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Abstract
We modify the most used evolution strategy in membrane systems (namely that of maximal parallelism) by imposing a syn-
chronization between rules. A synchronization over a set of rules can be applied only if each rule of the set can be applied 
at least once. For membrane systems working in the accepting mode, this synchronization is powerful enough to provide the 
computational completeness without any other ingredient (no catalysts, promoters, inhibitors, etc). The modeling power of 
synchronization is described by simulating the basic arithmetic operations (addition, subtraction, multiplication and division).
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1  Introduction

Membrane systems (known also as P systems) are able to 
model massively parallel systems inspired by the structure 
and behaviour of biological cells [23]. A membrane sys-
tem can be represented as a hierarchical structure of regions 
(membranes) contained inside a unique outermost mem-
brane called skin. Various classes of membrane systems 
(motivated by different features of the biological cells: cata-
lytic entities, electric charges, antiport/symport communica-
tions, etc.) are presented in [24]. Several books including 
theoretical results and various applications in the field of 
membrane computing were published over the last years [5, 
21, 27]. The main research directions considered in the field 
of membrane computing are: modeling power [3, 15], com-
putational power with respect to the computational power of 
Turing machines using a limited number of resources [4], 
and efficiency by providing algorithms to solve NP-complete 
problems (weak [6] or strong [7]) by trading space for time, 

namely using an exponential space to obtain a polynomial 
time solution. Over the years, several operational and deno-
tational semantics were defined for membrane systems [13, 
16].

In this paper, we consider the class of P systems defined 
in [24] in which the various regions of the membrane struc-
ture contain multisets of objects and sets of evolution rules. 
Every region has its own task, such that all regions work-
ing in parallel achieve the general task of the entire system. 
The specific rules of each region modify its objects. The 
evolution of this class of P systems is given by applying 
the rules in a maximally parallel way [23]. The maximal 
parallelism ensures that the multiset of applicable rules cho-
sen in a computation step cannot be further extended by 
adding further rules. This feature was preserved in many of 
the variants defined in the last twenty years, being a useful 
feature in obtaining computational completeness. Choosing 
the rules to be applied in a maximally parallel way is done 
non-deterministically, by respecting also some restrictions 
(e.g., priority relation among rules) or value-based criteria 
(e.g., the guards used in adaptive P systems [8] or kernel P 
systems [22]).

Synchronization is ubiquitous in nature: e.g., pacemaker 
cells in the heart, �-cells in the pancreas, long-range syn-
chronization across brain during perception, contractions in 
the pregnant uterus, cellular clocks, quorum sensing. A bio-
logical motivation for such a synchronization can be found 
in the field of membrane computing in a statement published 
in [9]: coordinated gene-expression (and hence phenotypic 
change) in bacteria is best understood by noticing that a 
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colony is successful only by pooling together the activity of 
a quorum of cells. The synchronization between the evolu-
tion of regions was defined in [25], namely all regions use 
their rules in parallel in the maximal mode. In this paper, 
we introduce a different synchronization which was not 
yet considered in membrane computing: a synchronization 
among the rules of the same membrane. More exactly, a rule 
synchronizing with a non-empty set of rules is applicable at 
least once only if each rule from the set of rules is applicable 
at least once. This means that synchronization over a set of 
rules can be applied only if each rule of the set is applicable 
at least once. Just like for priorities (in membrane systems), 
this synchronization is given as a partial relation over the 
set of rules, specifying which rules are synchronized. The 
approach is conservative; the systems without a synchroni-
zation relation are in fact systems evolving according to the 
usual maximal evolution strategy.

An interesting aspect is that synchronization over rules 
is powerful enough to provide the computational complete-
ness. Such a result is nice and surprising. For synchronized P 
systems working in the accepting mode, the synchronization 
is powerful enough to achieve the computational complete-
ness in the absence of any other ingredients (no catalysts, 
promoters or inhibitors, for instance). This represents an 
improvement for the computational power of membrane 
systems. For instance, at least two catalysts are needed to 
achieve the computational completeness when the maximal 
parallelism strategy is used [19]. The number of catalysts 
can be reduced from two to one to obtain the computational 
completeness, but this is possible using a rather complicated 
control mechanisms [20].

To illustrate the modeling power of the new synchronized 
P systems, we show how the synchronization over rules can 
be used to implement arithmetic operations on numbers 
given in unary base.

2 � Synchronization in membrane computing

A multiset over a finite alphabet O of objects is defined as a 
mapping u ∶ O → ℕ , where ℕ denotes the set of non-negative 
integers. The empty multiset � is defined such that �(a) = 0 
for all a ∈ O . As it is usual in the membrane computing com-
munity, we represent the multisets as strings; for example, 
the string abaaca is the representation of the multiset u in 
which u(a) = 4 , u(b) = 1 and u(c) = 1 . Given a string u as a 
representation for a multiset, then the same multiset can be 
represented also by any permutation of the string u. Given a 
finite alphabet O = {a1,… , an} , the set of all multisets over O 
is denoted by O∗ , while the set of all non-empty multisets is 
denoted by O+ = O∗�� . Given two multisets u and v over O, 
the multiset union is defined as (u + v)(a) = u(a) + v(a) 
for all a ∈ O , and the multiset difference is defined as 

(u − v)(a) = max{0, u(a) − v(a)} for all a ∈ O . Also, u ≤ v if 
u(a) ≤ v(a) for all a ∈ O.

For the sake of simplicity, in what follows, we consider the 
flat P systems (namely, P systems with only one membrane). 
Actually, according to [1], any P system can be flattened to a 
system with only one membrane.

Definition 1  A synchronized P system of degree 1 is a tuple

•	 O and H = {1} are finite non-empty sets of objects and 
labels for membranes, respectively;

•	 � = [ ]1 is the membrane structure describing the fact that 
the system has only one membrane labeled 1;

•	 w1 ∈ O∗ is the multiset of objects initially placed in the 
membrane 1;

•	 R1 is a finite set of rules over the objects from O placed in 
membrane 1, and �1 is a partial relation defined over the set 
R1 of rules specifying the synchronization relation over the 
rules; given the multisets u ∈ O+ and v ∈ O∗ , a rule has the 
form u → v , meaning that the multiset of objects u can be 
rewritten into the (possibly empty) multiset of objects v.

Synchronization means that a rule which needs to be syn-
chronized with a non-empty set of rules is applicable (at least 
once) only if each rule from the set is applicable at least once. 
In what follows we give some examples that illustrate how the 
maximal parallelism behaviour is modified when synchroniza-
tion of rules is used.

Example 1  Consider the membrane system depicted below: 

a3

r1 : a → b

r2 : a → c

1

Using the maximal parallel strategy, there are four pos-
sibilities to evolve in one step from the initial multiset a3 , 
as follows: 

� = (O,H,�,w1, (R1, �1)), where
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a3

c3 bc2

b2cb3

r32 r1r
2
2

r21r2r31

By adding to the initial system the synchronization 
r1 ⊗ r2 , the possibilities to evolve in one step from the ini-
tial multiset a3 are: 

a3

bc2

b2c

r1r
2
2

r21r2

Notice that synchronization reduces the number of pos-
sible evolutions.

Example 2  Consider the membrane system depicted below: 

u1u2

r1 : u1 → v1

r2 : u2 → v2

r3 : u1 → v3

1

Using the maximal parallel strategy, there are two pos-
sibilities to evolve in one step from the initial multiset u1u2 , 
as follows: 

u1u2

v1v2

v3v2

r1r2

r3r2

By adding the synchronization r1 ⊗ r2 to the initial sys-
tem, the possibilities to evolve in one step from the initial 
multiset u1u2 are: 

u1u2

v1v2

v3u2

r1r2

r3

Notice that using synchronization, the system evolves dif-
ferently (by producing new multisets) than using the maxi-
mal parallel strategy.

More details about the synchronization are provided in the 
next section in which the arithmetic operations are modeled 
using only one membrane.

3 � Arithmetic operations using synchronized 
P systems

In this section, we define some (flat) synchronized P systems 
able to model the basic arithmetic operations for numbers 
given in unary base. For this purpose, we use the multiset nat-
ural encoding that assigns to each unit an object in the mem-
brane system; in this way, a number n is encoded as a multiset 
of n similar objects. This encoding represents the encoding of 
natural numbers in base one. Just like in [11], the addition and 
subtraction are trivial, and the new defined synchronization 
relation is not needed for these operations (due to the fact that 
at most one rule is needed). The simplest implementation of 
addition requires no rule (and thus, no synchronization); the 
result is obtained by just counting all the objects contained in 
membrane 1. In a similar manner, subtraction of n (given by 
objects a) and m (given by objects b) is performed using only 
the rule ab → � that deletes a pair of objects ab (synchroniza-
tion is not necessary). Due to the maximal parallel manner of 
applying the rules, the rule ab → � erases in the same compu-
tational step all the pairs ab, and the result is obtained by just 
counting all the objects contained in membrane 1. The time 
complexity of these simple arithmetic operations is O(1).

3.1 � Multiplication

The multiplication operation is a little bit more complex than 
the addition and subtraction operations presented previously. 
In Fig. 1, we describe a synchronized P system that is able to 
model the multiplication of n (given by objects a) by m (given 
by objects b). The result is obtained by counting all the objects 
d contained in membrane 1.

The use of the synchronization b → bd⊗ au → u ensures 
that by applying any of the two rules at least once, the other 
rule is applied also at least once. As the two rules do not com-
pete for the same objects and the maximal evolution strategy 
is used, this ensures that in each computational step, all the 
available objects b are rewritten by the rule b → bd , while 

Fig. 1   Multiplication using 
synchronization anbmu

b → bd⊗ au → u

1
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only an object a is removed using the rule au → u (due to the 
existence of only one u object). The application of the two 
rules is repeated until all the objects a are consumed. Note that 
at each computational step, consuming one object a is done in 
parallel with the creation of m objects d. After n steps, even 
if there are resources for the rule b → bd to be applicable, 
the synchronization with the rule au → u for which there are 
no resources available means that the rule b → bd cannot be 
applied anymore, and the computation stops.

In [11], the multiplication operation is modeled in two 
ways: one way is without promoters but using priority 
between rules, while another way uses promoters and prior-
ity between rules. The time complexity is O(m ⋅ n) and O(n), 
respectively. It is worth noting that using the synchroniza-
tion relation, neither promoters nor priorities among rules 
are used. The synchronization has a similar effect as using 
promoters in [11], and the time complexity remains O(n).

Example 3  Let us consider the multiplication of n = 2 
by m = 3 . The initial multiset is a2b3u . Applying once 
b → bd⊗ au → u , the initial multiset is rewritten to ab3d3u . 
Applying once more b → bd⊗ au → u , it is obtained the 
multiset b3d6u . Since there are no more a objects, the evo-
lution stops and the result 6 is given by the number of d 
objects.

3.2 � Division

This arithmetic operation is implemented as repeated sub-
tractions. In Fig. 2, we depict a synchronized P system com-
puting the quotient (objects c) and the remainder (objects r) 
of n (objects a) divided by m (objects b).

Regardless of the values of n and m, the evolution starts 
by applying the synchronized rules b → bd and u1 → u2 . The 
rule b → bd ensures that the number n of objects b remains 
unchanged, while the same number n of objects d is created 
to be used in the next steps. The synchronization with rule 
u1 → u2 is used just to mark the fact that the objects b can 

be rewritten to the set of objects bd just in this step of the 
computation. The evolution continues with a subtraction step 
modeled by the synchronized rules ab → � , u2 → u3u0 and 
d → r . The object u0 is used for choosing the correct path 
depending on the objects present in the system at a given 
moment. Three cases are distinguished, depending on the 
number of objects a, b and/or r present in membrane 1 after 
the above two computational steps:

•	 If there are only a and r objects, namely all the objects b 
were consumed in the previous step by the rule ab → � , 
then the rule au3 → au3a is applied in parallel with the 
rule u0 → u′

0
 . Notice that the rule bu3 → bu3b is not 

applicable because there are no b objects. Also, the rule 
u3 → c is not applicable as it requires the synchronization 
with the rule u′

0
→ � that is not applicable yet because the 

object u′
0
 is not present in the system. This is followed 

by the application of the synchronized rules u3a → u1c , 
r → b and u′

0
→ � . After applying all these rules, a sub-

traction was performed (marked by the creation of an 
object c) and the system can start another one (the system 
contains both a and b objects) by applying the first two 
sets of rules described above.

•	 If there are only b and r objects, namely all the objects a 
were consumed in the previous step by the rule ab → � , 
then the rule bu3 → bu3b is applied in parallel with the 
rule u0 → u′

0
 . This is followed by the application of the 

synchronized rules u3b → � , br → � and u′
0
→ � . This 

means that none of the objects ui ( 1 ≤ i ≤ 4 ) is present 
in the system, and so the computation halts. As in the 
previous case, none of the other rules rewriting u3 can be 
applied.

•	 If there are only r objects, namely all the a and b objects 
were consumed in the previous step by the rule ab → � , 
then the synchronized rules u3 → c , r → � and u′

0
→ � 

are applied. This leads to the removal of all the objects r 
(there is no remainder after the division operation), and 
creation of another object c. This means that none of the 
objects ui ( 1 ≤ i ≤ 4 ) is available in the system, and so 
the computation halts. As argued in the first case, none 
of the other rules rewriting u3 can be applied.

The time complexity for the division operation is 
O(3(c + 1)) . An improvement with respect to the division 
presented in [11] is given by the reduction of the number of 
membranes (one instead of two), and the fact that there is no 
need for promoters, inhibitors and/or priority.

Example 4  Let us consider the division of n = 3 by m = 2 . 
The initial multiset is a3b2u1 . By applying the synchro-
nization b → bd⊗ u1 → u2 , it is obtained the multiset 
a3b2d2u2 . The evolution continues using the synchroniza-
tion ab → 𝜀 ⊗ u2 → u3u0 ⊗ d → r , leading to the multiset 

anbmu1

b → bd⊗ u1 → u2

ab → ε⊗ u2 → u3u0 ⊗ d → r

u0 → u0 au3 → au3a bu3 → bu3b

u3a → u1c⊗ r → b⊗ u0 → ε

u3b → ε⊗ br → ε⊗ u0 → ε

u3 → c⊗ r → ε⊗ u0 → ε

1

Fig. 2   Division using synchronization
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ar2u3u0 . As there are only a and r objects available, then 
the rules u0 → u′

0
 and au3 → au3a are applicable, and so the 

multiset ar2u3au′0 is obtained. By applying the synchroniza-
tion u3a → u1c⊗ r → b⊗ u′

0
→ 𝜀 , it is obtained the multiset 

ab2u1c.
The above computation denotes a performed subtraction, 

and so the system can start another one. By applying the 
synchronization b → bd⊗ u1 → u2 , the multiset ab2d2u2c 
is obtained. The evolution continues using the synchroniza-
tion ab → 𝜀 ⊗ u2 → u3u0 ⊗ d → r , leading to the multiset 
br2u3u0c . As there are only b and r objects available, then 
the rules u0 → u′

0
 and bu3 → bu3b are applicable, and the 

multiset br2u3bu′0c is obtained. Applying the synchronization 
u3b → 𝜀 ⊗ br → 𝜀 ⊗ u′

0
→ 𝜀 , it is obtained the multiset cr. 

In this case, the computation stops, and the result can be read 
as follows: the quotient is 1 (number of objects c), while the 
remainder is 1 (number of objects r).

4 � Computational power of synchronized P 
systems

Given a string x over an alphabet O = {a1,… , an} , its 
length is defined as |x| = �ai

|x|ai , where |x|ai is the num-
ber of ai ’s appearing in the string x. The Parikh vector 
associated with x with respect to the set O is denoted by 
( |x|a1 ,… , |x|an ). Given a language L over an alphabet O, its 
Parikh image is Ps(L) = {(|x|a1 ,… , |x|an ) ∣ x ∈ L} . Given 
a family of languages FL, its family of Parikh images is 
PsFL = {Ps(L) ∣ L ∈ FL} . The family of languages RE 
contains the recursively enumerable string languages. More 
details on formal languages theory can be found in [26].

A register machine with m registers is a tuple 
M = (m,B, l0, lh,P) , where l0, lh ∈ B represents the initial 
and final labels, and  P is the set of instructions bijectively 
labeled by the labels from the set B. Given three labels 
l1 ∈ B�{lh} , l2, l3 ∈ B , and a register j (with 1 ≤ j ≤ m ), the 
labeled instructions from the set P of the register machine 
M can be of the forms:

•	 l1 ∶ (ADD(j), l2, l3).
	   The effect of performing this instruction (usually 

called increment) is to increase by one the value of reg-
ister j, and then continue the execution by either instruc-
tion l2 or l3 . The choice between the instructions l2 and l3 
is performed in a non-deterministic manner.

•	 l1 ∶ (SUB(j), l2, l3).
	   The effect of performing this instruction depends on 

the value of register  j. The first case (usually called 
zero-test) is when the register j is empty: the value 
of the register j remains the same, and the execution 

continues with instruction l3 . The other case (usually 
called decrement) is when the register j is non-empty: 
its value is decreased by one, and the execution contin-
ues with instruction l2.

•	 lh ∶ HALT  . When this instruction is encountered, the 
execution stops.

A configuration of a register machine M with m registers 
is given as a tuple containing the values of the m registers 
and the label of the instruction to be executed in the next 
step. The execution of the instruction l0 marks the start 
of a computation, while the halt instruction lh marks the 
termination of a computation.

Given a synchronized P system �  , the set Psacc(�) 
contains the Parikh vectors over ℕ+ (the set of non-nega-
tive integers) accepted as result of a halting computation 
in �  . When a P system accepts as a result of a halting 
computation all the vectors over ℕ+ given as input, it is 
said to be working in the accepting case. In what follows, 
textitPsaccOPm(synch) denotes the families of sets Ps acc(�) 
obtained as result of halting computations in synchro-
nized P systems with no more than m membranes.

The next theorem illustrates how a register machine can 
be simulated by a synchronized P systems working in an 
accepting mode. The synchronization is powerful enough 
to get the computational completeness without using any 
additional catalyst, promoter or inhibitor in the synchro-
nized P system.

Theorem 1  For any m ≥ 1 , PsaccOPm(synch) = PsRE.

Proof  Let us consider a register machine M =
(
m,B, l0, lh,P

)
 . 

We present the steps to construct a synchronized P system � 
with only one membrane that is able to simulate the compu-
tation of the register machine M. The membrane system � 
is the tuple (O,H,�,w1, (R1, �1)) with

•	 O = {ar, ur, vr ∣ 1 ≤ r ≤ m} ∪ {l, l�, l ∈ B};
•	 H = {1} ; � = [ ]1;
•	 w1 = l0a

k1
1
… a

km
m .

The initial configuration of the membrane system �  is 
given by the membrane content, namely the multiset w1 
that is composed of:

•	 an object l0 that marks the beginning of the evolution 
in the simulated register machine;

•	 the multiset ak1
1
… a

km
m  representing the vector (k1,… , km) 

that needs to be accepted by the (constructed) synchro-
nized P system; the content of register r is represented 
by the number kr of copies of the objects ar , where 
1 ≤ r ≤ m.
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The rules of R1 given below are used to simulate the instruc-
tions of the simulated register machine M. Note that for the 
SUB operation, the synchronization relation �1 contains syn-
chronizations between some of the rules.

The instructions of the simulated register machine are:

•	 l1 ∶ (ADD(r), l2, l3) , with l1 ∈ B⧵{lh} , l2, l3 ∈ B , 1 ≤ j ≤ m

	   is simulated by the rules 

 If the current instruction to be executed in the regis-
ter machine M is l1 ∶ (ADD(r), l2, l3) , it is simulated by 
the rules r11 and r12 of our membrane system. Choosing 
which of the two rules is applied is done non-determin-
istically. As a result of applying the rule r11 or r12 , we get 
the creation of a new object ar and one of the objects l2 
or l3 , respectively. The possible execution is depicted in 
Fig. 3, where for simplicity we omit the object u and the 
objects modeling the other registers not involved in the 
evolution.

•	 l1 ∶ (SUB(r), l2, l3) , with l1 ∈ B⧵{lh} , l2, l3 ∈ B , 1 ≤ r ≤ m

	   is simulated by the rules 

 where {r23 ⊗ r24} ⊆ 𝜌1 and {r25 ⊗ r26} ⊆ 𝜌1.
	   If the current instruction to be executed in the register 

machine M is l1 ∶ (SUB(r), l2, l3) , the simulation begins 
by executing the rule r20 that creates an additional object 
ur used for the zero test. If there is no object ar present 
in membrane 1, then no rule is executed in parallel with 

r11 ∶ l1 →arl2,

r12 ∶ l1 →arl3.

r20 ∶ l1 → l1ur,

r21 ∶ l1 → l�
1
,

r22 ∶ arur → vr,

r23 ∶ l�
1
→ l2,

r24 ∶ vr → �,

r25 ∶ l�
1
→ l3u,

r26 ∶ ur → �,

rule r21 . If there exists at least one ar object, then the 
rule r22 is executed in parallel with rule r21 . Applica-
tion of the rule r22 removes an object ar together with 
the rewriting of the unique object ur into the unique 
object vr . The unique object ur ensures that only one ar 
object can be deleted when simulating the instruction 
l1 ∶ (SUB(r), l2, l3) . Due to the fact that rule r23 is syn-
chronized with rule r24 , the object l′

1
 is replaced by object 

l2 , and also the object vr is removed in order to be used 
in subsequent simulation of SUB instruction. If there 
was no object ar in the system, namely the rule r22 was 
not applied, then the object ur remains unchanged while 
object l1 is rewritten to object l′

1
 . This means that the syn-

chronized rules r25 and r26 are now applicable, leading to 
the creation of the object l3 , while removing the unique 
object ur from the system. Due to the synchronization, 
after every computational step there exists no object ur 
nor vr in the system. The evolution is depicted in Fig. 4.

•	 lh ∶ HALT  is simulated by rh ∶ lh → �.
	   If the current instruction to be executed is lh ∶ HALT  

marking the end of the computation for the regis-
ter machine M, this step is simulated by removing the 
object lh such that no other rule is applicable anymore. 
The result of the computation is given by the number of 
objects ar ( 1 ≤ r ≤ m ) found in membrane 1 after con-
suming the object lh.

	�  ◻

l1a
k
r

l2a
k+1
r l3a

k+1
r

r11 r12

Fig. 3   Simulating ADD instruction

l1a
k
r

l1ura
k
r

l1vra
k−1
r l1ura

k
r

l2a
k−1
r l3a

k
r

r20

r21, r22, k > 0 r21, k = 0

r23, r24 r25, r26

Fig. 4   Simulating SUB instruction
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5 � Conclusion and related work

In [25], the authors introduced the synchronization 
between membranes by considering that all the regions 
use their rules in parallel in a maximal way. A similar 
idea of synchronization of computation among various 
membranes is treated in [2, 17]. In this paper, we defined 
synchronized P systems by introducing a different synchro-
nization relation to control the application of the evolution 
rules in the same membrane. We just adjust the use of the 
rules in a maximally parallel way by considering an addi-
tional synchronization over the rules. A synchronization 
over a set of rules can be applied only if each rule of the 
set can be applied at least once. According to our knowl-
edge, this natural synchronization of the rules is for the 
first time defined and studied in membrane computing. For 
the sake of simplicity, we considered flat P systems with 
symbol objects and rewriting rules, but the synchroniza-
tion relation can be defined in any class of membrane sys-
tems. Studying the effect of the synchronized relation in 
other classes of membrane systems represents future work.

To illustrate the modeling power of the synchronized P 
systems, we described the arithmetic operations on num-
bers given in unary base. Comparing the multiplication 
operation with that presented in [11], it is worth noting 
that the synchronization is able to simulate properly the 
use of promoters. The computational completeness of the 
synchronized P systems can be obtained in the accepting 
case without using any additional ingredient (catalysts, 
for instance). This marks an improvement because we 
know from [19] that two catalysts are needed to achieve 
computational completeness when the maximal parallel-
ism strategy is used. It is possible to reduce the number 
of catalysts to one, but this implies the use of complicated 
control mechanisms [20].

There exist in the membrane computing literature cer-
tain approaches in which the maximal parallelism was not 
taken as the principal strategy for evolution. Sequential 
systems presented in [18] defined a class of membrane 
systems that impose the application of only one rule in 
each computational step. A version stronger than sequen-
tial P systems but weaker than maximal P systems is the 
class of non-synchronized P systems in which any num-
ber of rules can be used in each computational step. The 
sequential and non-synchronized systems require addi-
tional control mechanisms (e.g., priorities) in order to 
obtain the computational completeness. Similar control 
mechanisms (e.g., promoters, bi-stable catalysts) are used 
in time-free P systems [12] to synchronize rules having 
unknown evolution times. The non-synchronized P sys-
tems are taken a step further such that for a given number 
k, in each computational step, one can apply either exactly, 

at least or at most k rules (see [15]). A class of P systems 
using boundary rules imposes a parallelism of type (k, q) 
in the application of the rules [10]. A parallelism of type 
(k, q) imposes for each computational step a bound of at 
most k membranes that can evolve using at most q rules 
inside each of the m membranes. The minimal parallelism 
defined in [14] proposes a different condition: if a set of 
rules contains at least an applicable rule, then at least one 
rule is actually applied; more rules can be used as there 
exists no upper bound on the number of used rules.
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