2 Non-natural numbers of spikes
	5.3 Astrocytes
	5.4 Families of control languages
	5.5 Derivation modes

	6 Conclusion
	Acknowledgements
	References

