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Abstract
Taken inspiration from biological phenomenon that neurons communicate via spikes, spiking neural P systems (SN P systems, 
for short) are a class of distributed and parallel computing devices. So far firing rules in most of the SN P systems usually 
work in a sequential way or in an exhaustive way. Recently, a combination of the two ways mentioned above is considered 
in SN P systems. This new strategy of using rules, which is called a generalized way of using rules, is applicable for both 
firing rules and forgetting rules. In SN P systems with generalized use of rules (SNGR P systems, for short), if a rule is used 
at some step, it can be applied any possible number of times, nondeterministically chosen. In this work, the computational 
completeness of SNGR P systems is investigated. Specifically, a universal SNGR P system is constructed, where each neu-
ron contains at most 5 rules, and for each time each firing rule consumes at most 6 spikes and each forgetting rule removes 
at most 4 spikes. This result makes an improvement regarding to these related parameters, thus provides an answer to the 
open problem mentioned in original work. Moreover, with this improvement we can use less resources (neurons and spikes 
involved in the evolution of system) to construct universal SNGR P systems.
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1  Introduction

Being a rich source of inspiration for informatics, brain has 
provided plenty of ideas to propose high performance com-
puting models, as well as to design efficient algorithm. In the 
brain, it is a common phenomenon that neurons cooperate by 
exchanging spikes via synapses. Taking inspiration from this 
phenomenon, various neural-like computing models have 
been proposed. In the framework of membrane computing, a 
kind of distributed and parallel neural-like computing model 
was proposed in 2006 [1], which is called spiking neural P 
systems (SN P systems, for short).

Inspired from biological phenomena such as synapse 
weight, neuron division, astrocytes, inhibitory synapses, 
et al., many variants of SN P systems [2–22] have been pro-
posed. The theoretical and practical usefulness of these vari-
ants were also investigated: regarding computing power the 
relationship between these variants and well-known mod-
els of computation, e.g. finite automata, register machines, 
grammars, computing numbers or strings was investigated 
in [23–35]; computing efficiency of these variants in solving 
hard problems was investigated in [36, 37].

Moreover, practical applications and software for simula-
tions have been developed for SN P systems and their vari-
ants: for designing logic gates and logic circuits [38], for 
designing databases [39], for representing knowledge [40], 
for diagnosing fault [41–43], and for approximately solving 
combinatorial optimization problems [44].

Briefly, SN P systems have neurons that process spikes, 
and these neurons are placed on nodes of a directed graph, 
whose edges are called synapses. This construction is 
abstracted from indistinct signal and synapses in biological 
neurons. In SN P systems, spikes are processed by applying 
firing rules or forgetting rules. Firing rules are of the form 
E∕ac → ap;d , where E is a regular expression over {a} , and 
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c, p, d are natural numbers, c ≥ p ≥ 1 , d ≥ 0 . Applying a 
firing rule E∕ac → ap;d means consuming c spikes in the 
neuron and producing p spikes after a delay of d steps. The 
produced p spikes are sent to all neurons in connection with 
the neuron where the rule was applied by an outgoing syn-
apses. Forgetting rules are of the form E∕ac → � , where E 
is also a regular expression over {a} , and c is a natural num-
ber. Applying a forgetting rule E∕ac → � means removing c 
spikes from the neuron and generating no spike.

At some step during the evolution of SN P systems, sev-
eral spiking rules may be enabled in some neuron, and one 
of the applicable rules is chosen nondeterministically. In this 
case, the way of applying rules plays a crucial role. In the 
earlier version of SN P systems, the spiking rules were usu-
ally applied sequentially [9, 23, 25, 26, 36, 37]. At the level 
of a neuron, the sequential way of applying rules means the 
chosen rule was used only once, so it was a kind of local 
sequential. Inspired from the biological fact that an enabled 
chemical reaction consumes as many related substances as 
possible, exhaustive way of using rules was proposed [4] 
later. The exhaustive use of rules means the chosen rule 
was applied as many times as possible. So at the level of 
a neuron, the exhaustive use of rules was a kind of local 
parallelism [33, 34].

Recently, the sequential use of rules combines with the 
exhaustive use of rules to form generalized use of rules [46]. 
This new way of applying rules is similar to the minimal 
parallelism mode in P systems [45]. Specifically, under 
exhaustive mode of applying rules, the chosen rule can be 
used at most m times, while generalized use of rules means 
the chosen rule can be applied for l times, where 1 ≤ l ≤ m.

It was proved in [46] that as number computing devices 
SN P systems with generalized use of rules (SNGR P sys-
tems, for short) are Turing universal. When each neuron 
contained at most 7 rules, and for each time each firing rule 
consumes at most 9 spikes and each forgetting rule removes 
at most 7 spikes, computational completeness is achieved 
in SNGR P systems. Also in [46], it was mentioned that the 
parameters in this completeness result may be optimized 
without losing the universality.

In this work, the related parameters in the completeness 
result of SNGR P systems are improved. Specifically, a 
universal SNGR P system is proposed, with each neuron 
containing at most 5 rules, and for each time each spiking 
rule consuming at most 6 spikes, and each forgetting rule 
removing at most 4 spikes. This universality result provides 
an answer to the open problem mentioned in [46], and makes 
it possible to construct universal SNGR P systems with less 
resources (neurons and spikes involved in the evolution of 
system).

This work is organized as follows. The computing mod-
els investigated in this work, i.e. SNGR P systems, are 
simply reviewed in Sect. 2, . In Sect. 3, the computational 

completeness of SNGR P systems is investigated. Conclu-
sions and remarks are given in Sect. 4.

2 � Spiking neural P systems with generalized 
use of rules

In this section, SNGR P systems is simply reviewed. For 
more details, readers can look up in [46].

Formally, an SNGR P system of degree m ≥ 1 , is a con-
struct of the form

where:

1.	 O = {a} is a singleton alphabet (a is called spike);
2.	 �1, �2,… , �m are neurons with the form of 

 where:

(1)	 ni ≥ 0 is the number of spikes initially placed in 
neuron �i;

(2)	 Ri is a finite set of rules and two forms of rule are 
as follows:

•	 Firing rule: E1∕a
c1 → ap;d , where E1 is a a regular 

expression over {a} , and c1 ≥ p ≥ 1 , d ≥ 0 (called 
as delay).

•	 Forgetting rule: E2∕a
c2 → � , where E2 is a a regu-

lar expression over {a} , and c2 ≥ 1.

	    For each firing rule E1∕a
c1 → ap;d from 

Ri , it is worthy noting the restriction that 
L(E1) ∩ L(E2) = �;

3.	 syn ⊆ {1, 2,… ,m} × {1, 2,… ,m} is the set of synapses 
between neurons. Self-loop synapse is not allowed in the 
system, so (i, i) ∉ syn for 1 ≤ i ≤ m;

4.	 out ∈ {1, 2,… ,m} indicates the output neuron, which 
can emit spikes to environment.

In a firing rule E∕ac → ap;d , if d = 0 , then the delay can 
be omitted, and the rule can be written as E∕ac → ap ; if 
E = ac and d = 0 , then the rule is simply written as ac → ap . 
Similarly, if a forgetting rule E∕ac → � has E = ac , then it 
is simply written as ac → � . The feature of delay is not used 
in the following sections, so the firing rules are always of 
the form E∕ac → ap.

In a neuron �i with k1 spikes and a firing rule E∕ac1 → ap , 
if ak1 ∈ L(E) and k1 ≥ c1 , then this firing rule can be applied. 
Or in a neuron �i with k2 spikes and a forgetting rule 

� = (O, �1, �2,… , �m, syn, out),

�i = (ni,Ri), 1 ≤ i ≤ m,
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E∕ac2 → � , if ak2 ∈ L(E) and k2 ≥ c2 , then this forgetting 
rule can be applied. This is how firing rule and forgetting 
rule can be applied in SN P systems. However, the essential 
that should be considered in SNGR P system is the way the 
rules are applied. The application of rules in SNGR P sys-
tems are explained in detail as follows.

As suggested in the Introduction section, applying the 
firing rule E∕ac1 → ap in a generalized manner means the 
following. Assume that k1 = s1c1 + r1 , where s1 ≥ 1 and 
0 ≤ r1 < c1 , thus n1c1 spikes can be consumed, where 
n1 ∈ {1, 2,… , s1} and n1 is chosen nondeterministically 
from the set. If n1c1 spikes, 1 ≤ n1 ≤ s1 , are consumed by 
the rule, then after the application of rule, n1p spikes are 
produced, and k1 − n1c1 spikes remain in neuron �i . The 
produced n1p spikes are sent to all neighbouring neurons �j 
with (i, j) ∈ syn . If neuron �i is output neuron, the produced 
n1p spikes will be sent to the environment. If there is no 
synapse leaving from neuron �i , the produced n1p spikes 
will simply be lost.

Similarly, applying the forgetting rule E∕ac2 → � in a 
generalized manner means the following. After dividing k2 
by c2 , we can get k2 = s2c2 + r2 , with s2 ≥ 1 and 0 ≤ r2 < c2 . 
Given this assumption of k2 = s2c2 + r2 , n2c2 spikes can be 
removed, where n2 ∈ {1, 2,… , s2} and n2 is chosen non-
deterministically from the set. If n2c2 spikes, 1 ≤ n2 ≤ s2 , 
are removed by the rule, then after the application of rule, 
k2 − n2c2 spikes remain in neuron �i.

In each time unit, in each neuron, if there is a rule can 
be used, no matter it is a firing rule or a forgetting rule, the 
rule must be applied. At some time, in a neuron, there may 
be several rules can be applied. In this case, only one of the 
rules is nondeterministically chosen to be applied. In SNGR 
P systems, the chosen rule will be used in a generalized way 
as mentioned above.

The configuration of system is defined as the numbers 
of spikes present in each neuron. Thus, the initial configu-
ration of system is ⟨n1, n2,… , nm⟩ . Applying the rules in 
a generalized way as described above, transitions among 
configurations can be defined. A computation is defined as 
any sequence of transitions starting from the initial configu-
ration. When there is no rule can be used in any neuron of 
the system, the computation halts, and this configuration is 
usually called the halting configuration.

The result of a computation can be defined in several ways. 
In this work, SNGR P systems are considered as number gen-
erating devices, and the computation result is defined as the 
total number of spikes that are sent from the output neuron to 
environment during the computation. This means only a halt-
ing computation can lead to a result, or else the computation 
is considered as invalid and it gives no result. In this way, the 
set of all numbers that are computed by an SNGR P system 
� is denoted by Ngen(�) , where subscript gen indicates that 

the rules are used in a generalized mode. Furthermore, the 
family of all sets Ngen(�) computed as above is denoted by 
SpikP

gen
m (rulek, consr, forgq) . The parameters m, k, r, q put 

restrictions on the system as follows: the SNGR P system 
contains at most m ≥ 1 neurons; in each neuron of the sys-
tem, there are at most k ≥ 1 rules; regarding to the rules in 
the system, all spiking rules E∕ac1 → ap have c1 ≤ r , and all 
forgetting rules E∕ac2 → � have c2 ≤ q . These parameters 
can be replaced with * when they are not bounded.

In order to understand the SNGR P systems easily, they 
are represented graphically in the next sections: an oval 
with initial spikes and rules inside represents a neuron; 
communication between neurons is represented by incom-
ing and outgoing arrows of neurons; for output neuron, 
there is an outgoing arrow pointing to environment, which 
suggests that the output neuron can send spikes to the 
environment.

3 � The improved result of universality 
for SNGR P systems

In this section, an improved universal SNGR P system is 
present, with each neuron containing at most 5 rules, and for 
each time during computation, each spiking rule consuming 
at most 4 spikes, and each forgetting rule removing at most 4 
spikes. This universality result will be proved by character-
izing NRE by means of register machine.

A register machine is a construct M = (m,H, l0, lh, I) . In 
this construction, m is the number of registers; H is the set of 
labels of instructions; l0 is the start label, which is the label 
of an ADD instruction; lh is the halt label, which is assigned 
to HALT instruction; I is the set of instructions. Label of 
instruction can precisely identify instruction, for each label 
from H labels only one instruction from I. As follows, there 
are three forms of labeled instructions:

•	 ADD instruction li ∶ (ADD(r), lj),
•	 SUB instruction li ∶ (SUB(r), lj, lk) (if register r is non-

empty, then subtract 1 from it and go to the instruction 
with label lj , otherwise go to the instruction with label lk),

•	 HALT instruction lh ∶ HALT .

These instructions have different function. By applying an 
ADD instruction li ∶ (ADD(r), lj) , 1 is added to register r 
and the machine switches to instruction with label lj . When 
applying an SUB instruction li ∶ (SUB(r), lj, lk) , there are 
two branches to go: if register r is non-empty, then 1 is sub-
tracted from this register, and the machine goes to instruc-
tion with label lj ; if register r is empty, then the machine 
goes to instruction with label lk . When getting to the HALT 
instruction lh ∶ HALT  , the machine stops working.
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A set of number N (M) can be generated by a regis-
ter machine M as follows. Initial state of the machine is 
all registers being empty, which means they store num-
ber 0. At initial state the machine applies the instruction 
with label l0 . According to the labels of instructions and 
the contents of registers, the machine continues to apply 
instructions. It is possible that the machine can finally 
reache HALT instruction. At this moment, the number n 
present in register 1 is said to be generated by machine M. 
N (M) denotes the set of all numbers generated by M. It 
is known that with only three registers, register machine 
can generates all recursively enumerable sets of numbers 
[47]. Hence, register machines can characterize NRE, i.e., 
N(M) = NRE . when comparing the power of two number 
generating devices, it is a convention that number 0 is 
ignored. Without loss of generality, this convention is fol-
lowed here.

The characterization of NRE by means of register 
machine will be used in the proof below. Moreover, an addi-
tional attention should be paid to the number of rules in each 
neuron, and the number of spikes consumed or removed in 
each rule.

Theorem 1  SpikgenP∗(rule5, cons6, forg4) = NRE.

Proof  The inclusion SpikgenP∗(rule5, cons6, forg4) ⊆ NRE 
can be proved directly in view of Turing–Church thesis. In 
order to prove the inclusion NRE ⊆ SpikgenP∗(rule5, cons6,

forg
4

) , thus complete the proof of the theorem, an SNGR 
P system is constructed to simulate the universal register 
machine.

Let M = (m,H, l0, lh, I) be a universal register machine. 
Without lose of generality, the result of a computation 
is assumed to be the number stored in register 1 and the 
register 1 is assumed to be never decremented during the 
computation.

In what follows, an SNGR P system � is constructed to 
simulate the register machine M.

In this SNGR P system � , a neuron �r is considered for 
each register r of M, and spikes in the neuron corresponds 
to contents of the register. Specifically, neuron �r containing 
2n spikes corresponds to the fact that register r holds the 
number n ≥ 0 . Therefore, if the contents of a register r is 
increased by 1, then the number of spikes in neuron �r is cor-
respondingly increased by 2; if the contents of a non-empty 
register is decreased by 1, then the number of spikes in neu-
ron �r is correspondingly decreasing by 2; when checking 
whether the register is empty, it correspondingly only need 
to check whether �r has no spike inside.

Also in � , a neuron �l is considered for each label l of an 
instruction in M. Initially, all these neurons are empty, but 
neuron �l0 , which is associated with the start label of M, is 

an exception. Neuron �l0 contains 3 spikes at initial state, 
which means that this neuron is “activated” at beginning of 
the computation.

Furthermore, in a way which is described below, neurons 
associated with the registers and the labels of M will be 
added in system � . When receiving 3 spikes during the 
computation, neuron �l will be active, which initiates the 
simulation of some instruction li ∶ (OP(r), lj, lk) of M (OP is 
ADD or SUB). Full simulation of instruction li ∶ (OP(r), lj, lk) 
of M includes: neuron �li gets activated, register r is operated 
according to the request of OP, at last 3 spikes are intro-
duced in neuron �lj or �lk . In this way, one of the neurons �lj 
and �lk becomes activated. Simulation of the computation in 
M is completed when neuron �lh , which is associated with 
the halting label of M, becomes activated.

It is worthy noting that we do not know whether neurons 
�lj

 and �lk correspond to a label of ADD, SUB, or halting 
instruction. Thus, rules in neurons �lj and �lk are written as 
the form of a3 → a�(lq) ( q = j or q = k ), where the function 
� on H is defined as follows:

The work of system �  , which includes simulating all 
instructions of register machine M and outputting the com-
putation result, is described as follows.

Module ADD: simulating an ADD instruction 
li ∶ (ADD(r), lj, lk)

The ADD module is shown in Fig. 1, and how it works is 
described as follows.

�(l) =

{
2, if l is the label of anADD instruction,

3, otherwise.

a3 → a2
li

a2 → a2l
(1)
i

a2/a → a
a → λ

l
(2)
i

r

a4 → a3

a3 → λ
l
(3)
i

a4 → λ
a3 → a3

l
(4)
i

a3 → aδ(lj)

lj

a3 → aδ(lk)

lk

Fig. 1   Module ADD for simulating li ∶ (ADD(r), lj, lk)
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Given the assumption that at some step t, register r holds 
number n, and the system starts to simulate an ADD instruc-
tion li ∶ (ADD(r), lj, lk) of M. At this step, there are 3 spikes 
in neuron �li , and no spike in the other neurons, except for 
neurons which are associated with registers. With 3 spikes 
in neuron �li , rule a3 → a2 in neuron �li is applicable, and the 
ADD module is initiated.

At step t, the rule a3 → a2 in �li is enabled and is used for 
only once. After application of the rule, 2 spikes are sent to 
each of neurons �

l
(1)

i

 , �
l
(2)

i

 and �r . At step t + 1 , the 2 spikes 
are received by neuron �r , which means the content in reg-
ister r is incremented by one. Also at step t + 1 , both neurons 
�
l
(1)

i

 and �
l
(2)

i

 receives the 2 spikes and becomes activated. In 
neuron �

l
(1)

i

 , rule a2 → a2 is enabled and can be applied for 
only once, and 2 spikes are sent to each of neurons �

l
(3)

i

 and 
�
l
(4)

i

 . In neuron �
l
(2)

i

 , rule a2∕a → a is enabled and can be 
applied for once or twice nondeterministically, sending one 
spike or two spikes to each of neurons �

l
(3)

i

 and �
l
(4)

i

 , respec-
tively. Consequently, if rule a2∕a → a is applied for once, 
both neurons �

l
(3)

i

 and �
l
(4)

i

 receives 3 spikes; if the rule is 
applied for twice, both neurons receive 4 spikes.

If both neurons �
l
(3)

i

 and �
l
(4)

i

 accumulates 3 spikes, the 3 
spikes will be removed from neuron �

l
(3)

i

 by applying forget-
ting rule a3 → � , while the 3 spikes in neuron �

l
(4)

i

 enables 

rule a3 → a3 . This rule makes neuron �
l
(4)

i

 firing, and after its 
application, 3 spikes will be sent to neuron �lk . After receiv-
ing 3 spikes, neuron �lk becomes active, which means the 
system switches to simulate instruction lk of machine M.

If both neurons �
l
(3)

i

 and �
l
(4)

i

 accumulates 4 spikes, the 4 
spikes will be removed from neuron �

l
(4)

i

 by applying forget-
ting rule a4 → � , while the 4 spikes in neuron �

l
(3)

i

 enables 
rule a4 → a3 . This rule makes the neuron firing, and after its 
application, 3 spikes will be sent to neuron �lj . After receiv-
ing 3 spikes, neuron �lj becomes active, which means the 
system switches to simulate instruction lj of machine M.

To summarize, in some Module ADD, if neuron �li gets 
fired, 2 spikes will be added to neuron �r , and neuron �lj or 
�lk

 will get fired nondeterministically. Therefore, ADD 
instruction li ∶ (ADD(r), lj, lk) is correctly simulated by Mod-
ule ADD.

Module SUB: simulating a SUB instruction 
li ∶ (SUB(r), lj, lk).

The SUB module is shown in Fig. 2, and how it works is 
described as follows.

Given the assumption that at some step t, register r holds 
the number n, and the system starts to simulate an SUB 
instruction li ∶ (SUB(r), lj, lk) of M. At this step, there are 
3 spikes in neuron �li , and no spike in the other neurons, 

Fig. 2   Module SUB for simulat-
ing li ∶ (SUB(r), lj, lk)

a3 → a3
li

a5(a2)+/a6 → a4

a5 → a4

a3 → a
a → a

r

a3 → a

l
(1)
i

a5(a4)+/a4 → a4

(a4)+/a4 → λ

a5 → a3

a2 → a
a → λ

l
(2)
i

(a4)+/a4 → a4

a3 → λ
a → λ

l
(3)
i

a3 → a3

a → λ

l
(4)
i

a → a
a3 → λ

l
(5)
i

a → a
a3 → λ

l
(6)
i

a → a
a3 → λ

l
(7)
i

a3 → aδ(lj)

lj

a3 → aδ(lk)

lk

(a4)+/a4 → a4 l
(8)
i

(a4)+/a4 → a4 l
(9)
i
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except for neurons which are associated with registers. With 
3 spikes in neuron �li , rule a3 → a3 in the neuron is applica-
ble, and the SUB module is initiated.

At step t, the rule a3 → a3 in �li is enabled and is used for 
only once. After application of the rule, 3 spikes are sent to 
both of neurons �r and �

l
(1)

i

 . In neuron �
l
(1)

i

 , rule a3 → a is 
applicable at step t + 1 , which makes 1 spike sent to both 
neurons �

l
(2)

i

 and �r at the same time. Also at step t + 1 , neu-
ron �r receives 3 spikes from neuron �li , and the rules in it 
can be applied. The situation in neuron �r is complicate, and 
there are three cases need to be considered.

In case 1, there is no spike in neuron �r at step t, which 
corresponds to the fact that register r holds number 0. Thus, 
there are 3 spikes in neuron �r at step t + 1 , and the rule 
a3 → a is enabled, which makes 1 spike sent to neuron �

l
(2)

i

 . 
Consequently, at step t + 2 neuron �

l
(2)

i

 will accumulate 2 
spikes (one spike is sent by neurons �

l
(1)

i

 , and the other one 
by neuron �r ), and the rule a2 → a is enabled. By applying 
this rule, 1 spike will be sent to each of neurons �

l
(s)

i

 , 
3 ≤ s ≤ 7 . The spike in both neurons �

l
(3)

i

 and �
l
(4)

i

 will be 
removed by rule a → � at the next step. The spike in neuron 
�
l
(5)

i

 , �
l
(6)

i

 and �
l
(7)

i

 enables rule a → a , and each application of 
the rule makes 1 spike sent to neuron �lk . At step t + 4 , neu-
ron �lk will accumulate 3 spikes. It is worthy noting that at 
step t + 2 neuron �

l
(1)

i

 sends 1 spike to neuron �r . This spike 
will be consumed in two steps: by applying firing rule 
a → a , this spike is sent to neuron �

l
(2)

i

 and then gets removed 
by forgetting rule a → �.

At the beginning of this simulation, there is no spike in 
neuron �r . Finally, neuron �lk becomes active, and the num-
ber of spikes stored in neuron �r remains 0. Therefore, SUB 
instruction li is simulated correctly.

In case 2, there are 2 spikes in neuron �r at step t, which 
corresponds to the fact that register r holds number 1. Thus, 
there are 5 spikes in neuron �r at step t + 1 , and the rule 
a5 → a4 is enabled, which makes 4 spikes sent to neuron �

l
(2)

i

 
and no spike left in �r . Consequently, at step t + 2 neuron �

l
(2)

i

 
will accumulate 5 spikes (one spike is sent by neurons �

l
(1)

i

 , 
and the other 4 by neuron �r ), and the rule a5 → a3 is ena-
bled. By applying this rule, 3 spikes will be sent to each of 
neurons �

l
(s)

i

 , 3 ≤ s ≤ 7 . By forgetting rule a3 → � , the 3 
spikes in each of neurons �

l
(3)

i

 , �
l
(5)

i

 , �
l
(6)

i

 and �
l
(7)

i

 will be 
removed at the next step. The 3 spikes in neuron �

l
(4)

i

 enables 
rule a3 → a3 , and its application makes 3 spikes sent to neu-
ron �lj . At step t + 4 , neuron �lj will accumulate 3 spikes. 
Similarly, at step t + 2 neuron �

l
(1)

i

 send 1 spike to neuron �r . 
By applying rule a → a in neuron �r and then rule a → � in 
neuron �

l
(2)

i

 , this spike will finally be removed.

At the begining of this simulation, there are 2 spikes in 
neuron �r . Finally, neuron �lj becomes active, and the num-
ber of spikes stored in neuron �r becomes 0. Therefore, SUB 
instruction li is simulated correctly.

In case 3, there are 2n ( n ≥ 2 ) spikes in neuron �r at step 
t. Accordingly, register r holds a number that is greater than 
1. Thus, there are 2n + 3 ( n ≥ 2 ) spikes in neuron �r at step 
t + 1 , and rule a5(a2)+∕a6 → a4 is enabled. Under a general-
ized mode of applying rules, rule a5(a2)+∕a6 → a4 can be 
applied for several times, nondeterministically chosen.

As follows, a simple example, i.e. register r holds number 
5, is used to show how SUB instruction li simulates in this 
case.

For register r holds number 5, neuron �r contains 10 
spikes at the begining of this simulation. So at step t + 1 , 
neuron �r contains 13 spikes, and rule a5(a2)+∕a6 → a4 can 
be applied for once or twice, nondeterministically chosen.

If rule a5(a2)+∕a6 → a4 in neuron �r is used for once, then 
4 spikes are sent to neuron �

l
(2)

i

 , and 7 spikes remain in neu-
ron �r . Consequently, at step t + 2 neuron �r will accumulate 
8 spikes (the other one spike is sent by neurons �

l
(1)

i

 ), and no 
rule in this neuron can be used again. For neuron �

l
(2)

i

 , 5 
spikes are accumulated at step t + 2 (one spike is sent by 
neurons �

l
(1)

i

 , and the other 4 by neuron �r ), and the rule 
a5 → a3 is enabled. By applying this rule, 3 spikes will be 
sent to each of neurons �

l
(s)

i

 , 3 ≤ s ≤ 7 . By forgetting rule 
a3 → � , the 3 spikes in each of neurons �

l
(3)

i

 , �
l
(5)

i

 , �
l
(6)

i

 and �
l
(7)

i

 
will be removed at the next step. The three spikes in neuron 
�
l
(4)

i

 enables rule a3 → a3 , and its application makes 3 spikes 
sent to neuron �lj . In this way, neuron �lj becomes active, and 
the number of spikes remaining in neuron �r becomes 8, 
which means the number held by register r becomes 4.

If rule a5(a2)+∕a6 → a4 in neuron �r is used for twice, 
then 8 spikes are sent to neuron �

l
(2)

i

 , and 1 spike remains in 
neuron �r . At the next step, neuron �r will accumulates 2 
spikes (the other spike is sent by neuron �

l
(1)

i

 ), and no rule 
can be used again in this neuron. For neuron �

l
(2)

i

 , it accumu-
lates 9 spikes in total at step t + 2 (8 spikes are sent by neu-
ron �r  and one by neuron �

l
(1)

i

 ),  enabling rule 
a5(a4)+∕a4 → a4 . Under a generalized mode, this rule can 
be used for once or twice:

•	 At step t + 2 , if rule a5(a4)+∕a4 → a4 is used for once, 
then 4 spikes are sent to each of neurons �

l
(s)

i

 , 3 ≤ s ≤ 7 , 
and 5 spikes remain in neuron �

l
(2)

i

 . At step t + 3 , rule 
a5 → a3 in neuron �

l
(2)

i

 is used, consuming all of the 5 
spikes and sending 3 spikes to each of neurons �

l
(s)

i

 , 
3 ≤ s ≤ 7 . In this way, each of neurons �

l
(4)

i

 , �
l
(5)

i

 , �
l
(6)

i

 and 
�
l
(7)

i

 accumulates 7 spikes at step t + 4 , and no rule in 



276	 Y. Jiang et al.

1 3

these neurons can be used again. Neuron �
l
(3)

i

 receives 4 
spikes and 3 spikes from �

l
(2)

i

 at step t + 3 and t + 4 , 
respectively. The 4 spikes enable rule (a4)+∕a4 → a4 , 
sending 4 spikes to neuron �

l
(9)

i

 , while by applying rule 
a3 → � the 3 spikes are removed. In this case, neuron �

l
(8)

i

 
accumulates 4 spikes, enabling rule (a4)+∕a4 → a4 . Rule 
(a4)+∕a4 → a4 in neurons �

l
(8)

i

 and �
l
(9)

i

 will be used for-
ever. This makes the computation cannot halt and give a 
result, so it should be ignored.

•	 At step t + 2 , if rule a5(a4)+∕a4 → a4 is used for twice, 
then 8 spikes are sent to each of neurons �

l
(s)

i

 , 3 ≤ s ≤ 7 , 
and 1 spikes remains in neuron �

l
(4)

i

 . In this case, rule 
(a4)+∕a4 → a4 in neurons �

l
(8)

i

 and �
l
(9)

i

 will be used repeat-
edly. Thus the computation also enters an endless loop 
and it also should be ignored.

So in case 3, there are two possible simulations when the 
system using rules generally: in one case, neuron �li becomes 
active, and the number of spikes in neuron �r is decremented 
by 2; in the other case, computation does not halt and it gives 
no result. No matter what, SUB instruction li is correctly 
simulated in case 3.

To summarize, SUB instruction is simulated correctly in 
all these 3 cases:

starting from neuron �li , system � will end in �lj if regis-
ter r holds a number that is greater than 0, or it will end in 
�lk

 if register r holds number 0. It is worthy noting the non-
halting simulation is ignored for it gives no result.

Module FIN: Outputting the result of computation
The FIN module is shown in Fig. 3, and how a computa-

tion output its result is described as follows.
Assuming that at the moment register 1 holding number 

n, n ≥ 0 , machine M reaches its halting instruction lh , thus 
the computation of M halts. Correspondingly, in system � , 
neuron �lh receives three spikes, and neuron �1 contains 2n 

spikes. With three spikes inside, rule a3 → a3 in neuron �lh 
is applicable. By this application, 3 spikes are sent to neuron 
�l′

h
 , and makes rule a3 → a in neuron �l′

h
 enabled. With three 

spikes inside, rule a3 → a in neuron �l′
h
 is applicable, and this 

application makes 1 spike sent to neuron �1 . This 1 spike 
makes rule a(a2)+∕a2 → a in neuron �1 enabled. Under a 
generalized mode, rule a(a2)+∕a2 → a can be applied for 
several times at step t + 2 , nondeterministically chosen. No 
matter how many times the rule being applied at step t + 2 , 
it will be applied repeatedly until there is only one spike 
remaining in neuron �1 . It is easy to figure out that for each 
time rule a(a2)+∕a2 → a is applied, 2 spikes are consumed 
and 1 spike is sent to environment. Besides, by forgetting 
rule a → � in neuron �1 , the remaining 1 spike will finally 
be removed. Therefore, during the computation the number 
of spikes sent from system to environment is n, which is 
exact the number held by register 1 when the computation 
of M halts.

We should stress that when instructions sharing register 
happens, an instruction of M is still correctly simulated. As 
shown in Figs.  2 and 3, during the simulation of SUB 
instruction li ∶ (SUB(r), lj, lk) , neuron �r will send 4k, k ≥ 1 
spikes (or 1 spike) to each neuron with a synapse linked 
from neuron �r . If there exist another SUB instruction li′ act-
ing on the same register r, then neuron �r will send 4k, k ≥ 1 
spikes (or 1 spike) to both neurons �

l
(6)

i

 and �
l�
i

(6) . Since the 
neuron �

l�
i

(6) do not receive the other spike from neuron �
l
(1)

i

 , 
the 4k spikes (or 1 spike) in neuron �

l
(6)

i�
 received from neuron 

�r will be removed by using rule (a4)+∕a4 → � or rule a → �

.
Based on these explanations as above, it is clear that the 

register machine M is correctly simulated by SNGR P sys-
tem � . Therefore, Ngen(�) = N(M) , which completes the 
proof. 	�  ◻

4 � Remarks and conclusion

In this work, an improved universal SNGR P system is pre-
sent. In proof of the universality result, each neuron of the 
constructed system contains at most 5 rules, and for each 
time each firing rule consumes at most 6 spikes, and each 
forgetting rule removes at most 4 spikes. Compared with the 
construction in [46], these related parameters are optimized 
without losing the universality. It is worth noting that the 
constructed system in our proof works in generating mode. 
The related parameters may be further optimized when sys-
tem works in accepting mode or works for function comput-
ing. This task is left as an open problem to the readers.

Fig. 3   Module FIN for output-
ting the result

a3 → a3
lh

a3 → a

1h

a(a2)+/a2 → a

a → λ

l1
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