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Abstract
Gasification stands as a transformative thermochemical process, ingeniously converting carbon-rich substances like methane
(CH4) and a spectrum of hydrocarbons, including ethylene (C2Hn), into a versatile synthesis gas (syngas). This dynamic blend
predominantly comprises hydrogen (H2) and carbon monoxide (CO), presenting a potent feedstock for diverse industrial
applications. In recent years, the focus on sustainable energy has intensified due to concerns about climate change, energy
security, and dwindling fossil fuel reserves. Biomass energy has emerged as a promising alternative, offering the potential
for a global circular economy and carbon neutrality, thanks to its abundant resources and reliable energy production. This
article introduces two hybrid models that combine Least Square Support Vector Regression (LSSVR) with Dwarf Mongoose
Optimization (DMO) and the ImprovedGreyWolfOptimizationAlgorithm (IGWO).Thesemodels utilize nearby biomass data
to predict the elemental compositions ofCH4 andC2Hn.The assessment of both individual andhybridmodels has demonstrated
that integrating LSSVRwith these optimizers significantly improves the accuracy of CH4 and C2Hn predictions. According to
the findings, the LSDMmodel emerges as the top performer for predicting bothCH4 andC2Hn, achieving impressiveR2 values
of 0.988 and 0.985, respectively. Moreover, the minimal RMSE values of 0.367 and 0.184 for CH4 and C2Hn predictions
respectively affirm the precision of the LSDM model, rendering it a suitable option for practical real-world applications.
Accurate predictions enable the design of systems that efficiently convert a wide range of feedstocks into valuable syngas,
which can be employed to generate heat, electricity, fuels, and chemicals. By understanding and optimizing gasification
processes, it becomes possible to minimize emissions of pollutants, reduce waste, and mitigate greenhouse gas emissions
through carbon capture and utilization technologies.
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Abbreviations

CH4 Methane
C2Hn Ethylene
syngas Synthesis gas
H2 Hydrogen
CO Carbon monoxide
LSSVR Least Square Support Vector Regression
SVM Support Vector Machine
DMO Dwarf Mongoose Optimization
IGWO Improved Grey Wolf Optimization Algorithm
RE Renewable energy
ML Machine learning
AI Artificial intelligence
VM Volatile matter content
Fc Fixed carbon
LHV Lower heating value
O Oxygen content
NO Nitrogen content
SB Steam-to-biomass ratio
ER Equivalence Ratio
Rt Residence time
R2 Coefficient of Determination

RMSE Root Mean Square Error
MAE Mean Absolute Error
MRAE Mean Relative Absolute Error
RSR RMSE-observations standard deviation ratio
ψ Mapping function
ε Precision
δ and δ∗

i Slack variables
c Trade-off parameter
� Regulatory factor
αi Lagrangian multiplier
Q and e Lagrangian function
λ Kernel trick
ν2 Square of the kernel bandwidth
K Number of input patterns
d Number of dimensions in the underlying problem
n Size of the population.
VarSize Problem’s dimensions
VarMin Minimum limit of limits
VarMax Maximum limit of limits
peep Acoustic signa
bs Count of individuals
ϕ Uniform distribution−→
M Driving force
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rand Random value

1 Introduction

1.1 Background

Rising global energy demand is a persistent concern across
social, political, and business domains, expected to con-
tinue for decades (Vo Thanh et al. 2024; Vo Thanh et al.
2024). The current energy supply falls short due to cli-
mate change and technological shifts, with a heavy reliance
on non-renewable fossil fuels like coal, natural gas, and
oil. These fossil fuels constitute a large part of global
energy consumption, contributing to rising atmospheric car-
bon dioxide and global warming (Velvizhi et al. 2022; Raud
et al. 2019). The adoption of renewable energy (RE) has
garnered widespread support as a feasible substitute for
fossil fuels and as a strategy to alleviate the harmful con-
sequences of emissions resulting from the combustion of
fossil fuels.Renewable energy sources, including solar,wind,
hydropower, biomass-biofuels, and other options, have gen-
erated significant interest in the pursuit of creating more
environmentally friendly and sustainable energy systems
with lower carbon emissions (Narnaware and Panwar 2022).

Biomass-derived from agricultural leftovers or forests has
the potential to be utilized for the production of various
materials and bioenergy that are essential in contempo-
rary societies. When compared to other available resources,
biomass stands out as one of the most abundant and widely
distributed resources globally. Consequently, biomass holds
the promise of serving as a locally and globally accessible
renewable energy source (Hakeem et al. 2016). Bioenergy,
classified as a renewable energy source, stands as a prospec-
tive alternative to conventional fossil fuels. Furthermore,
the conversion of bioenergy from waste materials supports
the progression of sustainable waste management practices,
aligning with the principles of a circular economy and the
achievement of carbon neutrality (Ewees et al. 2024; Chen
et al. 2021). While renewable energy sources suffer from
issues of irregular availability, fluctuation, and unpredictabil-
ity, the progress in energy storage technologies has notably
offered successful resolutions to these problems, ultimately
enhancing energy security (Hassan et al. 2022; Malka et al.
2022).

Gasification plays a pivotal role in biomass utilization,
providing substantial flexibility in utilizing a variety of
feedstock materials and producing diverse output products
(Ahrenfeldt et al. 2013). The biomass gasification process
involves transforming solid or liquid organic compounds into
both a gas or vapor phase and a solid phase. The resulting gas
phase, commonly referred to as syngas, possesses significant
heating potential and can serve for power generation or the

production of Zhang et al. 2024; Qian et al. 2013). Biomass
gasification is regarded as ameans to expand the utilization of
biomass for energy generation, enabling the broader adoption
of biomass as an energy source (Wu et al. 2014). Numerous
valuable products can be obtained through the gasification
of biomass, such as syngas, heat, power, biofuels, fertilizer,
and biochar. Syngas can undergo further processing, mainly
through the Fischer–Tropsch method, to produce substances
like dimethyl ether, methanol, and various chemical feed-
stocks. Typically, biomass feedstocks are categorized into
four primary groups: herbaceous biomass, marine biomass,
woody biomass, and manure. The design of the gasifier is
typically tailored to yield a specific product, with the choice
and optimization of the feedstock material being a critical
parameter (McKendry 2002). Gasifiers can be categorized
into four main types: moving beds (including downdraft and
updraft designs), circulating beds, and fluidized bed gasifiers.
These types are distinguished based on how the biomass and
gas interact within the gasifier (Vo Thanh et al. 2020; Basu
2010; Ciferno and Marano 2002).

1.2 Related works

The adoption of ML models (Xie et al. 2013; Sadaghat et al.
2024), including ANNs (Jain et al. 1996; Yao 1999; Goh
1995; Eberhart and Shi 1998) and SVM (Awad and Khanna
2015; Rodriguez-Galiano et al. 2015; Zhang and Chapter
2020; Wang 2005), in gasification research is experiencing
notable traction (Ascher et al. 2022a; Wang et al. 2021). ML
methodologies serve as indispensable instruments for fine-
tuning diverse thermochemical processes within bioenergy,
notably gasification (Wang et al. 2022; Tang et al. 2021).
By leveraging ML models, the efficiency and sustainabil-
ity of gasification processes can be substantially heightened,
simultaneously addressing a spectrumof environmental, eco-
nomic, and social considerations. Numerous studies have
underscored the efficacy ofMLmodels in accurately predict-
ing and optimizing various facets of gasification processes.
The innovative application of ML techniques in gasification
research has yielded significant advancements across var-
ious domains. George et al. (George et al. 2018) utilized
an ANN model to achieve remarkable accuracy in predict-
ing syngas production from a lab-scale bubbling fluidized
bed gasifier. Ascher et al. (Ascher et al. 2022b) further
advanced this frontier by developing a sophisticated ANN
model that attained an impressiveR2 value of 0.9310, notably
predicting gasification technology performance. This break-
through bears immense potential for revolutionizing fields
like energy production and waste management. Shenbagaraj
et al. (Shenbagaraj et al. 2021) introduced the ANN models’
capabilities, demonstrating their proficiency in forecasting a
broader spectrum of gasification outputs, including syngas
composition and yield, with remarkable precision (Han et al.
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2008). Additionally, the application of SVM algorithms has
shown promise, particularly in estimating optimal oxygen-
steam ratios in biomass and coal gasification processes, as
demonstrated by the work of Bahadar et al. (Bahadar et al.
2022). Their SVM model exhibited strong alignment with
actual data, showcasing its potential to optimize gasifica-
tion processes effectively. Moreover, Bahadar et al.’s (Tang
et al. 2021) investigation into generating hydrogen-rich syn-
gas in co-gasification processes involving coal and biomass
highlights the pivotal role ofML in enhancing hydrogen-rich
syngas production across diverse gasification scenarios. Fur-
ther contributions to the field include thework ofBaruah et al.
(2017), who employed an ANN model to predict gas yields
with exceptional precision from a downdraft gasifier. Simi-
larly, Serrano and Castello (2020) leveraged ANN modeling
to accurately predict tar production during the gasification of
woody biomass. Meanwhile, Ceylan et al. (2021) delved into
the application of several ML algorithms to forecast critical
factors in gasification processes. Their findings revealed that
the Random Forest model outperformed others in predicting
product gas generation and gas heating value, underscoring
the significant potential of ML in advancing gasification pro-
cedure.

As demonstrated in the literature review, numerous
researchers have undertaken the task of predicting gasifica-
tion processes, employing various models for this purpose.
However, it is noteworthy that, to date, the LSSVR model
has not been utilized for gasification process prediction.

1.3 Objective

The objective of this article is to fill a notable gap in the
existing literature by introducing the implementation of the
LSSVR model for predicting gasification processes, specif-
ically focusing on CH4 and C2Hn. This research endeavors
to contribute novel insights by employing a machine learn-
ing approach, specifically LSSVR-based models, to forecast
syngas generation in biomass gasification. The study inno-
vatively integrates two optimization techniques, namely the
DMO and the IGWO, aimed at augmenting model per-
formance. The selection of these algorithms stems from
their demonstrated efficacy in optimizing complex pro-
cesses and their potential to enhance predictive accuracy
in gasification modeling. To assess the efficacy of these
optimization techniques and conduct a comparative analy-
sis, the study employs five statistical metrics, prioritizing
precision in prediction outcomes. Accurate forecasting of
CH4 and C2Hn enables optimization of gasification con-
ditions to maximize syngas production while minimizing
unwanted byproducts, thus enhancing overall process effi-
ciency. Additionally, understanding the concentrations of
these components allows for the estimation of the energy

content of syngas, aiding in assessing the economic viabil-
ity of gasification operations.Moreover, monitoringCH4 and
C2Hn levels is crucial formitigating environmental concerns,
as methane is a potent greenhouse gas, and higher hydrocar-
bons can contribute to air pollution.

1.4 Research organization

In the initial segment of this study, the introduction is subdi-
vided into four key subsections: background, related work,
objectives, and research organization. Moving forward, the
second section delves into explanations pertaining to the
dataset, the explanation of the algorithms for optimization as
well as the model, and the definition of the performance eval-
uation metrics. In the third section, the results of the study,
comprising hyperparameters’ outcomes, tables, and figures
based on the metrics, are presented. Additionally, section
four, titled "Discussion," is divided into three subsections:
one for explanations of the advantages and disadvantages of
algorithms, the second for comparison between the results of
this study and previous studies, and the third for addressing
the limitations of the study. In section five, titled "Summary
and Conclusion," a succinct summary of the study alongside
its significant conclusions are provided. Finally, section six
serves as the conclusive segment, containing the references
cited throughout the article.

2 Methodological details

2.1 Dataset overview

This research focuses primarily on predicting the elemen-
tal compositions of CH4 and C2Hn. To accomplish this, the
researchers utilize the LSSVR machine learning regression
method, along with the integration of the Dwarf Mon-
goose Optimization Algorithm and the Improved Grey Wolf
Optimizer in the training process. The outcomes of the gasi-
fication process are contingent upon the gasifier’s design,
biomass characteristics, key operational factors such as gasi-
fying agent, air-to-fuel ratio, temperature, pressure, and the
nature of bed materials, including the presence or absence of
catalytically active substances (Molino et al. 2016).

The process of collecting data involved several stages,
which encompassed aligning parameters with the dataset’s
structure, definingparticle size as the smallest dimension, and
excluding data related to feedstock type and shape. Notably,
volatile matter content (VM) and fixed carbon (Fc) were con-
sidered dependent variables that have associations with other
compositional parameters. The decision to exclude feedstock
with lower heating value (LHV), oxygen content (O), and
nitrogen content (N) was based on their strong correlations
with other input parameters. The steam-to-biomass ratio (SB)
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was identified as a factor affecting gasification efficiency,
while the Equivalence Ratio (ER) impacted the trade-off
between syngas production and combustion (Antonopoulos
et al. 2012). Residence time (Rt) emerged as a crucial factor
determining gasification efficiency, with values ranging from
16.3 min to 403 min in the study.

Table 1 and Fig. 1 offer statistical insights and corre-
lation into the input variables as well as the two target
variables (CH4 and C2Hn) collected and documented within
the database.

2.2 Introduction tomachine learningmodels
and optimizers

2.2.1 Least square support vector regression (LS-SVR)

Vapnik (Vapnik 1995) developed theSupportVectorMachine
(SVM), a powerful supervised learning method used for
function approximation, nonlinear classification, and den-
sity estimation in nonlinear classification. When it comes to
Support Vector Machine for Regression (SVR), its objective
is to discover a linear regression function within a higher-
dimensional space in a manner that minimizes the function’s
slope and ensures minimal deviation from the training data
(Ayubi Rad and Ayubirad 2017). In this scenario, the pro-
vided training data consists of {xi , yi }i � 1,2, . . . , l. The
definition of the regression function is as follows:

f (x) � QSx + dwi thQ, x ∈ Rn&d ∈ R (1)

Typically, in order to take into account the nonlinear rela-
tionship between the input and output variables, the SVR
algorithm projects the input data into a higher-dimensional
space. The mapping function that converts the input x from
the input space to the feature space is represented by the
ψ . Consequently, the following formulation may be used to
create the linear regression function inside the feature space:

f (x) � QSψ(x) + d (2)

To determine f (x) such that the difference between the
function’s output and the true target value for all training
dataset points is reduced to a value less than ε, the method
of Epsilon SVR (ε-SVR) is applied. In this case, the chal-
lenge of identifying the regression function is represented by
the convex optimization problem outlined by the following
constraints:

min
1

2
‖Q‖2

{
yi − QSψ(xi ) − d ≤ ε

QSψ(xi ) + d − yi ≤ ε
(3)

Recognizing that achieving convex optimization and find-
ing an f function with ε precision may not always be

attainable, the introduction of δ and δ∗
i as slack variables are

employed. Thus, the following is a new structure that may
be used for the convex optimization problem:

min
1

2
‖Q‖2 + c

l∑
i�1

(
δi + δ∗

i

)
⎧⎪⎨
⎪⎩

yi − QSψ(xi ) − d ≤ ε + δi

QSψ(xi ) + d − yi ≤ ε + δ∗
i

δi , δ∗
i ≥ 0

(4)

here, the c, with c ≥ 0, serves as the trade-off parameter
that balances the smoothness of the function f against the
tolerance level for deviations exceeding ε.

The Least Squares Support Vector Machine (LS-SVM) is
an improved variation of the SVM algorithm designed for
tasks involving classification and regression analysis. LS-
SVM deals with the computational challenges of SVM by
transforming quadratic optimization problems into a set of
linear equations, simplifying the solving process (Okkan and
Serbes 2012; Pham et al. 2019). More precisely, By tackling
the following optimization problems, LS-SVMsimplifies the
problem:

min
1

2
‖Q‖2 + �

2

l∑
i�1

e2i

Such thatyi � QSψ(xi ) + d + ei , (5)

The parameter� serves as a regulatory factor, and it sym-
bolizes howLSSVRachieves a trade-off betweenminimizing
training errors and enhancing the function’s smoothness. This
balance is achieved by using a Lagrangian function that has
the following structure:

LF � 1

2
‖Q‖2 + �

2

l∑
i�1

e2i −
l∑

i�1

αi (yi − QSψ (xi )− d − ei ),

(6)

where, αi represents the Lagrangian multiplier. To solve the
optimization problem, both the primal and dual variables
need to be equated to zero.

∂LF

∂Q
� 0 → Q �

l∑
i�1

αiψ(xi ), (7)

∂LF

∂d
� 0 →

l∑
i�1

αi � 0, (8)

∂LF

∂ei
� 0 → αi � �ei , (9)
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Table 1 Statistical properties for
dataset variables of CH4, C2Hn Components Unit Properties

Min Max Median Avg St. Dev

Ps [mm] [mm] 0.250 70.0 5.0 5.60 6.770

LHV [MJ/kg wb] 11.50 42.90 18.10 18.60 6.680

C [%daf] 40.10 86.03 0 49.40 51.7 0 9.360

H [%daf] 3.79 0 14.230 6.120 6.93 0 2.030

N [%daf] 0.040 7.320 0.5 0 1.160 1.890

S [%daf] 0.010 1.610 0.330 0.430 0.450

O [%daf] 4.620 53.40 43.10 41.10 6.830

Ash [%db] 0.270 44.0 1.910 7.550 12.10

Moi [%wb] 0.20 27.0 8.50 9.180 5.110

VM [%db] 56.0 89.10 79.90 77.40 8.380

Fc [%db] 9.070 23.80 15.0 15.10 2.750

Cel [%db] 29.60 46.20 39.10 39.20 1.60

Hemicellulose [%db] 14.0 29.60 21.0 21.10 1.580

Lignin [%db] 14.0 27.80 23.6 0 23.70 1.290

Temperature [◦C] 553.0 105.0 800.0 801.0 80.60

Rt [min] 16.30 403.0 100.0 111.0 80.60

St/Bi [wt/wt] 0.0 4.040 1.210 1.200 0.630

ER − 0.090 0.870 0.30 0.30 0.10

CH4 [vol.% db] 0.250 16.0 4.050 5.190 3.280

C2Hn [vol.% db] 0.0 9.50 1.750 1.960 1.400

∂LF

∂αi
� 0 → QSψ(xi ) + d + ei − yi � 0. (10)

where, Q and e are replaced within the Lagrangian function
to create a linear system in the following manner:[
0 1S

1 λ + �−1 I

][
d
α

]
�

[
0
y

]
, (11)

where:

α � [α1 + α2, . . . , αL ]
S ,

e � [e1 + e2, . . . , eL ]
S ,

λ � VV S ,

V � [ψ(x1), ψ(x2), . . . , ψ(xL)]S ,

y � [y1 + y2, . . . , yL ]
S ,

1 � [1 + 1, . . . , 1]S .
Thematrixλ can be constructed using the kernel approach,

as demonstrated by Eq. (12), leading to the reformulation of
the solution for Eq. (11) as expressed in Eq. (13).

λi j � ψ(xi )
Sψ

(
x j

)S � K
(
xi , x j

)
. (12)

c � 1T (λ + �−1 I )
−1

y

1T (λ + �−1 I )−1 I
(13)

α �
(
λ + �−1 I

)−1
(y − d1). (14)

The RBF (ν2) can serve as a kernel function representing
an infinite-dimensional function space.Additionally,with the
values of d and α that have been derived, the optimal regres-
sion function can be formulated in the following:

f (x) �
l∑

i�1

αi K (xi , x) + d, (15)

K (xi , x) � exp

(
−‖xi − x‖2

2ν2

)
(16)

ν2 represents the square of the kernel bandwidth.
In previous studies, several ideal values for� and ν2 have

been suggested. For instance, 1/K (where K is the number of
input patterns) and 1 for � and ν2 are proposed by Hsu et al.
(Hsu et al. 2003). Aiyer et al. (Aiyer et al. 2014) introduced
a trial-and-error method, which can be quite time-intensive,
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Fig. 1 Matrix of correlation for
the relationship between the
variables

especially when estimating � and ν2, as these parameters
can take on any positive real values. Therefore, optimization
techniques can be employed to fine-tune these parameters for
LSSVR.

2.2.2 Dwarf mongoose optimization (DMO)

The population-based, stochastic metaheuristic Dwarf Mon-
goose Optimization (DMO) method draws its inspiration
from the dwarf mongoose’s reported social and foraging
behaviors, as noted by Helogale (Agushaka et al. 2022).

DMO starts the problem-solving process by selecting the
first set of possible solutions from the mongoose colony. It
commences with the generation of an initial candidate solu-
tion population. These initial solutions are created randomly,
adhering to the specified upper and lower limits as per the
requirements of the specific problem under consideration.

k �

⎡
⎢⎢⎢⎢⎣

x1,1
x2,1
...

xn, 1

x1,2
x2,2
...

xn, 2

. . . x1, d−1

. . . x2, d−1

x1,1
...

. . . xn, d−1

x1, d
x2, d
...

xn, d

⎤
⎥⎥⎥⎥⎦ (17)

d represents the number of dimensions in the underlying
problem.

n indicates the size of the population.
Equation (18) computes the positional attribute of individ-

ual elements in a population, which is represented by xi , j :

xi , j � uni f rnd(VarMin , VarMax , VarSize) (18)

VarSize pertains to the problem’s dimensions and the
associated value ranges.

where, VarMin and VarMax represent the minimum and
maximum limits, respectively.

The function uni f rnd functions as a randomnumber gen-
erator, creating numbers distributed uniformly.

The DMO algorithm adheres to the conventional meta-
heuristic strategy, which comprises two clear-cut phases:
exploitation and exploration. The initial phase involves an
exhaustive and meticulous examination of the specified
region by each mongoose, known as the intensification pro-
cess. On the other hand, the second method entails a less
systematic exploration of fresh resources like food supplies
or resting spots, referred to as diversification. The operation
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of the DMO algorithm is characterized by two discernible
phases, both guided by three essential social components:
the alpha group, scout group, and babysitters. These com-
ponents have a pivotal role in orchestrating the actions of
the solution population, ensuring the algorithm effectively
explores and exploits the search space.

• Alpha Group

The selection of the alpha female (α) to lead the unit of
family is determined using Eq. (19).

α � f i t i∑n
i�1 f i t i

(19)

n depicts the existing count of mongooses forming the alpha
group.

peep denotes the term for an auditory cue produced by an
alpha or dominant female mongoose.

bs indicates the count of individuals with the mongoose
group responsible for nurturing and overseeing young off-
spring.

Equation (20) calculates a positive correlation observed
between the sleeping mound and the availability of abundant
nutritional elements:

Xi+1 � Xi + ϕ ∗ peep (20)

ϕ determines a value that follows a uniform distribution
within the interval of [−1,1].

Each time the algorithm runs, the size and quality of the
sleeping mound are evaluated, as shown by mathematical
Eq. (21):

smi � f i t i+1 − f i t i
max

{∣∣ f i t i+1, f i t i
∣∣} (21)

When an inactive accumulation that was previously not
in use is identified, a statistical metric is computed using
Eq. (22):

ρ �
∑n

i�1smi

n
(22)

• Scout Group

Following the fulfillment of the requirements to be amem-
ber of a babysitter exchange program, the next step of the
procedure is scouting. This stage involves evaluating the
location of a potential resting place in relation to the avail-
ability of a certain food supply. Taking into account that
mongooses do not typically reuse their sleeping places, the
scouting team’s task is to find a new mound to aid in the
further progress of their explorations. The behavior of the
mongoose exhibits a unique pattern that involves scouting
and foraging within the parameters of the DMO algorithm.
This behavior is grounded on the idea that expanding the
distance covered while foraging increases the probability of
coming across a new resting place. This mechanism is math-
ematically illustrated through the utilization of Eqs. (23–25):

Xi+1 �
⎧⎨
⎩

Xi − CF ∗ phi ∗ rand ∗
[
Xi − −→

M
]
i fρi+1 > ρi

Xi + CF ∗ phi ∗ rand ∗
[
Xi − −→

M
]
else

(23)

CF �
(
1 − i ter

Maxiter

)(
2 i ter
Maxiter

)
(24)

−→
M �

n∑
i�1

Xi × smi

Xi
(25)

−→
M depicts the driving force that propels the mongoose’s

motion toward a recently established resting mound. rand
stands for a randomvalue uniformly distributed in the interval
[−1,1].

• Babysitters Group

The group responsible forwatching for the small offspring
stays watchful over them while the scouting and foraging
team searches for a suitable location for food and rest. As
some groupmembers choose to defer their foraging or scout-
ing tasks until they meet the requirements for the exchange
program, the number of qualified applicants for the babysit-
ter exchange decreases. The DMO algorithm’s pseudo-code
is provided by Algorithm 2.
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Algorithm 2: Pseudo-Code of DMO Algorithm

Set the parameters of the algorithm: 

Generate 
for = 1: _  

Compute the  of the mongoose 

Set time counter  

Determine the alpha =
∑ =1

 

Obtain a candidate food position 

+1 = + ∗  

Guess new fitness of +1 

Guess sleeping mound  

=
+1 −

{| +1, |}
 

Compute the sleeping mound average value =
∑ =1  

Compute the movement vector ⃗⃗ = ∑
×

=1  

Exchange babysitters   ≥   

Set bs position  

compute  ≤  

Simulate the scout mongoose's next position.  

+1 = {
− ∗ ℎ ∗ ∗ [ − ⃗⃗ ]  +1 >  

+ ∗ ℎ ∗ ∗ [ − ⃗⃗ ]                
 

Modernize the best solution so far. 

end For 
return the best solution 

end 

 

2.2.3 Improved grey wolf optimization algorithm (IGWO)

• Overview of Grey Wolf Optimization Algorithm

The social structure and hunting behaviors of grey wolves
inspire the Grey Wolf Optimizer (GWO) algorithm (Wang
et al. 2022). It involves three prominent leader wolves,
labeled as α, β, andδ, which act as top solutions, guiding
a group of ω wolves in search of the global solution. The
wolf hunting process consists of three main stages: encir-
cling, hunting, and engaging with the prey.

• Encircling:

The mathematical representation of how grey wolves
encircle their prey is depicted in Eqs. (26) and (27):

D � |C × XP (t) − X(t)| (26)

X (t + 1) � XP (t) − A × D (27)

XP depicts the location of the target.
t indicates the present iteration.
C and A determine the vectors of coefficients determined

using Eqs. (28) and (29):

A � 2 × A × r1 − a(t) (28)
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C � 2 × r2 (29)

The vector’s components "a" demonstrate a linear reduc-
tion from 2 to 0 as the iterations progress, in accordance with
the instructions provided in Eq. (30):

a(t) � 2 − (2 × t)/Max I ter (30)

• Hunting:

The mathematical depiction of wolves’ hunting behavior
is based on the assumption that α, β, andδ have superior
knowledge about the prey’s location. As a result, the ω

wolves are required to follow theirmovements. Equation (31)
describes and clarifies this hunting behavior.

Dα � |C1 × Xα − X(t)|

Dβ � ∣∣C2 × Xβ − X(t)
∣∣ (31)

Dδ � |C3 × Xδ − X(t)|

C1, C2, andC3 are computed using the calculations out-
lined in Eq. (32):

Xi1(t) � Xα(t) − Ai1 × Dα(t)

Xi2(t) � Xβ (t) − Ai2 × Dβ (t) (32)

Xi3(t) � Xδ(t) − Ai3 × Dδ(t)

Xα , Xα , and Xδ denote the positions of the three leading
solutions at iteration t .

The values for Dα , Dβ , and Dδ are precisely determined
by the equation mentioned earlier.

X (t + 1) � Xi1(t) + Xi2(t) + Xi3(t)

3
(33)

The hunting process in this algorithm ends when the prey
stops moving, a transition controlled by "a" changing from
2 to 0 throughout the course of the iterations, progressively
decreasing over time to balance exploration and exploitation.
As per guidance (Emary et al. 2017), half of the iterations
focus on exploration, while the remaining half shift into the
exploitation phase. During exploitation, wolves adjust their
positions to random locations between their current positions
and the prey’s location.

• Improved Grey Wolf Optimization Algorithm (IGWO)

In GWO, α, β, andδ guide ω wolves to promising areas
in the search space, but this can lead to being trapped in
local optima and reduced population diversity, causing pre-
mature convergence. To address these issues, an improved
variant, the IGWO, has been introduced. IGWO introduces
new search strategies and updates steps with a dashed line
border. It operates in three phases: initialization, movement,
selection, and updating.

• Initializing phase:

This step involves utilizing Eq. (34) to randomly place all
N wolves in the search space within the preset range [li , u j ]:

Xi , j � I j + rand j [0,1] × (
u j − l j

)
, i ∈ [1, N ], j ∈ [1, D]

(34)

In each algorithm iteration, the position of the ith wolf is
represented by a vector Xi (t) � {xi1, xi2, . . . , xiD} in the
search space. Thesewolves are organized into amatrix called
Pop, with D columns and N rows, where N is the popula-
tion size, and D is the problem’s dimension. The function
f (Xi (t)) is used to calculate the fitness value of Xi (t).

• Movement phase:

Grey wolves not only engage in group hunting but also
exhibit individual hunting behavior (MacNulty et al. 2007).
This inspired the enhancement of GWO with the Dimension
Learning-Based Hunting (DLH) strategy. In DLH, wolves
learn from their neighbors and become potential candi-
dates for new positions Xi (t). This introduces two distinct
candidates,with the canonicalGWOandDLHstrategies con-
tributing to their selection.

• The canonical GWO search strategy:

α, β, and δ are the top three wolves in the population in
GWO. Using Eqs. (30–32) the coefficients a, A, and C are
computed linearly.UsingEqs. (33–34), prey encircling is cal-
culated from the locations of Xα , Xβ , and Xδ . Equation (35)
is used to determine the initial candidate for a wolf’s new
position, which is represented as Xi−GWO (t + 1). On the
other hand, to tackle the convergence problems of GWO,
a new search approach called Dimension Learning-Based
Hunting (DLH) is presented. The new position of a wolf in
DLH, Xi−GWO (t + 1), is calculated for every dimension uti-
lizing Eq. (38), in which the wolf gains knowledge from its
neighbors and a randomly chosen wolf from Pop. Further-
more, DLH produces an additional candidate for the new
position, designated as Xi−DLH (t + 1). This is achieved by
computing a radius, Ri (t), which depends on the Euclidean
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distance between the current position of Xi (t) and the can-
didate’s position Xi−GWO (t + 1), as described in Eq. (36).

Ri (t) � ‖Xi (t) − Xi−GWO(t + 1)‖ (35)

The neighbors of Xi (t), represented as Ni (t), are deter-
mined using Eq. (21) with respect to the radius Ri (t). Di is
the Euclidean distance between Xi (t) and X j (t).

Ni (t) � {
X j (t)|Di ( Xi (t), X j (t)

) ≤ Ri (t), X j (t) ∈ Pop}
(36)

Once the neighborhood around Xi (t) is established, a
learning process from multiple neighbors is performed uti-
lizing Eq. (37). The dth dimension of Xi−DLH , d (t + 1) is
determined in this equation by adding the dth dimensions
of a randomly selected neighbor, Xn, d (t), from Ni (t), and a
randomly selected wolf, Xr , d (t), from the population, Pop.

Xi−DLH , d (t + 1) � Xi , d + rand × (Xn, d (t) − Xr , d (t))
(37)

In the selection andupdating phase, the initial choice of the
superior candidate is made by evaluating the fitness values of
two candidates, Xi−GWO (t+1) and Xi−DLH (t + 1), through
Eq. (38):

Xi (t + 1) �
{
Xi−GWO(t + 1) i f f (Xi−GWO ) < f (Xi−DLH )
Xi−DLH (t + 1) otherwise

(38)

In conclusion, the search is continued until the predefined
number of iterations (Maxiter ) is reached after this proce-
dure is completed for each individual. The iteration counter
(i ter ) is then increased by one.

2.3 Assessment indices

Commonly, a comprehensive evaluation of prediction model
performance involves employing a set of model selection cri-
teria that includes multiple goodness-of-fit and error indices.
This approach helps mitigate the limitations of individual
criteria, which on their own may lead to incorrect decisions
(Dodo et al. 2022). It is ordinary to employ the following
metrics in assessing the performance of a model.

• Coefficient of Determination (R2):

The Coefficient of Determination, commonly represented
as R2, is a statisticalmeasure employed in regression analysis
to quantify the degree to which a model elucidates the vari-
ance or variability observed in the dependent variable. This
metric operates within a range spanning from 0 to 1, where

higher values signify an improved alignment of the model
with the underlying data. Specifically, an R2 value of 0 indi-
cates that the model does not account for any variance, while
an R2 value of 1 signifies a perfect congruence between the
model and the data. It is indicated by the following formula:

R2 �
⎛
⎝ ∑n

i�1(ti − w)(vi − v)√[∑n
i�1(vi − w)2

][∑n
i�1(vi − v)2

]
⎞
⎠

2

(39)

• Error evaluation metrics (MAE, RMSE):

MAE (Mean Absolute Error) and RMSE (Root Mean
Square Error) are statistical metrics that provide a means
to quantify the error between actual and predicted values,
yet they differ in their sensitivity to the magnitude of errors.
RMSE places more emphasis on larger errors, rendering it
suitable when one seeks to penalize significant deviations
substantially. Conversely, MAE treats all errors with equal
weight and is particularly robust in the presence of outliers in
the dataset. The selection between RMSE and MAE should
be contingent upon the specific objectives and characteristics
of the predictive modeling problem at hand. These measures
are formally expressed in Eqs. (40) and (41) as elaborated
below:

RMSE �
√√√√1

n

n∑
i�1

(vi − wi )2 (40)

MAE � 1

n

n∑
i�1

(vi − wi )
2 (41)

• Mean Relative Absolute Error (MRAE):

MRAE, which stands for Mean Relative Absolute Error,
is a statistical measure employed to evaluate the precision
of predictive models or the degree of error in forecasting.
The average relative absolute error between the expected and
actual numbers is quantified. MRAE is typically expressed
as a percentage and serves as a reflection of the average rela-
tive discrepancy in the model’s predictions. It offers valuable
insights into how closely the model’s forecasts align with the
actual data while taking into account the relative scale of the
errors. A lower MRAE signifies superior accuracy, whereas
a higherMRAE indicates a less accurate model. The formula
for computing MRAE is as stated below:

MRAE � 1

n

n∑
i�1

|wi − wi |
|wi | (42)

• RMSE-observations standard deviation ratio (RSR):
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Table 2 Results of hyperparameter

Target Models C Gama

CH4 LSDM 1 0.01

LSIG 179.92582 0.395188

C2HN LSDM 1 0.01

LSIG 240.3931 0.589175

The RSR (RMSE-observations standard deviation ratio)
is a statistical metric for evaluating predictive models, espe-
cially in regression analysis. It combines RMSE and the
standard deviation of observed data to gauge a model’s
accuracy while considering data variability. RSR normalizes
RMSE by dividing it by the standard deviation, offering a
context-aware assessment. Lower RSR values indicate a bet-
ter model fit to data, while higher values indicate a poorer fit.
Equation (43) indicates RSR:

RSR �
[
√∑n

i�1 (wi − vi )
2]

[
√∑n

i�1 (wi − w)2]
(43)

Within each equation: n: number of samples, vi : repre-
sents the specific predicted value. v : denotes the average of
the predicted values, wi : signifies the experimentally mea-
sured value, w : stands for the mean of the experimentally
measured values.

3 Results

3.1 Hyperparameters’ results

In contrast to parameters, hyperparameters are predefined
specifications not directly derived from the dataset. Maxi-
mizing model performance heavily depends on fine-tuning
hyperparameters, a process demanding extensive experi-
mentation and the application of advanced optimization
approaches. Presented in Table 2 are the detailed hyper-
parameter configurations corresponding to the LSDM and
LSIG models, highlighting the critical parameters C and
Gamma across both output variables, CH4 and C2Hn. For
instance, in the LSDM model, the C hyperparameter main-
tains a constant value of 1 for both CH4 and C2Hn,
underscoring a uniform setting for model optimization. In
contrast, the LSIG model exhibits variations in C, with val-
ues of 179.926 for CH4 and 240.393 for C2Hn, indicating
nuanced adjustments tailored to each output variable.

3.2 Results of evaluationmetrics

This article demonstrates the use of enhanced Machine
Learning models, specifically Least Square Support Vec-
tor Regression (LSSVR), to predict the composition of
CH4 (methane) and C2Hn (hydrocarbons) in the con-
text of biomass gasification. The research incorporates two
optimization algorithms, DMO (DwarfMongooseOptimiza-
tion) and the Improved Grey Wolf Optimization Algorithm
(IGWO), to create hybridmodels known asLSDMandLSIG.
The main objectives of this research are to identify the most
robust optimization algorithm and to evaluate the predictive
performance of both individual and combined hybrid mod-
els. This comparative evaluation employs five assessment
metrics: R2, RMSE, MAE, MRAE, and RSR. The following
sections provide a comprehensive analysis of model perfor-
mance, with dedicated segments for the prediction of CH4

and C2Hn .

• CH4 syngas forecasting

According to Table 3, it is evident that for the LSSVR,
LSIG, and LSDM models in the three phases of training,
validation, and testing, the R2 value is highest for the LSDM
model, approaching 1. In comparison, the LSIG and LSSVR
models take the second and third positions, respectively. For
example, in the LSDM model, the R2 values for the men-
tioned phases are 0.988, 0.974, and 0.978.

RMSE andMSE represent error values based on their defi-
nitions.When these values are lower, it indicates bettermodel
performance. A thorough examination of Table 3 reveals that
the LSDM model demonstrates the best performance, while
the LSIG and LSSVR models rank second and third, respec-
tively. In the Train phase of the LSDM model, the lowest
RMSE is 0.367, and the lowest MSE is 0.171.

A lower MRAE indicates a greater precision, whereas a
higher MRAE shows a less precise model. Therefore, it is
concluded that the LSDM, with a value of 0.149 in the Train-
ing sector, has the best accuracy.

RSR is a metric used to assess the precision of a predictive
model in comparison to real valueswithin a scale fromzero to
one.When a parameter gradually approaches zero, it signifies
a strong level of agreement. In this situation, it is evident
that LSDM demonstrates the best performance with a value
of 0.111in the Training phase, the LSIG model follows in
second place with a value of 0.975, and the LSSVR model
ranks last with a value of 0.207.

A scattered representation of the average variety between
measured and predicted values is shown in Fig. 2. Detailed
dispersion points are derived from RMSE and R2, which pri-
marily controls data distribution so that the lower amount
reaches a higher density in RMSE. A greater R2 value
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Table 3 Result of developed
models for CH4

Phase Index values Models

LSSVR LSIG LSDM

Train RMSE 0.687 0.523 0.367

R2 0.967 0.975 0.988

MAE 0.551 0.444 0.171

RSR 0.207 0.158 0.111

MRAE 0.333 0.296 0.149

Validation RMSE 0.825 0.576 0.523

R2 0.952 0.963 0.974

MAE 0.664 0.476 0.357

RSR 0.292 0.204 0.185

MRAE 0.377 0.467 0.215

Test RMSE 1.022 0.664 0.716

R2 0.960 0.966 0.978

MAE 0.785 0.536 0.485

RSR 0.300 0.195 0.210

MRAE 0.670 0.797 0.546

suggests that the line fits the data more closely. General com-
parisons show that the value of R2is relatively high for all
threemodels. According to the scatter data, the LSDMmodel
with lower RMSE and higher R2 values in all three phases
(train, validation, test) of the prediction model appear most
appropriate.

Figure 3. presents a comparison between the measured
and predicted values for CH4, confirming that a smaller dif-
ference between these two values indicates superior model
performance. As shown in the diagram, the maximum dif-
ference values for the LSSVR, LSIG, and LSDM models
occurred during the Test phase.

Figure 4 shows two graphs comparing the number of
samples versus the error percentage of CH4 and the error
percentage versus its frequency. The error rate differs with
the number of samples, as shown in the LSSVR charts. The
error of this model ranges from -40 to 100 percent, with a
high frequency between -20 and 0. For the LSIG and LSDM
hybrid models, the error percentage compared to the num-
ber of samples is superior compared to the basic model. In
LSIG, the error range is -80 to 100 percent, and the highest
frequency is -10 to 0, while for the LSDM model, the error
range is -20 to 60, and the highest frequency is -5 and 0.

• C2Hnsyngas forecasting

After reviewing the data presented in Table 4, it is clear
that the LSDM model demonstrates superior performance
compared to the LSSVR and LSIG models in terms of R2

values for all three phases: training, validation, and testing.

Specifically, the LSDM model achieved R2 values of 0.985,
0.979, and 0.973, respectively.

RMSE and MSE serve as metrics for measuring errors,
and lower values signify improved model performance. A
detailed analysis of Table 5 underscores that the LSDM
model exhibits superior performance, with the LSSVR and
LSIG models occupying the second and third positions,
respectively. In the training phase of the LSDM model, the
most favorable RMSE is 0.184, and the most favorable MSE
is 0.046.

A lower MRAE signifies greater precision, while a higher
MRAE reflects a less precise model. Consequently, it can
be deduced that the LSDM, with a value of 0.274 in the
validation sector, exhibits the highest level of accuracy.

RSR, a metric employed for evaluating the precision of a
predictive model concerning real values on a scale ranging
from zero to one, indicates a strong level of agreement as a
parameter approaches zero. In this context, it is clear that the
LSDM exhibits the most favorable performance, boasting a
value of 0.129 in the training phase.

In Fig. 5, the comparisons indicate that the LSDMmodel,
which boasts lower RMSE and higher R2 values in all three
phases of the prediction model (training, validation, testing)
with values of 0.985, 0.977, and 0.973 (for R2), and 0.184,
0.284, and 0.337 (for RMSE), respectively, is themost appro-
priate option for forecasting C2Hn.

Figure 6. provides a visual comparison of the measured
and predicted values for C2Hn, affirming that a reduced dis-
parity between these values reflects a higher level of model
performance.As depicted in the graph, the largest differences
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Fig. 2 Scatter plot for correlation between the predicted and measured CH4

for the LSSVR, LSIG, and LSDM models were observed in
the training phase.

Figure 7. displays two graphs that illustrate the relation-
ship between the number of samples and the error percentage
for C2Hn, as well as the error percentage versus its frequency.
The error rate varies with the number of samples, particularly
evident in the LSSVR charts, where the model’s error ranges
from -80 to 100 percent, with a notable frequency between

-20 and 10. Conversely, for the LSIG andLSDMhybridmod-
els, the error percentage in relation to the number of samples
outperforms the basic model. In LSIG, the error range is -70
to 100 percent, with the highest frequency occurring around
-20 to 15, while for the LSDM model, the error range is -30
to 70, and the highest frequency is approximately -10 to 5.
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Fig. 3 Comparison of measured and predicted values

4 Discussion

4.1 Advantages and disadvantages of model
and algorithms

4.1.1 Advantages

The LSSVR is a versatile method that excels in both lin-
ear and nonlinear regression tasks. It harnesses the kernel

trick, enabling it to operate effectively in high-dimensional
spaces while handling small datasets efficiently. One of
its key strengths lies in its robustness against overfitting,
thanks to its regularization parameter. Inspired by the social
behavior of dwarf mongooses, the DMO algorithm offers a
novel approach to optimization. It is adept at solving single-
objective and multi-objective optimization problems with
simplicity in implementation and understanding.
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Fig. 4 Error percentage of developed models by Line-symbol as well as Histogram Distribution plot for CH4

DMO effectively explores search spaces and avoids get-
ting trapped in local optima, making it a valuable tool across
various domains. The IGWOalgorithm builds upon the foun-
dation of the original Grey Wolf Optimization (GWO) by
enhancing its performance. It exhibits faster convergence
rates and employs a more efficient search mechanism by
incorporating multiple wolf packs. IGWO proves effective
for tackling both single-objective and multi-objective opti-
mization problems, providing robust solutions to complex
optimization challenges.

4.1.2 Disadvantages

The LSSVR excels in handling both linear and nonlin-
ear regression tasks but can be memory-intensive for large
datasets due to the storage requirements for support vectors.

Additionally, it is computationally expensive during the train-
ing phase and demands careful selection of hyperparameters
such as the regularization parameter and kernel function for
optimal performance.

The DMO algorithm offers a unique perspective inspired
by social behavior but may experience slower convergence
rates compared to more established optimization algorithms.
It is sensitive to parameter tuning, including factors like pop-
ulation size and mutation rate, which can affect its efficiency.
DMOalso lacks extensive theoretical groundwork and empir-
ical validation compared to more widely studied algorithms
in the optimization field.

The IGWO algorithm shares common traits with many
metaheuristic algorithms. It requires meticulous parame-
ter fine-tuning for achieving optimal performance across
different problem domains. Efficiency may vary based on
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Table 4 Result of developed
models for C2Hn Phase Index values Models

LSSVR LSIG LSDM

Train RMSE 0.293 0.235 0.184

R2 0.963 0.974 0.985

MAE 0.235 0.186 0.046

RSR 0.206 0.165 0.129

MRAE 1.233 1.121 0.398

Validation RMSE 0.347 0.272 0.284

R2 0.950 0.960 0.977

MAE 0.289 0.223 0.209

RSR 0.276 0.216 0.226

MRAE 0.486 0.421 0.274

Test RMSE 0.380 0.327 0.337

R2 0.953 0.962 0.973

MAE 0.255 0.220 0.216

RSR 0.277 0.239 0.246

MRAE 1.427 1.302 0.858

Table 5 Comparison between the
published and presented
investigation

Target Index value Articles

Present study
(LSDM)

Ascher et al. (ANN)
(Ascher et al. 2022b)

Ascher et al. (GBR)
(Ascher et al. 2022)

CH4 RMSE 0.3670 0.1800 0.850

R2 0.9880 0.7990 0.900

C2Hn RMSE 0.1840 0.1880 0.400

R2 0.9850 0.5200 0.870

problem characteristics and parameter settings, highlighting
the need for careful implementation. Despite its effective-
ness, IGWO’s theoretical analysis remains relatively limited
compared to traditional optimization algorithms with more
established theoretical frameworks.

4.1.3 Specifications

The LSSVR technique is rooted in support vector machines
(SVM) principles, aiming to minimize the empirical risk
while incorporating a regularization term to prevent overfit-
ting. Its performance is commonly assessed utilizing metrics
like coefficient of determination (R-squared)ormean squared
error (MSE), highlighting its efficacy in regression tasks
across various domains.

The DMO algorithm draws inspiration from the cooper-
ative foraging behavior observed in dwarf mongooses. It
leverages social interactions and leader–follower dynam-
ics to guide the optimization process, striking a balance
between exploration (seekingnewsolutions) and exploitation
(refining existing solutions). This approach ensures robust

performance in both single-objective and multi-objective
optimization scenarios, emphasizing simplicity and effec-
tiveness in implementation. The IGWO algorithm enhances
the original GWO by simulating the hierarchical and hunting
behaviors of grey wolf packs more effectively. It represents
solutions using vectors and utilizes a dynamic search mecha-
nism to explore the solution space comprehensively. IGWO’s
convergence criteria typically involve amaximum number of
iterations or a threshold for improvement, ensuring efficient
convergence and optimal solutions for complex optimization
problems.

4.2 Comparison between the present study
and existing publications

A few ranges of studies focused on the prediction of the
gasification process such as CH4 and C2Hn. For example,
Ascher et al. in two different studies investigate predicting
these values via implementingmachine learningmodels. The
first study was conducted by Ascher et al. (Ascher et al.
2022b) based on the ANN model, achieved R2 values of
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Fig. 5 A scatter plot showing the correlation between the expected and measured C2Hn

0.52 and 0.799 for C2Hn and CH4, along with RMSE values
of 0.118 and 0.18 for C2Hn and CH4. The second study by
Ascher et al. (Ascher et al. 2024) based on the GBR model,
Achieved R2 values of 0.9 and 0.87 for CH4 and C2Hn, along
with RMSE values of 0.4 and 0.85 for C2Hn and CH4. In this
study, the LSSVR model was employed as the foundational
framework, undergoing enhancement through the integration
of DMO and IGWO algorithms. Upon evaluating the results
obtained, it was found that the integration of DMO into the
LSSVRmodel demonstrated exceptional applicability, yield-
ing an R2 value of 0.988 and 0.985, as well as an RMSE of
0.184 and 0.367 for C2Hn and CH4, surpassing the perfor-
mance of the other two models in this study.

4.3 Limitations of the study

While the study demonstrates promising results in predict-
ing syngas production from biomass gasification, there are
several limitations that should be acknowledged. Firstly, the
models were evaluated based on specific input variables and
performance criteria, which may not capture the full com-
plexity of biomass gasification processes. Additionally, the
study focuses primarily on CH4 and C2Hn compositions,
overlooking other important components of syngas. Future
research could explore the prediction of a broader range
of syngas components and consider the impact of vary-
ing process conditions and feedstock characteristics. Future
works could investigate alternative optimization methods
or hybrid approaches to further improve predictive perfor-
mance. Additionally, experimental validation of the models
using real-world biomass gasification data would strengthen
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Fig. 6 Comparison of measured and predicted values

their applicability and reliability. Overall, addressing these
limitations and conducting further research could provide a
more comprehensive understanding of biomass gasification
processes and enhance the development of predictive models
for sustainable energy production.

5 Summary and conclusion

Mountingglobal energydemandand environmental concerns
related to fossil fuels, including natural gas, coal, and oil,
are driving the widespread adoption of renewable energy
sources like solar, wind, hydropower, and biomass-biofuels
to address carbon emissions and establish sustainable energy
systems. Biomass, derived from agricultural leftovers and

forests, offers a promising and widely available resource
for the production of materials and bioenergy, supporting
wastemanagement and renewable energy sustainability, with
the aid of advanced energy storage technologies to enhance
energy security. Gasification is a crucial process in biomass
utilization, offering flexibility in converting various feed-
stock materials into syngas with significant heating poten-
tial for power generation and biofuel production, thereby
expanding biomass usage as a source of energy. This article
presents the LSSVR single model and two hybrid models,
LSIG (LSSVR optimized with IGWO) and LSDM (LSSVR
optimized with DMO), which employ input variables to pre-
dict elemental compositions (CH4 and C2Hn). These models
were assessed using established performance criteria. The
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Fig. 7 The Histogram Distribution plot for C2Hn and the Line-symbol developed model’s error % are presented

results demonstrate that both introduced optimizers, particu-
larly LSDM, significantly enhance the accuracy of CH4 and
C2Hn predictions when combined with LSSVR. Notably,
LSDM achieved outstanding performance with the highest
R2 values of 0.988 for CH_4 and 0.985 for C2Hn, indicating
its exceptional accuracy. Furthermore, LSDM’s minimum
RMSE values of 0.367 for CH4 and 0.184 for C2Hn under-
score its precision. Additionally, a comparative analysis
revealed that LSDM was more accurate in predicting CH4

and C2Hn. In summary, this research highlights the potential
of optimization methods for forecasting syngas production
and provides valuable insights into biomass gasification.
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