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Abstract
The evolution of a reaction system is usually driven by a fixed set of unconstrained rules. In this paper, we present a differ-
ent approach by imposing some constraints over the rules. Thus, we define restricted reaction systems which are working 
with mutually exclusive rules, namely rules that are not allowed to be applied together in the same computational step. We 
investigate the relationship between the reaction systems and the new restricted reaction systems. Additionally, we analyze 
the notion of reversibility in both reaction systems and restricted reaction systems.
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1 Introduction

Reaction systems are modelling interactions between bio-
chemical entities using the mechanisms of facilitation 
and inhibition [13]. There exist two major assumptions in 
reaction systems: (1) threshold assumption: if a resource 
is present in the system, then it is present in a ‘sufficient 
amount’ such that several reactions needing such a resource 
will not be in conflict (from a mathematical point of view, 
this is equivalent to having an infinite multiplicity for each 
resource); (2) no permanency assumption: an entity will van-
ish from the current state unless it is produced by one of the 
reactions enabled in that state. In the standard setup, the set 
of reactions does not change over time and there are no con-
straints over rules. The existing extensions of the reaction 
systems deal with time [9], context [5, 6] and structure [7, 
15]. In [11], there are considered reaction systems in which 
the set of reactions is allowed to change over time. A differ-
ent approach is taken in [4], where a directed graph is used 
to define a priority relation among reactions; this mechanism 
is encoded in the reaction system using certain inhibitors. 
In this paper, we define restricted reaction systems such that 

the set of available reactions does not change over time, but 
there exists a relation that forbids two reactions to be applied 
in the same step. This relation is different from the relation 
used in [4], as it allows at any step only one rule (non-deter-
ministically chosen) of the two involved rules to be applied.

Reversibility appears naturally in chemical and biologi-
cal systems. Since it plays a crucial role in many processes, 
reversibility started to be taken into account in natural com-
puting by extending the standard forwards-only mode of 
computation with the ability to execute also reversely, such 
that a computation can run backwards as naturally as it can 
go forwards. Two forms of reversibility are backtracking 
and causally consistent reversibility [10, 17]. Backtracking 
executes exactly the reverse order of the forward execution, 
and causally consistent reversibility executes effects before 
causes, but not necessarily in exact reverse order. Beyond 
backtracking and causally consistent reversibility, there 
is a more general form of reversibility (known as out-of-
causal-order reversibility) which makes it possible to get 
to states which cannot be reached only by forward steps; 
such sequences of forward and reverse steps are important as 
they can lead to new chemical structures and new reactions 
which would not be possible without out-of-causal-order 
reversibility [21].

It is worth pointing out that there exist both controlled 
and uncontrolled reversibility. In controlled reversibil-
ity, the computation is reversed only when there exists a 
specific context, namely an environmental modification. 
Uncontrolled reversibility means that reversing a system is 
done without indicating exactly when backward steps are 

 * Gabriel Ciobanu 
 gabriel@info.uaic.ro

 Bogdan Aman 
 bogdan.aman@iit.academiaromana-is.ro

1 Institute of Computer Science, Romanian Academy, Iasi, 
Romania

2 Alexandru Ioan Cuza University, Iasi, Romania

http://orcid.org/0000-0001-7649-8181
http://orcid.org/0000-0002-8166-9456
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-020-00043-1&domain=pdf


172 B. Aman, G. Ciobanu 

1 3

executed. While in [2], we investigated a controlled revers-
ibility in reaction systems, in this paper, we consider uncon-
trolled reversibility in both reaction systems and restricted 
reaction systems.

The structure of the paper is as follows. Section 2 recalls 
the main notions of reaction systems. In Sect. 3, we define 
the restricted reaction systems, and study their behaviours 
in comparison with reaction systems. In Sect. 4, we dem-
onstrate a close relationship between reaction systems and 
restricted reaction systems. In Sect. 5, we study the revers-
ibility in both restricted reaction systems and reaction sys-
tems. Conclusion and references end the paper.

2  Reaction systems

Reaction systems (abbreviated as RS) are used for modelling 
processes driven by biochemical reactions; the fundamental 
idea in this framework is that the biochemical reactions are 
based on facilitation and inhibition [8]. Thus, a reaction is 
modelled as a triplet: a set of reactants, a set of inhibitors, 
and a set of products. A reaction can take place in a given 
state if all its reactants are present in that state, and none of 
its inhibitors are present; when triggered, the reaction cre-
ates its products. We recall in what follows some elementary 
notions and notations about reaction systems, as they are 
presented in [8].

First we recall some basic mathematical notions concern-
ing sets. For a finite set X, |X| denotes its cardinality, 2X 
denotes the set of all subsets of X, and ∅ denotes the empty 
set. For sets X and Y, X∖Y  denotes their difference, X ∪ Y  
denotes their union, X ∩ Y  denotes their intersection, X × Y  
denotes their Cartesian product, while X ⊆ Y  denotes the 
(not necessarily strict) inclusion of X in Y.

Let S be an alphabet; its elements are called molecules 
or symbols. A reaction over S is a triple a = (R, I,P) , where 
R, I, P are non-empty subsets of S such that R ∩ I = � . R 
is the reactant set of a, I is the inhibitor set of a, and P is 
the product set of a; R, I, P are also denoted as Ra , Ia , Pa , 
respectively. We denote by rac(S) the set of all reactions in S.

Notice that the conditions R ≠ ∅ and I ≠ ∅ are required 
such that P is produced from at least one reactant, and that 
every reaction can be inhibited in some way. However, 
according to [8], we can also consider reactions with I = � 
due to the fact that a reaction without an inhibitor can be 
simulated by introducing a ‘dummy’ inhibitor that is never 
produced by any reaction. How this works is illustrated in 
Example 1, where such an inhibitor dI is used.

Given a configuration T ⊆ S and a reaction a ∈ rac(S) , 
a is enabled by  T (denoted by a en T  ) if Ra ⊆ T  and 
Ia ∩ T = � . The result res(a, T) of a on T is defined by 
res(a, T) = Pa . This reaction can be written as a rewrite 

of the form T
a
�����→ res(a,T) . If a is not enabled by T, then 

res(a, T) = � ; the fact that T cannot be rewritten by apply-
ing a is written as T ↛ a.

If A is a finite set of reactions, then the result of A on T 
is defined by res(A, T) =

⋃
a∈A res(a, T) . This can be writ-

ten as T
A
������→ res(A,T) . The activity of a set of reactions A 

on a finite set T is defined by en(A,T) = {a ∈ A ∣ a en T} . 
Thus, en(A,T) is the set of all reactions from A which are 
enabled by T. Note that res(A,T) = res(en(A,T), T) , namely 
only the reactions from A which are enabled on T con-
tribute to the result of A on T. According to [14], a set of 
reactions A is consistent if RA ∩ IA = � , namely Ra ∩ Ib = � 
for any two reactions a, b ∈ A.

A reaction system is an ordered pair A = (S,A) , where 
S is an alphabet and A ⊆ rac(S) . The dynamic behaviour 
of the reaction systems is captured through the notion of 
an interactive process defined as follows.

Definition 1 Let A = (S,A) be a reaction system. An inter-
active process � in A is a pair (� , �) of finite sequences 
such that � = C0,C1,… ,Cn , � = D1,… ,Dn with n ≥ 1 , 
where C0,… ,Cn , D1,… ,Dn ⊆ S , D1 = res(A,C0) , and 
Di = res(A,Di−1 ∪ Ci−1) for each 2 ≤ i ≤ n.

The sequences C0,… ,Cn and D1,… ,Dn represent the 
context and result sequences of the interactive process � , 
respectively. Context C0 is the initial state of � (the state in 
which the interactive process is initiated), and the contexts 
C1,… ,Cn represent the influence of the environment to the 
computation. Just like in [16], this sequence formalizes 
the fact that we work with an open system, meaning that 
its behaviour (interactive processes in A ) is influenced by 
the environment. It is possible to consider also working 
with a closed system whose interactive processes are not 
influenced by the environment any longer after the initial 
context C0 is provided.

The sequence sts(�) = W0,… ,Wn denotes the state 
sequence of the interactive process � , where W0 = C0 
(the initial state), and Wi = Di ∪ Ci for all 1 ≤ i ≤ n . The 
sequence act(�) = E0,… ,En−1 of subsets of A such that 
Ei = en(A,Wi) for all 0 ≤ i ≤ n − 1 represents the activity 
sequence of the interactive process � . Thus, the evolution 
of the system can be written as

Notice that, due to the threshold assumption, each molecule 
can evolve by means of several reactions (or can inhibit sev-
eral reactions if it appears in inhibitor sets), while, due to the 
no permanency assumption, the computation continues with 
the set of molecules produced by the reactions to which is 
added the set of molecules provided by the context.

W0

E0

���������→ W1

E1

���������→ ⋯

En−1
����������������→ Wn.
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Example 1 To illustrate the reaction systems for the molecu-
lar heat-shock response introduced in [20], we present one of 
the reaction systems given in [4]. The heat-shock response 
in eukaryotes is a fundamental defence mechanism which 
allows cells to react to environmental changes, as an increase 
of environmental temperature might result in cell death. The 
key elements for the heat-shock response mechanism are

• the proteins in the cell ( prot);
• the heat-shock proteins ( hsp);
• the misfolded proteins ( mfp);
• the heat-shock factors ( hsf );
• the dimerized heat-shock factors ( hsf 2);
• the trimerize heat-shock factors ( hsf 3);
• the heat shock-element ( hse).

The reactions among these key elements for the heat-
shock response mechanism are listed in Table 1.

Table 2 contains the simplified reactions obtained as a 
direct translation of the reactions of Table 1. The dummy 
variable dI is used only to comply with the constraint of 
reaction systems requiring that the set of inhibitors of all 
reactions in a reaction system should not be empty.

The interactive process of this reaction system, when 
starting from context {hsf , prot, hse} and using afterwards 

an empty context, enters a loop of length two as depicted 
in Fig. 1.

Notice that the system allows a loop of length one when 
starting from the context {hsf , hsf 3} , using afterwards an 
empty context (see Fig. 2). According to [4], the system 
should not even allow the state {hsf , hsf 3} because a single 
form of hsf  should be present at any moment in the system.

It turns out that the reaction system of Table 2 leads to 
a behaviour (see Fig. 1) that is different from the one given 
in [20]. To overcome this problem, in [4] is constructed a 
second reaction system based on constraints over states and 
on a concept of dominance graph capturing the competition 
on resources as in [20]. In this paper, we propose a differ-
ent approach of this problem by introducing the ‘mutually 
exclusive rules’ in reaction systems.

3  Mutually exclusive reactions

In a reaction system A = (S,A) , the set A of available reac-
tions does not change over time. If W is the state of A at a 
certain step, then the reactions from A enabled by W trans-
form W into res(A,W) which together with the context set 
available at this step form the successor state of W. This 
setup is generalized in [11]: as a process advances from a 
state W to its successor W ′ , also the set of available reactions 
changes from A in W to A′ in W ′.

The approach in [4] presents the competition between 
two reactions a and b in terms of a directed graph, where an 
edge a → b describes two reactions competing for a common 
resource, while reaction a has priority over reaction b. This 
means that if both reactions are enabled, then only reaction 
a is applicable. This mechanism is encoded in the reaction 
system using certain inhibitors such that the reaction b can-
not be triggered if reaction a is enabled.

Table 1  The molecular model for the eukaryotic heat-shock response 
[20]

Reaction Reaction

hsf + hsf 3 → hsp ∶ hsf + 2hsf 2hsf ⇆ hsf 2

hsp + hsf 3 ∶ hse → hsp ∶ hsf + 2hsf + hse hsf + hsf 2 ⇆ hsf 3

hsp → ∅ hsf 3 + hse ⇆ hsf 3 ∶ hse

prot → mfp hsf 3 ∶ hse → hsf 3 ∶ hse + hsp

hsp + mfp ⇆ hsp ∶ mfp hsp + hsf ⇆ hsp ∶ hsf

hsp ∶ mfp → hsp + prot hsp + hsf 2 → hsp ∶ hsf + hsf

Fig. 1  The interactive process of the simplified model of the heat-
shock response  [4], where the circles contain the Di sets, while the 
sets Ci and ri are placed on the arrows

Fig. 2  An interactive process when C0 = {hsf , hsf 3}

Table 2  The simplified model of the heat shock response as a reac-
tion system [4]

({hsf }, {dI}, {hsf 3}) (i)
({hsf 3}, {dI}, {hsf }) (ii)
({hsf 3, hse}, {dI}, {hsf 3 ∶ hse}) (iii)
({hsf 3 ∶ hse}, {dI}, {hsf 3 ∶ hse, hsp}) (iv)
({hsp, hsf }, {dI}, {hsp ∶ hsf }) (v)
({hsp ∶ hsf }, {dI}, {hsp, hsf }) (vi)
({hsp, hsf 3}, {dI}, {hsp ∶ hsf , hsf }) (vii)
({hsp, hsf 3 ∶ hse}, {dI}, {hsp ∶ hsf , hsf , hse}) (viii)
({prot}, {dI}, {mfp}) (ix)
({hsp,mfp}, {dI}, {hsp ∶ mfp}) (x)
({hsp ∶ mfp}, {dI}, {hsp, prot}) (xi)
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In what follows, we consider that the set of available reac-
tions does not change over time, but we use a relation # that 
forbids two reactions a and b to be applied in the same step. 
The relation # is different from the relation presented in [4] 
because it allows in any step to apply only one of the two 
rules, a rule which is non-deterministically chosen.

T h e  m u t u a l  e x c l u s i o n  r e l a t i o n 
# ⊆ {(a, b) ∣ a, b ∈ A, a ≠ b} contains pairs of reactions that 
are mutually exclusive, namely they cannot be applied in the 
same step. It is used also the notation a#b for (a, b) ∈ # . We 
extend in what follows the notions defined in Sect. 2 to take 
into account also the effect of the mutual exclusion relation 
# . The activity of a set of reactions A on a finite set T with 
respect to # is defined recursively by en(A, #,T) =.

⎧
⎪⎪⎨⎪⎪⎩

{a} ∪ en(A�{a, b}, #,T), {b} ∪ en(A�{a, b}, #,T) if a#b, a en T , b en T

{a} ∪ en(A�{a, b}, #,T) if a#b, a en T , T ↛ b

{a} ∪ en(A�{a}, #,T) if ∄b s.t. a#b, a en T

� otherwise

.
In the first case, the fact that two mutually exclu-

sive reactions are both enabled leads to the construc-
tion of two sets of reactions enabled in T with respect 
to the mutual exclusion relation # , namely the sets 
{a} ∪ en(A�{a, b}, #,T) and {b} ∪ en(A�{a, b}, #,T) . The 
notation {a} ∪ en(A�{a, b}, #, T) means that once reaction 
a is chosen to be applied, we no longer need to test for the 
application of reactions a and b anymore. In the second case, 
we consider the situation when a reaction a is enabled, and a 
mutually exclusive reaction is not enabled, while in the third 
case, we consider the situation when a reaction a that does 
not appear in # is enabled.

Thus, en(A, #,T) is the set containing all sets of 
reactions from A that are enabled by T with respect 
to the mutual exclusion relation #. Notice that 
res(A, #,T) = {res(B,T) ∣ B ∈ en(A, #,T)} ; this means that 
res(A, #,T) is the set containing all sets of products obtained 
only using the sets of reactions B ⊆ A which are enabled 
by T with respect to # and contribute to the results of A on 
T. Comparing with the classical reaction systems in which 
we get a single result, in this new approach we obtain a 
set of possible results. Thus, we move from a deterministic 
approach to a non-deterministic one.

A restricted reaction system is an ordered pair 
Ar = (S,A, #) , where S is an alphabet, A ⊆ rac(S) and 
# ⊆ {(a, b) ∣ a, b ∈ A, a ≠ b} . The dynamic behaviour of the 
restricted reaction systems is captured through the notion of 
interactive processes.

Definition 2 Let Ar = (S,A, #) be a restricted reaction 
system. An interactive process � in Ar is a set of pairs 
(� , �) of finite sequences such that � = C0,C1,… ,Cn , 
� = D1,… ,Dn with n ≥ 1 , where C0,… ,Cn , D1,… ,Dn ⊆ S , 

D1 ∈ res(A, #,C0) , and Di ∈ res(A, #,Di−1 ∪ Ci−1) for each 
2 ≤ i ≤ n.

Just like in the traditional reaction systems, the 
sequences C0,… ,Cn and D1,… ,Dn are the context and 
result sequences of the interactive process� , respectively. 
The main difference is that instead of obtaining a unique 
sequence D1,… ,Dn , we obtain a set of possible sequences. 
Due to the finiteness of the set S, the set of possible 
sequences is also finite. Just like for the traditional reac-
tion systems, an open restricted reaction system means that 
its behaviour (interactive processes in Ar ) is influenced by 
the environment, while a closed restricted reaction system 
means that its behaviour is influenced by the environment 
only through the initial context C0.

The sequence rsts(�) = W0,… ,Wn denotes the restricted 
state sequence of the interactive process � , where W0 = C0 
(the initial state), and Wi = Di ∪ Ci for all 1 ≤ i ≤ n . The 
sequence ract(�) = E0,… ,En−1 of subsets of  A such 
that Ei ∈ en(A, #,Wi) for all 0 ≤ i ≤ n − 1 represents the 
restricted activity sequence of � . Thus, each possible evo-
lution of the system can be written as

We use two different notations to distinguish between the 
evolutions of reaction systems and of restricted reaction 
systems, namely  �→ and  . Notice that our restriction on the 
application of the rules has no effect on the major assump-
tions imposed of the reaction systems: threshold and no 
permanency.

Example 2 As already discussed in Example 1, the state 
{hsf , hsf 3} is bad; it should not be allowed because a single 
form of hsf  should be present at any moment in the system. 
In our approach, we allow such an initial state. However, 
using the mutual exclusion relation # and due to the non-per-
manency assumption, we are able to control the evolution of 
the restricted reaction system such that all the continuations 
lead only to good states. This is depicted in Fig. 3, where 
only two evolutions are possible, and both evolve from the 
bad state to good ones only in one step.

4  Traditional and restricted 
reaction systems

We present a strong relationship between traditional reaction 
systems and restricted reaction systems by showing how to 
simulate the behaviour of reaction systems by interactive 
processes in restricted reaction systems, and how to simulate 
the behaviour of restricted reaction systems by interactive 
processes in reaction systems. While simulation of reaction 
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systems by restricted reaction systems works regardless if 
the reaction systems are closed or open, the reverse simula-
tion of restricted reaction systems by reaction systems is 
possible only using open reaction systems. This means that 
the restricted reaction systems are more expressive than the 
reaction systems (due to the use of the mutual exclusion 
relation #).

Proposition 1 Given a reaction system A = (S,A) and 
an interactive process  � with sts(�) = W0,… ,Wn and 
act(�) = E0,… ,En−1 , there exists a restricted reaction 
system Ar = (S�,A�, #) such that rsts(�) = W0,… ,Wn and 
ract(�) = E0,… ,En−1.

Proof It is easy to see that for a reaction system A = (S,A) we 
can construct the restricted reaction system Ar = (S�,A�, #) 
with S� = S , A� = A and # = � . As the mutual exclusion rela-
tion # is empty, this means that en(A, #,T) = {en(A,T)} for 
any T ⊆ S.

Now we prove that for all 0 ≤ i ≤ n − 1 , if Wi

Ei

��������→ Wi+1 
in the reaction system A , then  in the 
restricted reaction system  Ar . From Wi

Ei

��������→ Wi+1 , it 
resul t s  tha t  Ei = en(A,Wi) ,  Di+1 = res(A,Wi) and 
Wi+1 = Di+1 ∪ Ci+1 .  S ince  en(A, #,Wi) = {en(A,Wi)} , 
then res(A, #,Wi) = {res(A,Wi)} ; thus, Ei ∈ en(A, #,Wi) 
and Di+1 ∈ res(A, #,Wi) , meaning that  (as 
desired).   ◻

Proposition 2 Given a restricted reaction system 
Ar = (S�,A�, #) and an interactive process �′ such that 
rsts(��) = W �

0
,… ,W �

n
 and ract(��) = E�

0
,… ,E�

n−1
 , there 

exists a reaction system A = (S,A) and an interactive pro-
cess � with sts(�) = W0,… ,Wn such that W ′

i
⊆ Wi for all 

0 ≤ i ≤ n , and act(�) = E�
0
,… ,E�

n−1
.

Proof Let us consider a restricted reaction system 
Ar = (S�,A�, #) in state W �

i
= C�

i
∪ D�

i
 . If there exists an 

E�
i
∈ en(A�, #,W �

i
) , then it holds that  , where 

W �
i+1

= C�
i+1

∪ D�
i+1

 and D�
i+1

∈ res(A�, #,W �
i
).

Starting from the restricted reaction system Ar and an 
an interactive process �′ such that  , we can 
construct a reaction system A and an interactive process � 
such that Wi

E�
i

���������→ Wi+1 such that W ′
i
⊆ Wi for all 0 ≤ i ≤ n . The 

construction is in such a way that each non-empty context 
set provides symbols to control the evolution by forbidding 
the application of some rule by means of proper inhibitors. 
For this, we consider the reaction system A = (S ∪ S�,A�) in 
which the set S′ is built based on the pairs contained in the 
mutual exclusion relation # ; specifically, for each a#b we 
add ia and ib in S′ . Since reaction systems work with sets, 
even if there exist a#b and a#c , only one object ia is added 
to S′ . For each rule a = (R, I,P) ∈ A in Ar , we add the rule 
a = (R, I ∪ {ia},P) ∈ A� in A . In this way, the application 
of reaction a can be controlled by either the existence or 
absence of the inhibitor ia.

Since in the restricted reaction system Ar the set 
of reactions E′

i
 was applied to the state W ′

i
 , this means 

that the set of reactions E��
i
= en(A�,W �

i
)�E�

i
 was ena-

bled in W ′
i
 , but not applied due to the mutual exclu-

sion relation # . For each a ∈ E��
i
 , we add ia ∈ C��

i
 such 

that the set offered in the interactive process � by the 
context at step i is C�

i
∪ C��

i
 . In this case, it holds that 

Wi = W �
i
∪ C��

i
= D�

i
∪ (C�

i
∪ C��

i
)

E�
i

���������→ D�
i+1

∪ (C�
i+1

∪ C��
i+1

) = W �
i+1

∪ C��
i+1

= Wi+1 , 
with W ′

i
⊆ Wi for all 0 ≤ i ≤ n . This means that the addi-

tional inhibitors from the sets C′′
i
 in the contexts of A are 

needed to obtain the same result sequence in the behaviour 
of the restricted reaction system Ar .   ◻

In [12], it was proven that there is a close relationship 
between reaction systems and finite transition systems. 
Due to this relationship and Propositions 1 and 2, it also 
holds that there is a close relationship between restricted 
reaction systems and finite transition systems.

Before specifying formally this relationship, we recall 
what a finite transition system is. A (possibly nondeter-
ministic) finite transition system is T = (Q,Σ, �) , where Q 
is a finite non-empty set of states, Σ is a finite non-empty 
set of symbols (the input alphabet), while 𝛿 ⊆ Q × Σ × Q 
is a transition relation. For n ≥ 1 , a transition process in T 
is a pair � = (�, �) , where � = q0,… , qn is a sequence of 
states and � = x1,… , xn is a sequences of symbols such 
that qi ∈ �(qi−1, xi) for each 1 ≤ i ≤ n.

Proposition 3 Given a restricted reaction system A and 
an interactive process � = (� , �) with � = C0,… ,Cn and 
� = D1,… ,Dn for n ≥ 1 , there exists a finite transition 
system TA such that � = (�, �) is a transition process in TA 
with � = W0,… ,Wn , � = X1,… ,Xn and Xi = Ci⧵Di for all 
1 ≤ i ≤ n.

Proposition 4 Given a finite transition system T and a transi-
tion process � = (�, �) in T with � = q0,… , qn , � = x1,… , xn 

Fig. 3  The interactive processes when C0 = {hsf , hsf 3} and 
# = {((i), (ii))}
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for n ≥ 1 , there exists a restricted reaction system AT and 
an interactive process � = (� , �) , with � = q0x1, x2,… xn, � 
and � = q1,… , qn.

5  Reversibility in (restricted) reaction 
systems

Reversibility appears naturally in chemical and biological 
systems. It makes sense to deal with reversibility in any 
field of natural computing. In what follows, we prove some 
results concerning invariants in the states of reaction sys-
tems when reverse reactions are allowed; reversing a reac-
tion a = (Ra, Ia,Pa) means that its reverse ã is able to undo 
the effects of a.

Definition 3 The reverse of a reaction a = (Ra, Ia,Pa) is 
given by the reaction ã = (Pa, Ia,Ra) . Similarly, the reverse 
of a set A of reactions is the set Ã = {ã ∣ a ∈ A}.

Since in Sect.  2 we imposed R ∩ I = � for a reac-
tion a = (R, I,P) , according to this definition, the reverse 
ã = (R�, I�,P�) might not be a reaction because R� ∩ I� ≠ � . 
For example, let us consider the reaction a = (b, c, c) . The 
resulting reverse reaction would be ã = (c, c, b) , which is 
not a reaction because reactants and inhibitors have a non-
empty intersection. To overcome this problem, we work 
only with reversible reactions a=(R, I, P) satisfying that 
R ∩ I = P ∩ I = �.

By Definition 3, it holds that ̃̃a = a . This natural property 
is used in some of the results of this section in which we 
allow a mix of reactions to be applied, namely we do not 
impose that only forward or reverse rules to be applied in 
one step. Thus, if a rule and its reverse are enabled in the 
initial step, then the following two invariant properties are 
obtained in reaction systems.

Proposition 5 Let us consider a closed reaction sys-
tem A = (S,A) with a consistent set of reactions A. If 
a, ã ∈ en(A,W0) , then Ra ∪ Pa ⊆ Wi for all i ≥ 0.

Proof By induction on the last applied step.

– Case i = 0. There was no step applied yet, and the system 
is in its initial state. From a, ã ∈ en(A,W0) it follows that 
Ra ⊆ W0 and Rã ⊆ W0 . From Definition 3, it follows that 
Rã = Pa ; thus, Ra ∪ Pa ⊆ W0 , as required.

– Case i > 0 . Assume Ra ∪ Pa ⊆ Wi−1 . Then by Defini-
tion 3 it holds that Rã = Pa , and so Ra ∪ Rã ⊆ Wi−1 . Since 
we work within a closed system having a consistent set 
of reactions, this means that a, ã ∈ en(A,Wi−1) , and so 

Di = res(A,Wi−1) = res(en(A,Wi−1),Wi−1) = Pa ∪ Pã ∪ 
res(en(A�{a, ã},Wi−1),Wi−1) . Since by Definition 3 we 
have Rã = Pa , then it holds that Pa ∪ Ra ⊆ Di . Since 
Wi = Di ∪ Ci and Pa ∪ Ra ⊆ Di , then Pa ∪ Ra ⊆ Wi , as 
required.

  ◻

Proposition 6 Let us consider an open reaction system 
A = (S,A) . If a, ã ∈ en(A,W0) and Ia = � , then Ra ∪ Pa ⊆ Wi 
for all i ≥ 0.

Proof The proof proceeds in a similar manner as for Proposi-
tion 5.   ◻

By generalizing the previous results such that all reac-
tions are enabled at the same time with their reverse, we 
obtain the following two invariant properties.

Proposition 7 Let us consider a closed reaction system 
A = (S,A) . If for all a ∈ en(A,W0) it exists ã ∈ en(A,W0) , 
then res(A,W0) ⊆ Wi for all i ≥ 0.

Proof By induction on the last applied step.

– Case i = 0. There was no step applied yet, and the 
system is in the initial state. By the definition of res , 
it holds that res(en(A,W0),W0) = ∪a∈en(A,W0)

Pa . Since 
a, ã ∈ en(A,W0) , then res(A,W0) = ∪a,ã∈en(A,W0)

(Pa ∪ Ra) . 
Using Proposition 5 and due to the fact that Pa ∪ Ra ⊆ W0 , 
it follows that res(A,W0) = ∪a,ã∈en(A,W0)

(Pa ∪ Ra) ⊆ W0 , 
as required.

– Case i > 0 . Assume res(A,W0) ⊆ Wi−1 . Since we work  
with a closed system, it holds that res(A, res(A,W0)) ⊆ res 
(A,Wi−1) = Di (by the defi-nition of res ). Since  
res(A,W0) = ∪a∈en(A,W0)

Pa = ∪a,ã∈en(A,W0)
(Pa ∪ Ra)  ,  

then res(A, res(A,W0)) = res(A,∪a,ã∈en(A,W0)
(Pa ∪ Ra)) =

∪a,ã∈en(A,W0)
(Ra ∪ Pa) = res(A,W0) , and so res(A,W0) ⊆ Di .  

Since Wi = Di ∪ Ci , res(A,W0) ⊆ Di and Ci = � , it follows 
res(A,W0) ⊆ Wi , as required.

  ◻

Proposition 8 Let us consider an open reaction system 
A = (S,A) . If for all a ∈ en(A,W0) it exists ã ∈ en(A,W0) 
with Iã = � , then res(A,W0) ⊆ Wi for all i ≥ 0.

Proof The proof proceeds in a similar manner as for Proposi-
tion 7.   ◻

If both forward and reverse rules are applied in a chemical 
step, a chemical equilibrium may be obtained [3]. By con-
sidering reaction systems insensitive to context, we obtain a 
sort of equilibrium in reaction systems as well.
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Proposition 9 If for all a ∈ en(A,W0) it exists ã ∈ en(A,W0) 
and Ci ⊆ Di , then res(A,W0) = Wi for all i ≥ 1.

Proof By induction on the last applied step.

– Case i = 1. By the definition of res , it holds that 
res(A,W0) = D1 .  Since C1 ⊆ D1 ,  it follows that 
res(A,W0) = W1.

– Case i > 1 . Assume res(A,W0) = Wi−1 . By the definition  
of res, it holds that res(A, res(A,W0)) = res(A,Wi−1) = Di . 
 As res(A,W0) = ∪a∈en(A,W0)

Pa = ∪a,ã∈en(A,W0)
(Pa ∪ Ra) , 

then res(A, res(A,W0)) = res(A,∪a,ã∈en(A,W0)
(Pa ∪ Ra)) =

∪a,ã∈en(A,W0)
(Ra ∪ Pa) = res(A,W0)  ,  a n d  s o 

res(A,W0) = Di . Since Wi = Di ∪ Ci , res(A,W0) = Di and 
Di ⊆ Ci , then res(A,W0) = Wi.

  ◻

As claimed in [20], sometimes it is better to restrict the 
application of a rule and its reverse in a single step. The next 
result shows that a step in a reaction system can be simulated 
by a step in a restricted reaction system if and only if the set 
of enabled reactions does not contain both a reaction and 
its reverse.

Proposition 10 Let us consider the reaction system 
A = (S,A) and the restricted reaction system Ar = (S,A, #) , 
where # = {(a, ã) ∣ a ∈ A} . If it does not exist a ∈ A such that 
a, ã ∈ E , then   W

E
������→ W ′if and only if .

Proof ⇒ Let us assume W
E
������→ W ′ ; this means that 

E = en(A,W) and D� = res(A,W) = ∪a∈EPa . Since it does not 
exist a ∈ A such that a, ã ∈ E , then en(A, #,W) = {en(A,W)} , 
and it follows that .

⇐ Let us assume  ; this means that 
E ∈ en(A, #,W) , and due to the fact that {(a, ã) ∣ a ∈ A} ⊆ # , 
it also holds that en(A, #,W) = {en(A,W)} , and so 
W

E
������→ W ′ .   ◻

The following result shows that a closed reversible reac-
tion system enjoys a standard property of the reversible 
process calculi described by so-called loop lemma in [10], 
namely that backward reductions are the inverse of the for-
ward ones and vice versa. Notice that the following result 
specifies the necessary conditions such that the reverse reac-
tions are able to provide a way of ‘going back’ one step in 
the evolution of restricted reaction systems.

Proposition 11 If C′ ⊆ D′ and for all w ∈ W  it exists a ∈ E 
such that w ∈ Ra , then  implies  .

Proof Assume  .  Then i t  holds  that 
D� = res(E,W) = ∪a∈EPa .  Since C′ ⊆ D′ ,  it  follows 
that W � = D� . By the definition of res , it holds that 
res(Ẽ,W �) = res(Ẽ,D�) = ∪ã∈ẼPã = ∪a∈ERa . Due to the 
condition that for all w ∈ W it exists a ∈ E such that w ∈ Ra 
(meaning that all objects from W are obtained by the rules 
of E), it follows that W = ∪a∈ERa , and so  .   ◻

It is worth noting that due to Propositions 5 
and  6, the statement of Proposition  11 holds also if 
{(a, ã) ∣ a ∈ A�} ⊆ # , where A′ ⊆ A . This condition means 
that in restricted reaction system, some (even all) rules and 
their reverses can be applied in parallel.

6  Conclusion

In this paper, we defined restricted reaction systems in 
which the set of available reactions does not change over 
time, but there exists a relation that forbids two reactions 
to be applied in the same step. This mutual exclusion rela-
tion allows only one non-deterministically chosen rule of 
the two rules to be applied. Such a relation changes the 
(standard) deterministic approach of reaction systems to 
a non-deterministic one. On the other hand, we reveal a 
close relationship between reaction systems and restricted 
reaction systems.

We also investigated the notion of reversibility in both 
reaction systems and restricted reaction systems (revers-
ibility appears naturally in chemical and biological sys-
tems). We studied uncontrolled reversibility in both reac-
tion systems and restricted reaction systems, and provided 
some invariant properties. Moreover, we specified neces-
sary conditions such that a restricted reaction system can 
reverse its computation and reach a previous state.

Two established research fields in natural comput-
ing, namely membrane computing [18] and reaction sys-
tems [13], are inspired by the functioning of living cells. 
Membrane systems represent quantitative models using 
rules over multisets of symbols placed in the compart-
ments of a membrane structure. Reaction systems rep-
resent qualitative models dealing with sets rather than 
multisets. Connections between these two research fields 
were considered in [19] by analyzing the assumptions of 
reaction systems from the point of view of membrane com-
puting, and in [1] by simulating reaction systems using 
membrane systems.
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