
Vol.:(0123456789)1 3

Journal of Membrane Computing (2019) 1:233–240
https://doi.org/10.1007/s41965-019-00022-1

REGULAR PAPER

Synchronization of rules in membrane computing

Bogdan Aman1  · Gabriel Ciobanu2

Received: 17 July 2019 / Accepted: 1 October 2019 / Published online: 17 October 2019
© Springer Nature Singapore Pte Ltd. 2019

Abstract
We modify the most used evolution strategy in membrane systems (namely that of maximal parallelism) by imposing a syn-
chronization between rules. A synchronization over a set of rules can be applied only if each rule of the set can be applied
at least once. For membrane systems working in the accepting mode, this synchronization is powerful enough to provide the
computational completeness without any other ingredient (no catalysts, promoters, inhibitors, etc). The modeling power of
synchronization is described by simulating the basic arithmetic operations (addition, subtraction, multiplication and division).

Keywords  Membrane computing · Synchronization of the rules · Computational completeness · Arithmetic operations

1  Introduction

Membrane systems (known also as P systems) are able to
model massively parallel systems inspired by the structure
and behaviour of biological cells [23]. A membrane sys-
tem can be represented as a hierarchical structure of regions
(membranes) contained inside a unique outermost mem-
brane called skin. Various classes of membrane systems
(motivated by different features of the biological cells: cata-
lytic entities, electric charges, antiport/symport communica-
tions, etc.) are presented in [24]. Several books including
theoretical results and various applications in the field of
membrane computing were published over the last years [5,
21, 27]. The main research directions considered in the field
of membrane computing are: modeling power [3, 15], com-
putational power with respect to the computational power of
Turing machines using a limited number of resources [4],
and efficiency by providing algorithms to solve NP-complete
problems (weak [6] or strong [7]) by trading space for time,

namely using an exponential space to obtain a polynomial
time solution. Over the years, several operational and deno-
tational semantics were defined for membrane systems [13,
16].

In this paper, we consider the class of P systems defined
in [24] in which the various regions of the membrane struc-
ture contain multisets of objects and sets of evolution rules.
Every region has its own task, such that all regions work-
ing in parallel achieve the general task of the entire system.
The specific rules of each region modify its objects. The
evolution of this class of P systems is given by applying
the rules in a maximally parallel way [23]. The maximal
parallelism ensures that the multiset of applicable rules cho-
sen in a computation step cannot be further extended by
adding further rules. This feature was preserved in many of
the variants defined in the last twenty years, being a useful
feature in obtaining computational completeness. Choosing
the rules to be applied in a maximally parallel way is done
non-deterministically, by respecting also some restrictions
(e.g., priority relation among rules) or value-based criteria
(e.g., the guards used in adaptive P systems [8] or kernel P
systems [22]).

Synchronization is ubiquitous in nature: e.g., pacemaker
cells in the heart, �-cells in the pancreas, long-range syn-
chronization across brain during perception, contractions in
the pregnant uterus, cellular clocks, quorum sensing. A bio-
logical motivation for such a synchronization can be found
in the field of membrane computing in a statement published
in [9]: coordinated gene-expression (and hence phenotypic
change) in bacteria is best understood by noticing that a

This work was presented at 20th Conference on Membrane
Computing (CMC20)

 *	 Bogdan Aman
	 bogdan.aman@iit.academiaromana‑is.ro

	 Gabriel Ciobanu
	 gabriel@info.uaic.ro

1	 Alexandru Ioan Cuza University of Iaşi, Iasi, Romania
2	 Romanian Academy, Institute of Computer Science, Iasi,

Romania

http://orcid.org/0000-0001-7649-8181
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-019-00022-1&domain=pdf

234	 B. Aman, G. Ciobanu

1 3

colony is successful only by pooling together the activity of
a quorum of cells. The synchronization between the evolu-
tion of regions was defined in [25], namely all regions use
their rules in parallel in the maximal mode. In this paper,
we introduce a different synchronization which was not
yet considered in membrane computing: a synchronization
among the rules of the same membrane. More exactly, a rule
synchronizing with a non-empty set of rules is applicable at
least once only if each rule from the set of rules is applicable
at least once. This means that synchronization over a set of
rules can be applied only if each rule of the set is applicable
at least once. Just like for priorities (in membrane systems),
this synchronization is given as a partial relation over the
set of rules, specifying which rules are synchronized. The
approach is conservative; the systems without a synchroni-
zation relation are in fact systems evolving according to the
usual maximal evolution strategy.

An interesting aspect is that synchronization over rules
is powerful enough to provide the computational complete-
ness. Such a result is nice and surprising. For synchronized P
systems working in the accepting mode, the synchronization
is powerful enough to achieve the computational complete-
ness in the absence of any other ingredients (no catalysts,
promoters or inhibitors, for instance). This represents an
improvement for the computational power of membrane
systems. For instance, at least two catalysts are needed to
achieve the computational completeness when the maximal
parallelism strategy is used [19]. The number of catalysts
can be reduced from two to one to obtain the computational
completeness, but this is possible using a rather complicated
control mechanisms [20].

To illustrate the modeling power of the new synchronized
P systems, we show how the synchronization over rules can
be used to implement arithmetic operations on numbers
given in unary base.

2 � Synchronization in membrane computing

A multiset over a finite alphabet O of objects is defined as a
mapping u ∶ O → ℕ , where ℕ denotes the set of non-negative
integers. The empty multiset � is defined such that �(a) = 0
for all a ∈ O . As it is usual in the membrane computing com-
munity, we represent the multisets as strings; for example,
the string abaaca is the representation of the multiset u in
which u(a) = 4 , u(b) = 1 and u(c) = 1 . Given a string u as a
representation for a multiset, then the same multiset can be
represented also by any permutation of the string u. Given a
finite alphabet O = {a1,… , an} , the set of all multisets over O
is denoted by O∗ , while the set of all non-empty multisets is
denoted by O+ = O∗�� . Given two multisets u and v over O,
the multiset union is defined as (u + v)(a) = u(a) + v(a)
for all a ∈ O , and the multiset difference is defined as

(u − v)(a) = max{0, u(a) − v(a)} for all a ∈ O . Also, u ≤ v if
u(a) ≤ v(a) for all a ∈ O.

For the sake of simplicity, in what follows, we consider the
flat P systems (namely, P systems with only one membrane).
Actually, according to [1], any P system can be flattened to a
system with only one membrane.

Definition 1  A synchronized P system of degree 1 is a tuple

•	 O and H = {1} are finite non-empty sets of objects and
labels for membranes, respectively;

•	 � = []1 is the membrane structure describing the fact that
the system has only one membrane labeled 1;

•	 w1 ∈ O∗ is the multiset of objects initially placed in the
membrane 1;

•	 R1 is a finite set of rules over the objects from O placed in
membrane 1, and �1 is a partial relation defined over the set
R1 of rules specifying the synchronization relation over the
rules; given the multisets u ∈ O+ and v ∈ O∗ , a rule has the
form u → v , meaning that the multiset of objects u can be
rewritten into the (possibly empty) multiset of objects v.

Synchronization means that a rule which needs to be syn-
chronized with a non-empty set of rules is applicable (at least
once) only if each rule from the set is applicable at least once.
In what follows we give some examples that illustrate how the
maximal parallelism behaviour is modified when synchroniza-
tion of rules is used.

Example 1  Consider the membrane system depicted below:

a3

r1 : a → b

r2 : a → c

1

Using the maximal parallel strategy, there are four pos-
sibilities to evolve in one step from the initial multiset a3 ,
as follows:

� = (O,H,�,w1, (R1, �1)), where

235Synchronization of rules in membrane computing﻿	

1 3

a3

c3 bc2

b2cb3

r32 r1r
2
2

r21r2r31

By adding to the initial system the synchronization
r1 ⊗ r2 , the possibilities to evolve in one step from the ini-
tial multiset a3 are:

a3

bc2

b2c

r1r
2
2

r21r2

Notice that synchronization reduces the number of pos-
sible evolutions.

Example 2  Consider the membrane system depicted below:

u1u2

r1 : u1 → v1

r2 : u2 → v2

r3 : u1 → v3

1

Using the maximal parallel strategy, there are two pos-
sibilities to evolve in one step from the initial multiset u1u2 ,
as follows:

u1u2

v1v2

v3v2

r1r2

r3r2

By adding the synchronization r1 ⊗ r2 to the initial sys-
tem, the possibilities to evolve in one step from the initial
multiset u1u2 are:

u1u2

v1v2

v3u2

r1r2

r3

Notice that using synchronization, the system evolves dif-
ferently (by producing new multisets) than using the maxi-
mal parallel strategy.

More details about the synchronization are provided in the
next section in which the arithmetic operations are modeled
using only one membrane.

3 � Arithmetic operations using synchronized
P systems

In this section, we define some (flat) synchronized P systems
able to model the basic arithmetic operations for numbers
given in unary base. For this purpose, we use the multiset nat-
ural encoding that assigns to each unit an object in the mem-
brane system; in this way, a number n is encoded as a multiset
of n similar objects. This encoding represents the encoding of
natural numbers in base one. Just like in [11], the addition and
subtraction are trivial, and the new defined synchronization
relation is not needed for these operations (due to the fact that
at most one rule is needed). The simplest implementation of
addition requires no rule (and thus, no synchronization); the
result is obtained by just counting all the objects contained in
membrane 1. In a similar manner, subtraction of n (given by
objects a) and m (given by objects b) is performed using only
the rule ab → � that deletes a pair of objects ab (synchroniza-
tion is not necessary). Due to the maximal parallel manner of
applying the rules, the rule ab → � erases in the same compu-
tational step all the pairs ab, and the result is obtained by just
counting all the objects contained in membrane 1. The time
complexity of these simple arithmetic operations is O(1).

3.1 � Multiplication

The multiplication operation is a little bit more complex than
the addition and subtraction operations presented previously.
In Fig. 1, we describe a synchronized P system that is able to
model the multiplication of n (given by objects a) by m (given
by objects b). The result is obtained by counting all the objects
d contained in membrane 1.

The use of the synchronization b → bd⊗ au → u ensures
that by applying any of the two rules at least once, the other
rule is applied also at least once. As the two rules do not com-
pete for the same objects and the maximal evolution strategy
is used, this ensures that in each computational step, all the
available objects b are rewritten by the rule b → bd , while

Fig. 1   Multiplication using
synchronization anbmu

b → bd⊗ au → u

1

236	 B. Aman, G. Ciobanu

1 3

only an object a is removed using the rule au → u (due to the
existence of only one u object). The application of the two
rules is repeated until all the objects a are consumed. Note that
at each computational step, consuming one object a is done in
parallel with the creation of m objects d. After n steps, even
if there are resources for the rule b → bd to be applicable,
the synchronization with the rule au → u for which there are
no resources available means that the rule b → bd cannot be
applied anymore, and the computation stops.

In [11], the multiplication operation is modeled in two
ways: one way is without promoters but using priority
between rules, while another way uses promoters and prior-
ity between rules. The time complexity is O(m ⋅ n) and O(n),
respectively. It is worth noting that using the synchroniza-
tion relation, neither promoters nor priorities among rules
are used. The synchronization has a similar effect as using
promoters in [11], and the time complexity remains O(n).

Example 3  Let us consider the multiplication of n = 2
by m = 3 . The initial multiset is a2b3u . Applying once
b → bd⊗ au → u , the initial multiset is rewritten to ab3d3u .
Applying once more b → bd⊗ au → u , it is obtained the
multiset b3d6u . Since there are no more a objects, the evo-
lution stops and the result 6 is given by the number of d
objects.

3.2 � Division

This arithmetic operation is implemented as repeated sub-
tractions. In Fig. 2, we depict a synchronized P system com-
puting the quotient (objects c) and the remainder (objects r)
of n (objects a) divided by m (objects b).

Regardless of the values of n and m, the evolution starts
by applying the synchronized rules b → bd and u1 → u2 . The
rule b → bd ensures that the number n of objects b remains
unchanged, while the same number n of objects d is created
to be used in the next steps. The synchronization with rule
u1 → u2 is used just to mark the fact that the objects b can

be rewritten to the set of objects bd just in this step of the
computation. The evolution continues with a subtraction step
modeled by the synchronized rules ab → � , u2 → u3u0 and
d → r . The object u0 is used for choosing the correct path
depending on the objects present in the system at a given
moment. Three cases are distinguished, depending on the
number of objects a, b and/or r present in membrane 1 after
the above two computational steps:

•	 If there are only a and r objects, namely all the objects b
were consumed in the previous step by the rule ab → � ,
then the rule au3 → au3a is applied in parallel with the
rule u0 → u′

0
 . Notice that the rule bu3 → bu3b is not

applicable because there are no b objects. Also, the rule
u3 → c is not applicable as it requires the synchronization
with the rule u′

0
→ � that is not applicable yet because the

object u′
0
 is not present in the system. This is followed

by the application of the synchronized rules u3a → u1c ,
r → b and u′

0
→ � . After applying all these rules, a sub-

traction was performed (marked by the creation of an
object c) and the system can start another one (the system
contains both a and b objects) by applying the first two
sets of rules described above.

•	 If there are only b and r objects, namely all the objects a
were consumed in the previous step by the rule ab → � ,
then the rule bu3 → bu3b is applied in parallel with the
rule u0 → u′

0
 . This is followed by the application of the

synchronized rules u3b → � , br → � and u′
0
→ � . This

means that none of the objects ui ( 1 ≤ i ≤ 4 ) is present
in the system, and so the computation halts. As in the
previous case, none of the other rules rewriting u3 can be
applied.

•	 If there are only r objects, namely all the a and b objects
were consumed in the previous step by the rule ab → � ,
then the synchronized rules u3 → c , r → � and u′

0
→ �

are applied. This leads to the removal of all the objects r
(there is no remainder after the division operation), and
creation of another object c. This means that none of the
objects ui ( 1 ≤ i ≤ 4 ) is available in the system, and so
the computation halts. As argued in the first case, none
of the other rules rewriting u3 can be applied.

The time complexity for the division operation is
O(3(c + 1)) . An improvement with respect to the division
presented in [11] is given by the reduction of the number of
membranes (one instead of two), and the fact that there is no
need for promoters, inhibitors and/or priority.

Example 4  Let us consider the division of n = 3 by m = 2 .
The initial multiset is a3b2u1 . By applying the synchro-
nization b → bd⊗ u1 → u2 , it is obtained the multiset
a3b2d2u2 . The evolution continues using the synchroniza-
tion ab → 𝜀 ⊗ u2 → u3u0 ⊗ d → r , leading to the multiset

anbmu1

b → bd⊗ u1 → u2

ab → ε⊗ u2 → u3u0 ⊗ d → r

u0 → u0 au3 → au3a bu3 → bu3b

u3a → u1c⊗ r → b⊗ u0 → ε

u3b → ε⊗ br → ε⊗ u0 → ε

u3 → c⊗ r → ε⊗ u0 → ε

1

Fig. 2   Division using synchronization

237Synchronization of rules in membrane computing﻿	

1 3

ar2u3u0 . As there are only a and r objects available, then
the rules u0 → u′

0
 and au3 → au3a are applicable, and so the

multiset ar2u3au′0 is obtained. By applying the synchroniza-
tion u3a → u1c⊗ r → b⊗ u′

0
→ 𝜀 , it is obtained the multiset

ab2u1c.
The above computation denotes a performed subtraction,

and so the system can start another one. By applying the
synchronization b → bd⊗ u1 → u2 , the multiset ab2d2u2c
is obtained. The evolution continues using the synchroniza-
tion ab → 𝜀 ⊗ u2 → u3u0 ⊗ d → r , leading to the multiset
br2u3u0c . As there are only b and r objects available, then
the rules u0 → u′

0
 and bu3 → bu3b are applicable, and the

multiset br2u3bu′0c is obtained. Applying the synchronization
u3b → 𝜀 ⊗ br → 𝜀 ⊗ u′

0
→ 𝜀 , it is obtained the multiset cr.

In this case, the computation stops, and the result can be read
as follows: the quotient is 1 (number of objects c), while the
remainder is 1 (number of objects r).

4 � Computational power of synchronized P
systems

Given a string x over an alphabet O = {a1,… , an} , its
length is defined as |x| = �ai

|x|ai , where |x|ai is the num-
ber of ai ’s appearing in the string x. The Parikh vector
associated with x with respect to the set O is denoted by
( |x|a1 ,… , |x|an ). Given a language L over an alphabet O, its
Parikh image is Ps(L) = {(|x|a1 ,… , |x|an) ∣ x ∈ L} . Given
a family of languages FL, its family of Parikh images is
PsFL = {Ps(L) ∣ L ∈ FL} . The family of languages RE
contains the recursively enumerable string languages. More
details on formal languages theory can be found in [26].

A register machine with m registers is a tuple
M = (m,B, l0, lh,P) , where l0, lh ∈ B represents the initial
and final labels, and P is the set of instructions bijectively
labeled by the labels from the set B. Given three labels
l1 ∈ B�{lh} , l2, l3 ∈ B , and a register j (with 1 ≤ j ≤ m ), the
labeled instructions from the set P of the register machine
M can be of the forms:

•	 l1 ∶ (ADD(j), l2, l3).
	  The effect of performing this instruction (usually

called increment) is to increase by one the value of reg-
ister j, and then continue the execution by either instruc-
tion l2 or l3 . The choice between the instructions l2 and l3
is performed in a non-deterministic manner.

•	 l1 ∶ (SUB(j), l2, l3).
	  The effect of performing this instruction depends on

the value of register j. The first case (usually called
zero-test) is when the register j is empty: the value
of the register j remains the same, and the execution

continues with instruction l3 . The other case (usually
called decrement) is when the register j is non-empty:
its value is decreased by one, and the execution contin-
ues with instruction l2.

•	 lh ∶ HALT  . When this instruction is encountered, the
execution stops.

A configuration of a register machine M with m registers
is given as a tuple containing the values of the m registers
and the label of the instruction to be executed in the next
step. The execution of the instruction l0 marks the start
of a computation, while the halt instruction lh marks the
termination of a computation.

Given a synchronized P system �  , the set Psacc(�)
contains the Parikh vectors over ℕ+ (the set of non-nega-
tive integers) accepted as result of a halting computation
in �  . When a P system accepts as a result of a halting
computation all the vectors over ℕ+ given as input, it is
said to be working in the accepting case. In what follows,
textitPsaccOPm(synch) denotes the families of sets Ps acc(�)
obtained as result of halting computations in synchro-
nized P systems with no more than m membranes.

The next theorem illustrates how a register machine can
be simulated by a synchronized P systems working in an
accepting mode. The synchronization is powerful enough
to get the computational completeness without using any
additional catalyst, promoter or inhibitor in the synchro-
nized P system.

Theorem 1  For any m ≥ 1 , PsaccOPm(synch) = PsRE.

Proof  Let us consider a register machine M =
(
m,B, l0, lh,P

)
 .

We present the steps to construct a synchronized P system �
with only one membrane that is able to simulate the compu-
tation of the register machine M. The membrane system �
is the tuple (O,H,�,w1, (R1, �1)) with

•	 O = {ar, ur, vr ∣ 1 ≤ r ≤ m} ∪ {l, l�, l ∈ B};
•	 H = {1} ; � = []1;
•	 w1 = l0a

k1
1
… a

km
m .

The initial configuration of the membrane system � is
given by the membrane content, namely the multiset w1
that is composed of:

•	 an object l0 that marks the beginning of the evolution
in the simulated register machine;

•	 the multiset ak1
1
… a

km
m representing the vector (k1,… , km)

that needs to be accepted by the (constructed) synchro-
nized P system; the content of register r is represented
by the number kr of copies of the objects ar , where
1 ≤ r ≤ m.

238	 B. Aman, G. Ciobanu

1 3

The rules of R1 given below are used to simulate the instruc-
tions of the simulated register machine M. Note that for the
SUB operation, the synchronization relation �1 contains syn-
chronizations between some of the rules.

The instructions of the simulated register machine are:

•	 l1 ∶ (ADD(r), l2, l3) , with l1 ∈ B⧵{lh} , l2, l3 ∈ B , 1 ≤ j ≤ m

	  is simulated by the rules

 If the current instruction to be executed in the regis-
ter machine M is l1 ∶ (ADD(r), l2, l3) , it is simulated by
the rules r11 and r12 of our membrane system. Choosing
which of the two rules is applied is done non-determin-
istically. As a result of applying the rule r11 or r12 , we get
the creation of a new object ar and one of the objects l2
or l3 , respectively. The possible execution is depicted in
Fig. 3, where for simplicity we omit the object u and the
objects modeling the other registers not involved in the
evolution.

•	 l1 ∶ (SUB(r), l2, l3) , with l1 ∈ B⧵{lh} , l2, l3 ∈ B , 1 ≤ r ≤ m

	  is simulated by the rules

 where {r23 ⊗ r24} ⊆ 𝜌1 and {r25 ⊗ r26} ⊆ 𝜌1.
	  If the current instruction to be executed in the register

machine M is l1 ∶ (SUB(r), l2, l3) , the simulation begins
by executing the rule r20 that creates an additional object
ur used for the zero test. If there is no object ar present
in membrane 1, then no rule is executed in parallel with

r11 ∶ l1 →arl2,

r12 ∶ l1 →arl3.

r20 ∶ l1 → l1ur,

r21 ∶ l1 → l�
1
,

r22 ∶ arur → vr,

r23 ∶ l�
1
→ l2,

r24 ∶ vr → �,

r25 ∶ l�
1
→ l3u,

r26 ∶ ur → �,

rule r21 . If there exists at least one ar object, then the
rule r22 is executed in parallel with rule r21 . Applica-
tion of the rule r22 removes an object ar together with
the rewriting of the unique object ur into the unique
object vr . The unique object ur ensures that only one ar
object can be deleted when simulating the instruction
l1 ∶ (SUB(r), l2, l3) . Due to the fact that rule r23 is syn-
chronized with rule r24 , the object l′

1
 is replaced by object

l2 , and also the object vr is removed in order to be used
in subsequent simulation of SUB instruction. If there
was no object ar in the system, namely the rule r22 was
not applied, then the object ur remains unchanged while
object l1 is rewritten to object l′

1
 . This means that the syn-

chronized rules r25 and r26 are now applicable, leading to
the creation of the object l3 , while removing the unique
object ur from the system. Due to the synchronization,
after every computational step there exists no object ur
nor vr in the system. The evolution is depicted in Fig. 4.

•	 lh ∶ HALT is simulated by rh ∶ lh → �.
	  If the current instruction to be executed is lh ∶ HALT

marking the end of the computation for the regis-
ter machine M, this step is simulated by removing the
object lh such that no other rule is applicable anymore.
The result of the computation is given by the number of
objects ar ( 1 ≤ r ≤ m ) found in membrane 1 after con-
suming the object lh.

	� ◻

l1a
k
r

l2a
k+1
r l3a

k+1
r

r11 r12

Fig. 3   Simulating ADD instruction

l1a
k
r

l1ura
k
r

l1vra
k−1
r l1ura

k
r

l2a
k−1
r l3a

k
r

r20

r21, r22, k > 0 r21, k = 0

r23, r24 r25, r26

Fig. 4   Simulating SUB instruction

239Synchronization of rules in membrane computing﻿	

1 3

5 � Conclusion and related work

In [25], the authors introduced the synchronization
between membranes by considering that all the regions
use their rules in parallel in a maximal way. A similar
idea of synchronization of computation among various
membranes is treated in [2, 17]. In this paper, we defined
synchronized P systems by introducing a different synchro-
nization relation to control the application of the evolution
rules in the same membrane. We just adjust the use of the
rules in a maximally parallel way by considering an addi-
tional synchronization over the rules. A synchronization
over a set of rules can be applied only if each rule of the
set can be applied at least once. According to our knowl-
edge, this natural synchronization of the rules is for the
first time defined and studied in membrane computing. For
the sake of simplicity, we considered flat P systems with
symbol objects and rewriting rules, but the synchroniza-
tion relation can be defined in any class of membrane sys-
tems. Studying the effect of the synchronized relation in
other classes of membrane systems represents future work.

To illustrate the modeling power of the synchronized P
systems, we described the arithmetic operations on num-
bers given in unary base. Comparing the multiplication
operation with that presented in [11], it is worth noting
that the synchronization is able to simulate properly the
use of promoters. The computational completeness of the
synchronized P systems can be obtained in the accepting
case without using any additional ingredient (catalysts,
for instance). This marks an improvement because we
know from [19] that two catalysts are needed to achieve
computational completeness when the maximal parallel-
ism strategy is used. It is possible to reduce the number
of catalysts to one, but this implies the use of complicated
control mechanisms [20].

There exist in the membrane computing literature cer-
tain approaches in which the maximal parallelism was not
taken as the principal strategy for evolution. Sequential
systems presented in [18] defined a class of membrane
systems that impose the application of only one rule in
each computational step. A version stronger than sequen-
tial P systems but weaker than maximal P systems is the
class of non-synchronized P systems in which any num-
ber of rules can be used in each computational step. The
sequential and non-synchronized systems require addi-
tional control mechanisms (e.g., priorities) in order to
obtain the computational completeness. Similar control
mechanisms (e.g., promoters, bi-stable catalysts) are used
in time-free P systems [12] to synchronize rules having
unknown evolution times. The non-synchronized P sys-
tems are taken a step further such that for a given number
k, in each computational step, one can apply either exactly,

at least or at most k rules (see [15]). A class of P systems
using boundary rules imposes a parallelism of type (k, q)
in the application of the rules [10]. A parallelism of type
(k, q) imposes for each computational step a bound of at
most k membranes that can evolve using at most q rules
inside each of the m membranes. The minimal parallelism
defined in [14] proposes a different condition: if a set of
rules contains at least an applicable rule, then at least one
rule is actually applied; more rules can be used as there
exists no upper bound on the number of used rules.

References

	 1.	 Agrigoroaiei, O., & Ciobanu, G. (2010). Flattening the transi-
tion P systems with dissolution. Lecture Notes in Computer
Science, 6501, 53–64.

	 2.	 Alhazov, A., Margenstern, M., & Verlan, S. (2009). Fast syn-
chronization in P systems. Lecture Notes in Computer Science,
5391, 118–128.

	 3.	 Aman, B., & Ciobanu, G. (2008). Describing the immune sys-
tem using enhanced mobile membranes. Electronic Notes in
Theoretical Computer Science, 194(3), 5–18.

	 4.	 Aman, B., & Ciobanu, G. (2009). Turing completeness using
three mobile membranes. Lecture Notes in Computer Science,
5715, 42–55.

	 5.	 Aman, B., & Ciobanu, G. (2011). Mobility in Process Calculi
and Natural Computing. Berlin: Springer.

	 6.	 Aman, B., & Ciobanu, G. (2011). Solving a weak NP-complete
problem in polynomial time by using mutual mobile membrane
systems. Acta Informatica, 48(7–8), 409–415.

	 7.	 Aman, B., & Ciobanu, G. (2017). Efficiently solving the bin
packing problem through bio-inspired mobility. Acta Informat-
ica, 54(4), 435–445.

	 8.	 Aman, B., & Ciobanu, G. (2019). Adaptive P systems. Lecture
Notes in Computer Science, 11399, 57–72.

	 9.	 Bernardini, F., Gheorghe, M., & Krasnogor, N. (2007). Quorum
sensing P systems. Theoretical Computer Science, 371, 20–33.

	10.	 Bernardini, F., Romero-Campero, F.J., Gheorghe, M., Pérez-
Jiménez, M.J., Margenstern, M., Verlan, S., & Krasnogor, N. On
P systems with bounded parallelism. In IEEE Computer Society
Proceedings 7th SYNASC (pp. 399–406).

	11.	 Bonchiş, C., Ciobanu, G., & Izbaşa, C. (2006). Encodings and
arithmetic operations in membrane computing. Lecture Notes
in Computer Science, 3959, 621–630.

	12.	 Cavaliere, M., & Sburlan, D. (2005). Time and synchroniza-
tion in membrane systems. Fundamenta Informaticae, 64(1–4),
65–77.

	13.	 Ciobanu, G. (2010). Semantics of P systems. In The Oxford
Handbook of Membrane Computing, Oxford: Oxford University
Press (pp. 413–436).

	14.	 Ciobanu, G., Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2007).
P systems with minimal parallelism. Theoretical Computer Sci-
ence, 378, 117–130.

	15.	 Ciobanu, G., Păun, G., & Pérez-Jiménez, M. J. (Eds.). (2006).
Applications of Membrane Computing. Berlin: Springer.

	16.	 Ciobanu, G., & Todoran, E. N. (2017). Denotational semantics
of membrane systems by using complete metric spaces. Theo-
retical Computer Science, 701, 85–108.

	17.	 Dinneen, M. J., Kim, Y.-B., & Nicolescu, R. (2012). Faster syn-
chronization in P systems. Natural Computing, 11(1), 107–115.

240	 B. Aman, G. Ciobanu

1 3

	18.	 Freund, R. (2005). Asynchronous P systems and P systems work-
ing in the sequential mode. Lecture Notes in Computer Science,
3365, 36–62.

	19.	 Freund, R., Kari, L., Oswald, M., & Sosík, P. (2005). Computa-
tionally universal P systems without priorities: two catalysts are
sufficient. Theoretical Computer Science, 330, 251–266.

	20.	 Freund, R., & Păun, G. (2013). How to obtain computational com-
pleteness in P systems with one catalyst. Electronic Proceedings
in Theoretical Computer Science, 128, 47–61.

	21.	 Frisco, P., Gheorghe, M., & Pérez-Jiménez, M. J. (Eds.). (2014).
Applications of Membrane Computing in Systems and Synthetic
Biology. Berlin: Springer.

	22.	 Gheorghe, M., & Ipate, F. (2014). A kernel P systems survey.
Lecture Notes in Computer Science, 8340, 1–9.

	23.	 Păun, G. (2002). Membrane Computing: An Introduction. Berlin:
Springer.

	24.	 Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
Oxford Handbook of Membrane Computing. Oxford: Oxford
University Press.

	25.	 Păun, G, & Sheng, Y. (1999). On synchronization in P systems.
Fundamenta Informaticae, 38(4), 397–410.

	26.	 Rozenberg, G., & Salomaa, A. (Eds.). (1997). Handbook of For-
mal Languages (Vol. 3). Berlin: Springer.

	27.	 Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (2017). Real-
Life Applications with Membrane Computing. Berlin: Springer.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Bogdan Aman  graduated in ‘A.I.
Cuza’ University of Iaşi, Faculty
of Mathematics in 2007 and
completed his PhD thesis in
2009 under the supervision of
Professor Gabriel Ciobanu at the
Romanian Academy (Iaşi
branch). He has received a public
recognition for his research with
the 2013 Grigore Moisil Award
of the Romanian Academy of
Sciences. His main research
fields are membrane computing,

natural computing, process algebra, type systems, and other theoretical
aspects of computer science.

Gabriel Ciobanu  is a researcher
at the Romanian Academy of
Sciences (Iasi branch) and at
‘A.I.Cuza’ University of Iasi. His
research articles on distributed
systems (process calculi), formal
methods (semantics, logics), and
natural computing (membrane
systems). For his scientific con-
tributions, he received awards
from the Romanian Academy
(2000, 2004, and 2013) and Ad-
Astra Association (2018). He is
the Editor-in-Chief of the Scien-
tific Annals of Computer Sci-
ence, and a member of Academia

Europaea (the Academy of Europe).

	Synchronization of rules in membrane computing
	Abstract
	1 Introduction
	2 Synchronization in membrane computing
	3 Arithmetic operations using synchronized P systems
	3.1 Multiplication
	3.2 Division

	4 Computational power of synchronized P systems
	5 Conclusion and related work
	References

