
Vol:.(1234567890)

Journal of Membrane Computing (2019) 1:270–278
https://doi.org/10.1007/s41965-019-00025-y

1 3

REGULAR PAPER

An improved universal spiking neural P system with generalized use
of rules

Yun Jiang1,2 · Yansen Su3 · Fen Luo2

Received: 31 July 2019 / Accepted: 29 October 2019 / Published online: 20 November 2019
© Springer Nature Singapore Pte Ltd. 2019

Abstract
Taken inspiration from biological phenomenon that neurons communicate via spikes, spiking neural P systems (SN P systems,
for short) are a class of distributed and parallel computing devices. So far firing rules in most of the SN P systems usually
work in a sequential way or in an exhaustive way. Recently, a combination of the two ways mentioned above is considered
in SN P systems. This new strategy of using rules, which is called a generalized way of using rules, is applicable for both
firing rules and forgetting rules. In SN P systems with generalized use of rules (SNGR P systems, for short), if a rule is used
at some step, it can be applied any possible number of times, nondeterministically chosen. In this work, the computational
completeness of SNGR P systems is investigated. Specifically, a universal SNGR P system is constructed, where each neu-
ron contains at most 5 rules, and for each time each firing rule consumes at most 6 spikes and each forgetting rule removes
at most 4 spikes. This result makes an improvement regarding to these related parameters, thus provides an answer to the
open problem mentioned in original work. Moreover, with this improvement we can use less resources (neurons and spikes
involved in the evolution of system) to construct universal SNGR P systems.

Keywords Membrane computing · Spiking neural P system · Generalized use of rules · Computational completeness

1 Introduction

Being a rich source of inspiration for informatics, brain has
provided plenty of ideas to propose high performance com-
puting models, as well as to design efficient algorithm. In the
brain, it is a common phenomenon that neurons cooperate by
exchanging spikes via synapses. Taking inspiration from this
phenomenon, various neural-like computing models have
been proposed. In the framework of membrane computing, a
kind of distributed and parallel neural-like computing model
was proposed in 2006 [1], which is called spiking neural P
systems (SN P systems, for short).

Inspired from biological phenomena such as synapse
weight, neuron division, astrocytes, inhibitory synapses,
et al., many variants of SN P systems [2–22] have been pro-
posed. The theoretical and practical usefulness of these vari-
ants were also investigated: regarding computing power the
relationship between these variants and well-known mod-
els of computation, e.g. finite automata, register machines,
grammars, computing numbers or strings was investigated
in [23–35]; computing efficiency of these variants in solving
hard problems was investigated in [36, 37].

Moreover, practical applications and software for simula-
tions have been developed for SN P systems and their vari-
ants: for designing logic gates and logic circuits [38], for
designing databases [39], for representing knowledge [40],
for diagnosing fault [41–43], and for approximately solving
combinatorial optimization problems [44].

Briefly, SN P systems have neurons that process spikes,
and these neurons are placed on nodes of a directed graph,
whose edges are called synapses. This construction is
abstracted from indistinct signal and synapses in biological
neurons. In SN P systems, spikes are processed by applying
firing rules or forgetting rules. Firing rules are of the form
E∕ac → ap;d , where E is a regular expression over {a} , and

 * Yun Jiang
 jiangyun@email.ctbu.edu.cn

1 Chongqing Engineering Laboratory for Detection,
Control and Integrated Systems, Chongqing Technology
and Business University, Chongqing 400067, China

2 School of Artificial Intelligence, Chongqing Technology
and Business University, Chongqing 400067, China

3 Key Lab of Intelligent Computing and Signal Processing
of Ministry of Education, School of Computer Science
and Technology, Anhui University, Hefei 230039, China

http://orcid.org/0000-0002-7019-7756
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-019-00025-y&domain=pdf

271An improved universal spiking neural P system with generalized use of rules

1 3

c, p, d are natural numbers, c ≥ p ≥ 1 , d ≥ 0 . Applying a
firing rule E∕ac → ap;d means consuming c spikes in the
neuron and producing p spikes after a delay of d steps. The
produced p spikes are sent to all neurons in connection with
the neuron where the rule was applied by an outgoing syn-
apses. Forgetting rules are of the form E∕ac → � , where E
is also a regular expression over {a} , and c is a natural num-
ber. Applying a forgetting rule E∕ac → � means removing c
spikes from the neuron and generating no spike.

At some step during the evolution of SN P systems, sev-
eral spiking rules may be enabled in some neuron, and one
of the applicable rules is chosen nondeterministically. In this
case, the way of applying rules plays a crucial role. In the
earlier version of SN P systems, the spiking rules were usu-
ally applied sequentially [9, 23, 25, 26, 36, 37]. At the level
of a neuron, the sequential way of applying rules means the
chosen rule was used only once, so it was a kind of local
sequential. Inspired from the biological fact that an enabled
chemical reaction consumes as many related substances as
possible, exhaustive way of using rules was proposed [4]
later. The exhaustive use of rules means the chosen rule
was applied as many times as possible. So at the level of
a neuron, the exhaustive use of rules was a kind of local
parallelism [33, 34].

Recently, the sequential use of rules combines with the
exhaustive use of rules to form generalized use of rules [46].
This new way of applying rules is similar to the minimal
parallelism mode in P systems [45]. Specifically, under
exhaustive mode of applying rules, the chosen rule can be
used at most m times, while generalized use of rules means
the chosen rule can be applied for l times, where 1 ≤ l ≤ m.

It was proved in [46] that as number computing devices
SN P systems with generalized use of rules (SNGR P sys-
tems, for short) are Turing universal. When each neuron
contained at most 7 rules, and for each time each firing rule
consumes at most 9 spikes and each forgetting rule removes
at most 7 spikes, computational completeness is achieved
in SNGR P systems. Also in [46], it was mentioned that the
parameters in this completeness result may be optimized
without losing the universality.

In this work, the related parameters in the completeness
result of SNGR P systems are improved. Specifically, a
universal SNGR P system is proposed, with each neuron
containing at most 5 rules, and for each time each spiking
rule consuming at most 6 spikes, and each forgetting rule
removing at most 4 spikes. This universality result provides
an answer to the open problem mentioned in [46], and makes
it possible to construct universal SNGR P systems with less
resources (neurons and spikes involved in the evolution of
system).

This work is organized as follows. The computing mod-
els investigated in this work, i.e. SNGR P systems, are
simply reviewed in Sect. 2, . In Sect. 3, the computational

completeness of SNGR P systems is investigated. Conclu-
sions and remarks are given in Sect. 4.

2 Spiking neural P systems with generalized
use of rules

In this section, SNGR P systems is simply reviewed. For
more details, readers can look up in [46].

Formally, an SNGR P system of degree m ≥ 1 , is a con-
struct of the form

where:

1. O = {a} is a singleton alphabet (a is called spike);
2. �1, �2,… , �m are neurons with the form of

 where:

(1) ni ≥ 0 is the number of spikes initially placed in
neuron �i;

(2) Ri is a finite set of rules and two forms of rule are
as follows:

• Firing rule: E1∕a
c1 → ap;d , where E1 is a a regular

expression over {a} , and c1 ≥ p ≥ 1 , d ≥ 0 (called
as delay).

• Forgetting rule: E2∕a
c2 → � , where E2 is a a regu-

lar expression over {a} , and c2 ≥ 1.

 For each firing rule E1∕a
c1 → ap;d from

Ri , it is worthy noting the restriction that
L(E1) ∩ L(E2) = �;

3. syn ⊆ {1, 2,… ,m} × {1, 2,… ,m} is the set of synapses
between neurons. Self-loop synapse is not allowed in the
system, so (i, i) ∉ syn for 1 ≤ i ≤ m;

4. out ∈ {1, 2,… ,m} indicates the output neuron, which
can emit spikes to environment.

In a firing rule E∕ac → ap;d , if d = 0 , then the delay can
be omitted, and the rule can be written as E∕ac → ap ; if
E = ac and d = 0 , then the rule is simply written as ac → ap .
Similarly, if a forgetting rule E∕ac → � has E = ac , then it
is simply written as ac → � . The feature of delay is not used
in the following sections, so the firing rules are always of
the form E∕ac → ap.

In a neuron �i with k1 spikes and a firing rule E∕ac1 → ap ,
if ak1 ∈ L(E) and k1 ≥ c1 , then this firing rule can be applied.
Or in a neuron �i with k2 spikes and a forgetting rule

� = (O, �1, �2,… , �m, syn, out),

�i = (ni,Ri), 1 ≤ i ≤ m,

272 Y. Jiang et al.

1 3

E∕ac2 → � , if ak2 ∈ L(E) and k2 ≥ c2 , then this forgetting
rule can be applied. This is how firing rule and forgetting
rule can be applied in SN P systems. However, the essential
that should be considered in SNGR P system is the way the
rules are applied. The application of rules in SNGR P sys-
tems are explained in detail as follows.

As suggested in the Introduction section, applying the
firing rule E∕ac1 → ap in a generalized manner means the
following. Assume that k1 = s1c1 + r1 , where s1 ≥ 1 and
0 ≤ r1 < c1 , thus n1c1 spikes can be consumed, where
n1 ∈ {1, 2,… , s1} and n1 is chosen nondeterministically
from the set. If n1c1 spikes, 1 ≤ n1 ≤ s1 , are consumed by
the rule, then after the application of rule, n1p spikes are
produced, and k1 − n1c1 spikes remain in neuron �i . The
produced n1p spikes are sent to all neighbouring neurons �j
with (i, j) ∈ syn . If neuron �i is output neuron, the produced
n1p spikes will be sent to the environment. If there is no
synapse leaving from neuron �i , the produced n1p spikes
will simply be lost.

Similarly, applying the forgetting rule E∕ac2 → � in a
generalized manner means the following. After dividing k2
by c2 , we can get k2 = s2c2 + r2 , with s2 ≥ 1 and 0 ≤ r2 < c2 .
Given this assumption of k2 = s2c2 + r2 , n2c2 spikes can be
removed, where n2 ∈ {1, 2,… , s2} and n2 is chosen non-
deterministically from the set. If n2c2 spikes, 1 ≤ n2 ≤ s2 ,
are removed by the rule, then after the application of rule,
k2 − n2c2 spikes remain in neuron �i.

In each time unit, in each neuron, if there is a rule can
be used, no matter it is a firing rule or a forgetting rule, the
rule must be applied. At some time, in a neuron, there may
be several rules can be applied. In this case, only one of the
rules is nondeterministically chosen to be applied. In SNGR
P systems, the chosen rule will be used in a generalized way
as mentioned above.

The configuration of system is defined as the numbers
of spikes present in each neuron. Thus, the initial configu-
ration of system is ⟨n1, n2,… , nm⟩ . Applying the rules in
a generalized way as described above, transitions among
configurations can be defined. A computation is defined as
any sequence of transitions starting from the initial configu-
ration. When there is no rule can be used in any neuron of
the system, the computation halts, and this configuration is
usually called the halting configuration.

The result of a computation can be defined in several ways.
In this work, SNGR P systems are considered as number gen-
erating devices, and the computation result is defined as the
total number of spikes that are sent from the output neuron to
environment during the computation. This means only a halt-
ing computation can lead to a result, or else the computation
is considered as invalid and it gives no result. In this way, the
set of all numbers that are computed by an SNGR P system
� is denoted by Ngen(�) , where subscript gen indicates that

the rules are used in a generalized mode. Furthermore, the
family of all sets Ngen(�) computed as above is denoted by
SpikP

gen
m (rulek, consr, forgq) . The parameters m, k, r, q put

restrictions on the system as follows: the SNGR P system
contains at most m ≥ 1 neurons; in each neuron of the sys-
tem, there are at most k ≥ 1 rules; regarding to the rules in
the system, all spiking rules E∕ac1 → ap have c1 ≤ r , and all
forgetting rules E∕ac2 → � have c2 ≤ q . These parameters
can be replaced with * when they are not bounded.

In order to understand the SNGR P systems easily, they
are represented graphically in the next sections: an oval
with initial spikes and rules inside represents a neuron;
communication between neurons is represented by incom-
ing and outgoing arrows of neurons; for output neuron,
there is an outgoing arrow pointing to environment, which
suggests that the output neuron can send spikes to the
environment.

3 The improved result of universality
for SNGR P systems

In this section, an improved universal SNGR P system is
present, with each neuron containing at most 5 rules, and for
each time during computation, each spiking rule consuming
at most 4 spikes, and each forgetting rule removing at most 4
spikes. This universality result will be proved by character-
izing NRE by means of register machine.

A register machine is a construct M = (m,H, l0, lh, I) . In
this construction, m is the number of registers; H is the set of
labels of instructions; l0 is the start label, which is the label
of an ADD instruction; lh is the halt label, which is assigned
to HALT instruction; I is the set of instructions. Label of
instruction can precisely identify instruction, for each label
from H labels only one instruction from I. As follows, there
are three forms of labeled instructions:

• ADD instruction li ∶ (ADD(r), lj),
• SUB instruction li ∶ (SUB(r), lj, lk) (if register r is non-

empty, then subtract 1 from it and go to the instruction
with label lj , otherwise go to the instruction with label lk),

• HALT instruction lh ∶ HALT .

These instructions have different function. By applying an
ADD instruction li ∶ (ADD(r), lj) , 1 is added to register r
and the machine switches to instruction with label lj . When
applying an SUB instruction li ∶ (SUB(r), lj, lk) , there are
two branches to go: if register r is non-empty, then 1 is sub-
tracted from this register, and the machine goes to instruc-
tion with label lj ; if register r is empty, then the machine
goes to instruction with label lk . When getting to the HALT
instruction lh ∶ HALT , the machine stops working.

273An improved universal spiking neural P system with generalized use of rules

1 3

A set of number N (M) can be generated by a regis-
ter machine M as follows. Initial state of the machine is
all registers being empty, which means they store num-
ber 0. At initial state the machine applies the instruction
with label l0 . According to the labels of instructions and
the contents of registers, the machine continues to apply
instructions. It is possible that the machine can finally
reache HALT instruction. At this moment, the number n
present in register 1 is said to be generated by machine M.
N (M) denotes the set of all numbers generated by M. It
is known that with only three registers, register machine
can generates all recursively enumerable sets of numbers
[47]. Hence, register machines can characterize NRE, i.e.,
N(M) = NRE . when comparing the power of two number
generating devices, it is a convention that number 0 is
ignored. Without loss of generality, this convention is fol-
lowed here.

The characterization of NRE by means of register
machine will be used in the proof below. Moreover, an addi-
tional attention should be paid to the number of rules in each
neuron, and the number of spikes consumed or removed in
each rule.

Theorem 1 SpikgenP∗(rule5, cons6, forg4) = NRE.

Proof The inclusion SpikgenP∗(rule5, cons6, forg4) ⊆ NRE
can be proved directly in view of Turing–Church thesis. In
order to prove the inclusion NRE ⊆ SpikgenP∗(rule5, cons6,

forg
4

) , thus complete the proof of the theorem, an SNGR
P system is constructed to simulate the universal register
machine.

Let M = (m,H, l0, lh, I) be a universal register machine.
Without lose of generality, the result of a computation
is assumed to be the number stored in register 1 and the
register 1 is assumed to be never decremented during the
computation.

In what follows, an SNGR P system � is constructed to
simulate the register machine M.

In this SNGR P system � , a neuron �r is considered for
each register r of M, and spikes in the neuron corresponds
to contents of the register. Specifically, neuron �r containing
2n spikes corresponds to the fact that register r holds the
number n ≥ 0 . Therefore, if the contents of a register r is
increased by 1, then the number of spikes in neuron �r is cor-
respondingly increased by 2; if the contents of a non-empty
register is decreased by 1, then the number of spikes in neu-
ron �r is correspondingly decreasing by 2; when checking
whether the register is empty, it correspondingly only need
to check whether �r has no spike inside.

Also in � , a neuron �l is considered for each label l of an
instruction in M. Initially, all these neurons are empty, but
neuron �l0 , which is associated with the start label of M, is

an exception. Neuron �l0 contains 3 spikes at initial state,
which means that this neuron is “activated” at beginning of
the computation.

Furthermore, in a way which is described below, neurons
associated with the registers and the labels of M will be
added in system � . When receiving 3 spikes during the
computation, neuron �l will be active, which initiates the
simulation of some instruction li ∶ (OP(r), lj, lk) of M (OP is
ADD or SUB). Full simulation of instruction li ∶ (OP(r), lj, lk)
of M includes: neuron �li gets activated, register r is operated
according to the request of OP, at last 3 spikes are intro-
duced in neuron �lj or �lk . In this way, one of the neurons �lj
and �lk becomes activated. Simulation of the computation in
M is completed when neuron �lh , which is associated with
the halting label of M, becomes activated.

It is worthy noting that we do not know whether neurons
�lj

 and �lk correspond to a label of ADD, SUB, or halting
instruction. Thus, rules in neurons �lj and �lk are written as
the form of a3 → a�(lq) (q = j or q = k), where the function
� on H is defined as follows:

The work of system � , which includes simulating all
instructions of register machine M and outputting the com-
putation result, is described as follows.

Module ADD: simulating an ADD instruction
li ∶ (ADD(r), lj, lk)

The ADD module is shown in Fig. 1, and how it works is
described as follows.

�(l) =

{
2, if l is the label of anADD instruction,

3, otherwise.

a3 → a2
li

a2 → a2l
(1)
i

a2/a → a
a → λ

l
(2)
i

r

a4 → a3

a3 → λ
l
(3)
i

a4 → λ
a3 → a3

l
(4)
i

a3 → aδ(lj)

lj

a3 → aδ(lk)

lk

Fig. 1 Module ADD for simulating li ∶ (ADD(r), lj, lk)

274 Y. Jiang et al.

1 3

Given the assumption that at some step t, register r holds
number n, and the system starts to simulate an ADD instruc-
tion li ∶ (ADD(r), lj, lk) of M. At this step, there are 3 spikes
in neuron �li , and no spike in the other neurons, except for
neurons which are associated with registers. With 3 spikes
in neuron �li , rule a3 → a2 in neuron �li is applicable, and the
ADD module is initiated.

At step t, the rule a3 → a2 in �li is enabled and is used for
only once. After application of the rule, 2 spikes are sent to
each of neurons �

l
(1)

i

 , �
l
(2)

i

 and �r . At step t + 1 , the 2 spikes
are received by neuron �r , which means the content in reg-
ister r is incremented by one. Also at step t + 1 , both neurons
�
l
(1)

i

 and �
l
(2)

i

 receives the 2 spikes and becomes activated. In
neuron �

l
(1)

i

 , rule a2 → a2 is enabled and can be applied for
only once, and 2 spikes are sent to each of neurons �

l
(3)

i

 and
�
l
(4)

i

 . In neuron �
l
(2)

i

 , rule a2∕a → a is enabled and can be
applied for once or twice nondeterministically, sending one
spike or two spikes to each of neurons �

l
(3)

i

 and �
l
(4)

i

 , respec-
tively. Consequently, if rule a2∕a → a is applied for once,
both neurons �

l
(3)

i

 and �
l
(4)

i

 receives 3 spikes; if the rule is
applied for twice, both neurons receive 4 spikes.

If both neurons �
l
(3)

i

 and �
l
(4)

i

 accumulates 3 spikes, the 3
spikes will be removed from neuron �

l
(3)

i

 by applying forget-
ting rule a3 → � , while the 3 spikes in neuron �

l
(4)

i

 enables

rule a3 → a3 . This rule makes neuron �
l
(4)

i

 firing, and after its
application, 3 spikes will be sent to neuron �lk . After receiv-
ing 3 spikes, neuron �lk becomes active, which means the
system switches to simulate instruction lk of machine M.

If both neurons �
l
(3)

i

 and �
l
(4)

i

 accumulates 4 spikes, the 4
spikes will be removed from neuron �

l
(4)

i

 by applying forget-
ting rule a4 → � , while the 4 spikes in neuron �

l
(3)

i

 enables
rule a4 → a3 . This rule makes the neuron firing, and after its
application, 3 spikes will be sent to neuron �lj . After receiv-
ing 3 spikes, neuron �lj becomes active, which means the
system switches to simulate instruction lj of machine M.

To summarize, in some Module ADD, if neuron �li gets
fired, 2 spikes will be added to neuron �r , and neuron �lj or
�lk

 will get fired nondeterministically. Therefore, ADD
instruction li ∶ (ADD(r), lj, lk) is correctly simulated by Mod-
ule ADD.

Module SUB: simulating a SUB instruction
li ∶ (SUB(r), lj, lk).

The SUB module is shown in Fig. 2, and how it works is
described as follows.

Given the assumption that at some step t, register r holds
the number n, and the system starts to simulate an SUB
instruction li ∶ (SUB(r), lj, lk) of M. At this step, there are
3 spikes in neuron �li , and no spike in the other neurons,

Fig. 2 Module SUB for simulat-
ing li ∶ (SUB(r), lj, lk)

a3 → a3
li

a5(a2)+/a6 → a4

a5 → a4

a3 → a
a → a

r

a3 → a

l
(1)
i

a5(a4)+/a4 → a4

(a4)+/a4 → λ

a5 → a3

a2 → a
a → λ

l
(2)
i

(a4)+/a4 → a4

a3 → λ
a → λ

l
(3)
i

a3 → a3

a → λ

l
(4)
i

a → a
a3 → λ

l
(5)
i

a → a
a3 → λ

l
(6)
i

a → a
a3 → λ

l
(7)
i

a3 → aδ(lj)

lj

a3 → aδ(lk)

lk

(a4)+/a4 → a4 l
(8)
i

(a4)+/a4 → a4 l
(9)
i

275An improved universal spiking neural P system with generalized use of rules

1 3

except for neurons which are associated with registers. With
3 spikes in neuron �li , rule a3 → a3 in the neuron is applica-
ble, and the SUB module is initiated.

At step t, the rule a3 → a3 in �li is enabled and is used for
only once. After application of the rule, 3 spikes are sent to
both of neurons �r and �

l
(1)

i

 . In neuron �
l
(1)

i

 , rule a3 → a is
applicable at step t + 1 , which makes 1 spike sent to both
neurons �

l
(2)

i

 and �r at the same time. Also at step t + 1 , neu-
ron �r receives 3 spikes from neuron �li , and the rules in it
can be applied. The situation in neuron �r is complicate, and
there are three cases need to be considered.

In case 1, there is no spike in neuron �r at step t, which
corresponds to the fact that register r holds number 0. Thus,
there are 3 spikes in neuron �r at step t + 1 , and the rule
a3 → a is enabled, which makes 1 spike sent to neuron �

l
(2)

i

 .
Consequently, at step t + 2 neuron �

l
(2)

i

 will accumulate 2
spikes (one spike is sent by neurons �

l
(1)

i

 , and the other one
by neuron �r), and the rule a2 → a is enabled. By applying
this rule, 1 spike will be sent to each of neurons �

l
(s)

i

 ,
3 ≤ s ≤ 7 . The spike in both neurons �

l
(3)

i

 and �
l
(4)

i

 will be
removed by rule a → � at the next step. The spike in neuron
�
l
(5)

i

 , �
l
(6)

i

 and �
l
(7)

i

 enables rule a → a , and each application of
the rule makes 1 spike sent to neuron �lk . At step t + 4 , neu-
ron �lk will accumulate 3 spikes. It is worthy noting that at
step t + 2 neuron �

l
(1)

i

 sends 1 spike to neuron �r . This spike
will be consumed in two steps: by applying firing rule
a → a , this spike is sent to neuron �

l
(2)

i

 and then gets removed
by forgetting rule a → �.

At the beginning of this simulation, there is no spike in
neuron �r . Finally, neuron �lk becomes active, and the num-
ber of spikes stored in neuron �r remains 0. Therefore, SUB
instruction li is simulated correctly.

In case 2, there are 2 spikes in neuron �r at step t, which
corresponds to the fact that register r holds number 1. Thus,
there are 5 spikes in neuron �r at step t + 1 , and the rule
a5 → a4 is enabled, which makes 4 spikes sent to neuron �

l
(2)

i

and no spike left in �r . Consequently, at step t + 2 neuron �

l
(2)

i

will accumulate 5 spikes (one spike is sent by neurons �

l
(1)

i

 ,
and the other 4 by neuron �r), and the rule a5 → a3 is ena-
bled. By applying this rule, 3 spikes will be sent to each of
neurons �

l
(s)

i

 , 3 ≤ s ≤ 7 . By forgetting rule a3 → � , the 3
spikes in each of neurons �

l
(3)

i

 , �
l
(5)

i

 , �
l
(6)

i

 and �
l
(7)

i

 will be
removed at the next step. The 3 spikes in neuron �

l
(4)

i

 enables
rule a3 → a3 , and its application makes 3 spikes sent to neu-
ron �lj . At step t + 4 , neuron �lj will accumulate 3 spikes.
Similarly, at step t + 2 neuron �

l
(1)

i

 send 1 spike to neuron �r .
By applying rule a → a in neuron �r and then rule a → � in
neuron �

l
(2)

i

 , this spike will finally be removed.

At the begining of this simulation, there are 2 spikes in
neuron �r . Finally, neuron �lj becomes active, and the num-
ber of spikes stored in neuron �r becomes 0. Therefore, SUB
instruction li is simulated correctly.

In case 3, there are 2n (n ≥ 2) spikes in neuron �r at step
t. Accordingly, register r holds a number that is greater than
1. Thus, there are 2n + 3 (n ≥ 2) spikes in neuron �r at step
t + 1 , and rule a5(a2)+∕a6 → a4 is enabled. Under a general-
ized mode of applying rules, rule a5(a2)+∕a6 → a4 can be
applied for several times, nondeterministically chosen.

As follows, a simple example, i.e. register r holds number
5, is used to show how SUB instruction li simulates in this
case.

For register r holds number 5, neuron �r contains 10
spikes at the begining of this simulation. So at step t + 1 ,
neuron �r contains 13 spikes, and rule a5(a2)+∕a6 → a4 can
be applied for once or twice, nondeterministically chosen.

If rule a5(a2)+∕a6 → a4 in neuron �r is used for once, then
4 spikes are sent to neuron �

l
(2)

i

 , and 7 spikes remain in neu-
ron �r . Consequently, at step t + 2 neuron �r will accumulate
8 spikes (the other one spike is sent by neurons �

l
(1)

i

), and no
rule in this neuron can be used again. For neuron �

l
(2)

i

 , 5
spikes are accumulated at step t + 2 (one spike is sent by
neurons �

l
(1)

i

 , and the other 4 by neuron �r), and the rule
a5 → a3 is enabled. By applying this rule, 3 spikes will be
sent to each of neurons �

l
(s)

i

 , 3 ≤ s ≤ 7 . By forgetting rule
a3 → � , the 3 spikes in each of neurons �

l
(3)

i

 , �
l
(5)

i

 , �
l
(6)

i

 and �
l
(7)

i

will be removed at the next step. The three spikes in neuron
�
l
(4)

i

 enables rule a3 → a3 , and its application makes 3 spikes
sent to neuron �lj . In this way, neuron �lj becomes active, and
the number of spikes remaining in neuron �r becomes 8,
which means the number held by register r becomes 4.

If rule a5(a2)+∕a6 → a4 in neuron �r is used for twice,
then 8 spikes are sent to neuron �

l
(2)

i

 , and 1 spike remains in
neuron �r . At the next step, neuron �r will accumulates 2
spikes (the other spike is sent by neuron �

l
(1)

i

), and no rule
can be used again in this neuron. For neuron �

l
(2)

i

 , it accumu-
lates 9 spikes in total at step t + 2 (8 spikes are sent by neu-
ron �r and one by neuron �

l
(1)

i

), enabling rule
a5(a4)+∕a4 → a4 . Under a generalized mode, this rule can
be used for once or twice:

• At step t + 2 , if rule a5(a4)+∕a4 → a4 is used for once,
then 4 spikes are sent to each of neurons �

l
(s)

i

 , 3 ≤ s ≤ 7 ,
and 5 spikes remain in neuron �

l
(2)

i

 . At step t + 3 , rule
a5 → a3 in neuron �

l
(2)

i

 is used, consuming all of the 5
spikes and sending 3 spikes to each of neurons �

l
(s)

i

 ,
3 ≤ s ≤ 7 . In this way, each of neurons �

l
(4)

i

 , �
l
(5)

i

 , �
l
(6)

i

 and
�
l
(7)

i

 accumulates 7 spikes at step t + 4 , and no rule in

276 Y. Jiang et al.

1 3

these neurons can be used again. Neuron �
l
(3)

i

 receives 4
spikes and 3 spikes from �

l
(2)

i

 at step t + 3 and t + 4 ,
respectively. The 4 spikes enable rule (a4)+∕a4 → a4 ,
sending 4 spikes to neuron �

l
(9)

i

 , while by applying rule
a3 → � the 3 spikes are removed. In this case, neuron �

l
(8)

i

accumulates 4 spikes, enabling rule (a4)+∕a4 → a4 . Rule
(a4)+∕a4 → a4 in neurons �

l
(8)

i

 and �
l
(9)

i

 will be used for-
ever. This makes the computation cannot halt and give a
result, so it should be ignored.

• At step t + 2 , if rule a5(a4)+∕a4 → a4 is used for twice,
then 8 spikes are sent to each of neurons �

l
(s)

i

 , 3 ≤ s ≤ 7 ,
and 1 spikes remains in neuron �

l
(4)

i

 . In this case, rule
(a4)+∕a4 → a4 in neurons �

l
(8)

i

 and �
l
(9)

i

 will be used repeat-
edly. Thus the computation also enters an endless loop
and it also should be ignored.

So in case 3, there are two possible simulations when the
system using rules generally: in one case, neuron �li becomes
active, and the number of spikes in neuron �r is decremented
by 2; in the other case, computation does not halt and it gives
no result. No matter what, SUB instruction li is correctly
simulated in case 3.

To summarize, SUB instruction is simulated correctly in
all these 3 cases:

starting from neuron �li , system � will end in �lj if regis-
ter r holds a number that is greater than 0, or it will end in
�lk

 if register r holds number 0. It is worthy noting the non-
halting simulation is ignored for it gives no result.

Module FIN: Outputting the result of computation
The FIN module is shown in Fig. 3, and how a computa-

tion output its result is described as follows.
Assuming that at the moment register 1 holding number

n, n ≥ 0 , machine M reaches its halting instruction lh , thus
the computation of M halts. Correspondingly, in system � ,
neuron �lh receives three spikes, and neuron �1 contains 2n

spikes. With three spikes inside, rule a3 → a3 in neuron �lh
is applicable. By this application, 3 spikes are sent to neuron
�l′

h
 , and makes rule a3 → a in neuron �l′

h
 enabled. With three

spikes inside, rule a3 → a in neuron �l′
h
 is applicable, and this

application makes 1 spike sent to neuron �1 . This 1 spike
makes rule a(a2)+∕a2 → a in neuron �1 enabled. Under a
generalized mode, rule a(a2)+∕a2 → a can be applied for
several times at step t + 2 , nondeterministically chosen. No
matter how many times the rule being applied at step t + 2 ,
it will be applied repeatedly until there is only one spike
remaining in neuron �1 . It is easy to figure out that for each
time rule a(a2)+∕a2 → a is applied, 2 spikes are consumed
and 1 spike is sent to environment. Besides, by forgetting
rule a → � in neuron �1 , the remaining 1 spike will finally
be removed. Therefore, during the computation the number
of spikes sent from system to environment is n, which is
exact the number held by register 1 when the computation
of M halts.

We should stress that when instructions sharing register
happens, an instruction of M is still correctly simulated. As
shown in Figs. 2 and 3, during the simulation of SUB
instruction li ∶ (SUB(r), lj, lk) , neuron �r will send 4k, k ≥ 1
spikes (or 1 spike) to each neuron with a synapse linked
from neuron �r . If there exist another SUB instruction li′ act-
ing on the same register r, then neuron �r will send 4k, k ≥ 1
spikes (or 1 spike) to both neurons �

l
(6)

i

 and �
l�
i

(6) . Since the
neuron �

l�
i

(6) do not receive the other spike from neuron �
l
(1)

i

 ,
the 4k spikes (or 1 spike) in neuron �

l
(6)

i�
 received from neuron

�r will be removed by using rule (a4)+∕a4 → � or rule a → �

.
Based on these explanations as above, it is clear that the

register machine M is correctly simulated by SNGR P sys-
tem � . Therefore, Ngen(�) = N(M) , which completes the
proof. ◻

4 Remarks and conclusion

In this work, an improved universal SNGR P system is pre-
sent. In proof of the universality result, each neuron of the
constructed system contains at most 5 rules, and for each
time each firing rule consumes at most 6 spikes, and each
forgetting rule removes at most 4 spikes. Compared with the
construction in [46], these related parameters are optimized
without losing the universality. It is worth noting that the
constructed system in our proof works in generating mode.
The related parameters may be further optimized when sys-
tem works in accepting mode or works for function comput-
ing. This task is left as an open problem to the readers.

Fig. 3 Module FIN for output-
ting the result

a3 → a3
lh

a3 → a

1h

a(a2)+/a2 → a

a → λ

l1

277An improved universal spiking neural P system with generalized use of rules

1 3

Funding This work was supported by National Natural Science Foun-
dation of China (61502063 and 61502004), Natural Science Foundation
Project of CQ CSTC (cstc2018jcyjAX0057), Science and Technology
Research Program of Chongqing Municipal Education Commission
(KJQN201800814), and Chongqing Social Science Planning Project
(2017YBGL142).

References

 1. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P
systems. Fundamenta Informaticae, 71, 279–308.

 2. Cavaliere, M., Ibarra, O. H., Păun, G., Egecioglu, O., Ionescu, M.,
& Woodworth, S. (2009). Asynchronous spiking neural P systems.
Theoretical Computer Science, 410, 2352–2364.

 3. Pan, L., & Păun, G. (2009). Spiking neural P systems with anti-
spikes. International Journal of Computers Communications &
Control, 4, 273–282.

 4. Ionescu, M., Păun, G., & Yokomori, T. (2007). Spiking neural P
systems with an exhaustive us of rules. International Journal of
Unconventional Computing, 3, 135–154.

 5. Ionescu, M., Păun, G., Pérez-Jiménez, M. J., & Yokomori, T.
(2011). Spiking neural dP systems. Fundamenta Informaticae,
111, 423–436.

 6. Pan, L., Wang, J., & Hoogeboom, H. J. (2012). Spiking neural P
systems with astrocytes. Neural Computation, 24, 805–825.

 7. Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural
P systems with weighted synapses. Neural Processing Letters, 35,
13–27.

 8. Song, T., Pan, L., & Păun, G. (2014). Spiking neural P systems
with rules on synapses. Theoretical Computer Science, 529,
82–95.

 9. Wang, J., Hoogeboom, H. J., Pan, L., Păun, G., & Pérez-Jiménez,
M. J. (2014). Spiking neural P systems with weights. Neural Com-
putation, 22, 2615–2646.

 10. Song, T., Liu, X., & Zeng, X. (2015). Asynchronous spiking
neural P systems with anti-spikes. Neural Processing Letters, 42,
633–647.

 11. Song, T., & Pan, L. (2015). Spiking neural P systems with rules
on synapses working in maximum spiking strategy. IEEE Transac-
tions on Nanobioscience, 14, 465–477.

 12. Song, T., & Pan, L. (2015). Spiking neural P systems with rules
on synapses working in maximum spikes consumption strategy.
IEEE Transactions on Nanobioscience, 14, 38–44.

 13. Zhao, Y., Liu, X., Wang, W., & Adamatzky, A. (2016). Spiking
neural P systems with neuron division and dissolution. PLoS One,
11, e0162882.

 14. Wu, T., Zhang, Z., Păun, G., & Pan, L. (2016). Cell-like spiking
neural P systems. Theoretical Computer Science, 623, 180–189.

 15. Jiang, K., Chen, W., Zhang, Y., & Pan, L. (2016). Spiking neural P
systems with homogeneous neurons and synapses. Neurocomput-
ing, 171, 1548–1555.

 16. Song, T., & Pan, L. (2016). Spiking neural P systems with request
rules. Neurocomputing, 193, 193–200.

 17. Pan, L., Păun, G., Zhang, G., & Neri, F. (2017). Spiking neural P
systems with communication on request. International Journal of
Neural Systems, 27(8), 1750042.

 18. Pan, L., Wu, T., Su, Y., & Vasilakos, A. V. (2017). Cell-Like
spiking neural P systems with request rules. IEEE Transactions
on Nanobioscience, 16(6), 513–522.

 19. Peng, H., Yang, J., Wang, J., et al. (2017). Spiking neural P sys-
tems with multiple channels. Neural Networks, 95, 66–71.

 20. Wu, T., Păun, A., Zhang, Z., & Pan, L. (2018). Spiking neural P
systems with polarizations. IEEE Transactions on Neural Net-
works and Learning Systems, 29(8), 3349–3360.

 21. Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A.
(2019). Dynamic threshold neural P systems. Knowledge-Based
Systems, 163, 875–884.

 22. Peng, H., & Wang, J. (2019). Coupled neural P systems. IEEE
Transactions on Neural Networks and Learning Systems, 30(6),
1672–1682.

 23. Ibarra, O. H., Păun, A., & Rodríguez-Patón, A. (2009). Sequen-
tial SNP systems based on min/max spike number. Theoretical
Computer Science, 410, 2982–2991.

 24. Neary, T. (2009). A boundary between universality and non-
universality in extended spiking neural P systems. Lecture Notes
in Computer Science, 6031, 475–487.

 25. Song, T., Pan, L., Jiang, K., Song, B., & Chen, W. (2013). Nor-
mal forms for some classes of sequential spiking neural P sys-
tems. IEEE Transactions on Nanobioscience, 12, 255–264.

 26. Zhang, X., Zeng, X., Luo, B., & Pan, L. (2014). On some classes
of sequential spiking neural P systems. Neural Computation, 26,
974–997.

 27. Wang, X., Song, T., Gong, F., & Zheng, P. (2016). On the com-
putational power of spiking neural P systems with self-organi-
zation. Scientific Reports, 6, 27624.

 28. Chen, H., Freund, R., & Ionescu, M. (2007). On string lan-
guages generated by spiking neural P systems. Fundamenta
Informaticae, 75, 141–162.

 29. Krithivasan, K., Metta, V. P., & Garg, D. (2011). On string lan-
guages generated by spiking neural P systems with anti-spikes.
International Journal of Foundations of Computer Science, 22,
15–27.

 30. Zeng, X., Xu, L., & Liu, X. (2014). On string languages gen-
erated by spiking neural P systems with weights. Information
Sciences, 278, 423–433.

 31. Song, T., Xu, J., & Pan, L. (2015). On the universality and non-
universality of spiking neural P systems with rules on synapses.
IEEE Transactions on Nanobioscience, 14, 960–966.

 32. Wu, T., Zhang, Z., & Pan, L. (2016). On languages generated
by cell-like spiking neural P systems. IEEE Transactions on
Nanobioscience, 15, 455–467.

 33. Zhang, X., Zeng, X., & Pan, L. (2008). On string languages
generated by spiking neural P systems with exhaustive use of
rules. Natural Computing, 7, 535–549.

 34. Pan, L., & Zeng, X. (2011). Small universal spiking neural P
systems working in exhaustive mode. IEEE Transactions on
Nanobioscience, 10, 99–105.

 35. Wu, T., Bîlbîe, F.-D., Păun, A., Pan, L., & Neri, F. (2018).
Simplified and yet Turing universal spiking neural P systems
with communication on request. International Journal of Neural
Systems, 28(8), 1850013.

 36. Ishdorj, T.-O., Leporati, A., Pan, L., Zeng, X., & Zhang, X.
(2010). Deterministic solutions to QSAT and Q3SAT by spik-
ing neural P systems with pre-computed resources. Theoretical
Computer Science, 411, 2345–2358.

 37. Pan, L., Păun, Gh, & Pérez-Jiménez, M. J. (2011). Spiking neu-
ral P systems with neuron division and budding. Science China
Information Sciences, 54, 1596–1607.

 38. Song, T., Zheng, P., Wong, M. L., & Wang, X. (2016). Design
of logic gates using spiking neural P systems with homogeneous
neurons and astrocytes-like control. Information Sciences, 372,
380–391.

 39. Díaz-Pernil, D., & Gutiérrez-Naranjo, M. A. (2017). Seman-
tics of deductive databases with spiking neural P systems.
Neurocomputing, 272, 365. https ://doi.org/10.1016/j.neuco
m.2017.07.007.

https://doi.org/10.1016/j.neucom.2017.07.007
https://doi.org/10.1016/j.neucom.2017.07.007

278 Y. Jiang et al.

1 3

 40. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M. J., & Wang, T.
(2013). Weighted fuzzy spiking neural P systems. IEEE Trans-
actions on Fuzzy Systems, 21, 209–220.

 41. Peng, H., Wang, J., Pérez-Jiménez, M. J., Wang, H., Shao, J.,
& Wang, T. (2013). Fuzzy reasoning spiking neural P systems
for fault diagnosis. Information Sciences, 235, 106–116.

 42. Wang, J., & Peng, H. (2013). Adaptive fuzzy spiking neural P
systems for fuzzy inference and learning. International Journal
of Computer Mathematics, 90, 857–868.

 43. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez,
M. J. (2015). Fault diagnosis of electric power systems based on
fuzzy reasoning spiking neural P systems. IEEE Transactions on
Power Systems, 30, 1182–1194.

 44. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An
optimization spiking neural P system for approximately solving
combinatorial optimization problems. International Journal of
Neural Systems, 24, 1440006.

 45. Ciobanu, G., Pan, L., Păun, Gh, & Pérez-Jiménez, M. J. (2007). P
systems with minimal parallelism. Theoretical Computer Science,
378(1), 117–130.

 46. Zhang, X., Wang, B., & Pan, L. (2014). Spiking neural P systems
with a generalized use of rules. Neural Computation, 26, 1–19.

 47. Minsky, M. (1967). Computation: Finite and infinite machines.
Upper Saddle River: Prentice Hall.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yun Jiang received her PhD
degree from Huazhong Univer-
sity of Science and Technology.
She is an associate professor of
School of Artificial Intelligence,
Chongqing Technology and
Business University, Chongqing,
China. Her research interests
include membrane computing
and intelligent algorithm.

Yansen Su received her PhD
degree from Huazhong Univer-
sity of Science and Technology.
She is an associate professor of
School of Computer Science and
Technology, Anhui University,
Hefei, China. Her research inter-
ests include data mining, com-
plex network and biological
information processing.

Fen Luo is a lecturer of School
of Artificial Intelligence, Chong-
qing Technology and Business
University, Chongqing, China.
Her research interests include
machine learning and computer
vision.

	An improved universal spiking neural P system with generalized use of rules
	Abstract
	1 Introduction
	2 Spiking neural P systems with generalized use of rules
	3 The improved result of universality for SNGR P systems
	4 Remarks and conclusion
	References

