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Abstract
In geotechnical engineering, soil slopes are crucial in various civil engineering projects, including highways, embankments,
dams, and excavations. Understanding the behavior of soil slopes is essential for designing stable and safe structures. Com-
bining different soft computing (SC) models can provide more robust slope stability predictions. This paper employs two
hybrid computational algorithms to make accurate slope stability predictions. In this research project, the adaptive neuro
fuzzy inference system (ANFIS) model is optimized by two novel meta-heuristic optimization algorithms (MOAs): genetic
algorithm (GA) and particle swarm optimization (PSO). To this end, slope inputs are taken from a literature survey consisting
of 206 input datasets for the training and testing of models. Eleven statistical indices have been evaluated for assessing the
performance of proposed hybrid models, along with evaluating rank analysis. ANFIS, ANFIS-GA, and ANFIS-PSO out-
comes from the suggested models have R2 values of 0.6783, 0.7624, 0.7378 during training, 0.6684, 0.8143, and 0.7013
during testing. Also, the ANFIS-GA hybrid model yielded error matrices such as RMSE, MAE, and MSE with values of
0.1217, 0.0912, and 0.0148 in training and 0.12570, 0.0968, and 0.1391 in testing; in contrast, the ANFIS PSOmodel yielded
values of 0.1264, 0.0902, 0.016 in training, and 0.1591, 0.1170, 0.1290 in testing; the ANFIS model yielded values of 0.1345,
0.1127, 0.0172 in training, and 0.1642, 0.1267, 0.1391 in testing. The regression plot was analyzed to compare the predicted
value with the actual one. In the present paper, the Metropolis Hastings MCMC sampling method has been introduced to
establish the relationship between the inputs, which is slope height (H), slope angle (α), cohesion (c), pore water pressure ratio
(Ru), unit weight (U), angle of internal friction (ϕ), and output reliability of slopes. A sensitivity analysis was also performed
to determine which variable affects the reliability of soil slope more. After that, comparing hybrid models with the ANFIS
model notified the engineers and researchers that the model best predicts slope failure for extensive observations.

Keywords Slope failure ·ANFIS ·Genetic algorithm (GA) · Particle swarm optimization (PSO) ·Regression plot ·Metropolis
Hastings sampling distribution · Sensitivity analysis

1 Introduction

Landslides are frequent geological happenings that signifi-
cantly harm society and the economy. They cause public and
private property damage yearly, totaling hundreds ofmillions
of dollars. According to Massey et al. (2017), these natural
disasters are influenced by several variables, including inter-
nal variables like slope configuration and soil characteristics,
as well as external triggers like rainfall and earthquakes.
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Slope stability modeling necessitates assessing the tech-
niques used to control the behavior of the slopes to prevent
or lessen landslip damage. Slope stability is traditionally
assessed by evaluating the factor of safety (FOS) and choos-
ing an appropriate method design. A FOS based on a proper
geotechnical model is needed to evaluate the slope stabil-
ity. Estimating slope stability involves many factors, and
the FOS calculation needs physical information about the
geologic materials, geometrical information and its shear-
strength parameters, information on pore water pressures,
etc. Das et al. (2011) said the slope is considered stable if
the FOS is greater than 1.0 and unstable if it is less than 1.0.
The limit equilibrium method (LEM) and strength reduc-
tion method SRM were described by Cheng et al. (2007a, b)
and Nash (1981). For simple homogenous soil slopes, it was
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found that the safety factor and critical surface determina-
tion from these two methods, LEM and SRM, are generally
in good agreement except for frictionless soil. However, they
were sensitive to the nonlinear solution with frictional mate-
rial and could not determine their failure surfaces. Griffiths
andFenton (2004) andLuoet al.(2016) used the randomfinite
element and material point methods. Griffiths and Fenton
(2004) investigated the probability of slope failure for cohe-
sive soil using the random finite-element method (RFEM)
combinedwith elastoplasticity and randomfield theory.Also,
Luo et al. (2016) analyzed geosynthetic reinforced soil slopes
using the shear strength reduction method in combination
with the finite element method (FEM). They observed the
influence of random soil properties on the probability of fail-
ure. However, the predicted safety factor was sensitive to
uncertainty regarding soil friction angle. However, the utility
of these approaches decreases if large numbers of observa-
tions are required to achieve very low probabilities of failure.
Sun et al. (2014) andTschuchnigg et al. (2015a, b) studied the
strength reduction method and finite element limit analysis.
Sun et al. (2014) explored a newmethod for the selection and
forecasting of mechanics parameters of the rock mass, which
tested the integrated use of analogy simulation experiment
technology and numerical calculation. According to Li and
Xu (2016), the SSPCmethod assessed the Failure probability
of the excavation slopes based on the possible failure mech-
anisms and modes of the slopes. The results show that the
SSPC method exhibited an accuracy of 70 % in the stability
assessment of the highway slopes in the Yunnan province.
Tschuchnigg et al. (2015a, b) observed that the numerical
instabilities of non-associated displacement were minimized
using finite element limit analysis with the Davis B proce-
dure. However, it was still tricky in the case of limit theorems
of plasticity. The finite difference method for the analysis of
soil slopes was studied by Lim et al. (2015). They examined
the three-dimensional (3D) slope stability of two-layered
undrained clayey slopes using the finite element upper and
lower bound limit analysis methods that are finite difference
methods, and the results were presented in the form of sta-
bility charts that may be convenient tools for civil engineers.
However, this method still had many difficulties in handling
complex geometry. According to Li et al. (2016) and Reale
et al. (2016), theMarkov chainmodel and the numerical limit
analysis methods are all LEM techniques based on elasticity
and plasticity concepts. They may frequently be used to cal-
culate the uncertainty in slope stability. However, they may
have limited predictive capability for extreme events such as
rapid landslides or catastrophic failures. Tschuchnigg et al.
(2015a, b) said that the assumptions made for slip surfaces
and inter-slice forces limit the LEM’s accuracy. In contrast,
numerical methods call for an effectively fitting core model,
which is challenging to develop. Hence, we can conclude
that the discussed slope stability method has less accuracy

due to the intricacy of the relationships between the variables
influencing slope stability.

Recently, SC approaches have been used successfully to
model and classify any problem. They are helpful when the
precise scientific tools cannot provide a comprehensive, ana-
lytical, and economical solution. Fattahi (2017) studied the
advantages of employing SC, which is more precise and spe-
cific in achieving tractability and robustness. Furthermore,
in recent years, with the development of cheaper personal
computers, the intelligence system approaches have been
increasingly used in the stability of slope analysis, such as
slope stability prediction using fuzzy logic (FL) studied by
Saboya et al. (2006) and Ercanoglu and Gokceoglu (2002).
McCombie and Wilkinson (2002) used a simple Genetic
Algorithm. They applied successfully to the hunt for the crit-
ical circle in slope stability analysis, producing results much
more quickly than a ’brute force’ approach. Kahatadeniya
et al. (2009) used an ant colony optimization algorithm, and
Cheng et al. (2007a, b) used a PSO algorithm to analyze the
soil slope stability.

Additionally, with the advent of more affordable per-
sonal computers, intelligence system approaches have been
utilized to stabilize slopes. The major drawback of these
models are studied by Park and Rilett (1999) that they pro-
vide no information on the relative importance of the various
parameters like other statistical models. Since the infor-
mation learned during training is automatically retained in
ANNs, it is exceedingly challenging to reasonably interpret
the network’s overall structure. Additionally, Kecman (2001)
noted that ANN has certain natural shortcomings, including
delayed convergence time, poorer generalizing ability, get-
ting at local minimums, and over-fitting issues.

The hybrid SC model is frequently used to solve differ-
ent engineering problems. According to research published
by Riahi Madvar et al. (2020), the hybridization approach
will increase the accuracy of the ANFIS technique as it mod-
ifies and enhances the computational parameters based on
a reliable database worldwide. Furthermore, the fuzzy set
theory is a valuable tool for managing ambiguity in engi-
neering application decision-making. As a result, fuzzy sets
are gaining more and more interest in contemporary data
analysis, industrial techniques, detection of patterns, diag-
nostics, and information technology. Agnihotri et al. (2022)
optimize model parameters for predicting flood at the Mati-
juri gauge station of the Barak River basin, Assam, India.
They combined the ANFIS model with Ant Colony Opti-
mization (ACO) for optimization. Bousnina et al. (2023) used
the PSO, ANN, and ANFIS models to predict surface quality
constant energy during the milling of alloy. They confirmed
the efficiency of integrating the PSO model into the ANN
neural network by comparing it with the adaptive neuro-
fuzzy inference system (ANFIS). Tao et al. (2024) reviewed
that nature inspired algorithm are superior than all other
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algorithms for river flow modeling. Zhang et al. (2023)
optimized the ANFIS model to predict the thermophysi-
cal properties of nanofluids. They presented GP-ANFIS,
SC-ANFIS, and FCM-ANFIS for predicting specific heat
capacity and thermal conductivity of hybrid fluids.

Samantaray et al. (2023) used the AI hybrid method to
predict flood discharge collected from four gauging sta-
tions of River Brahmani, Odisha, India. They developed a
hybridized metaheuristic algorithm, i.e., ANFIS-PSOSMA,
that improves the Slime mold algorithm’s (SMA) explo-
ration capability by integrating it with particle swarm
optimization (PSO) for discharge prediction. They sum-
marized that combining the optimization algorithms with
ANFIS enhances performance in modeling monthly flood
discharge time series. Mu’azu (2023) investigate the efficacy
of teaching–learning-based optimization (TLBO) for tuning
two well-known predictive models, namely artificial neural
network (ANN) and adaptive neuro-fuzzy inference system
(ANFIS), applied to the prediction of the factor of safety
for a cohesive soil slope-footing system. He investigated
that ANN-TLBO was the most robust model, followed by
ANFIS-TLBO, ANN, and ANFIS for slope stability predic-
tion. Qin et al. (2022) investigated the SVNN ANFIS model
to predict open-pit mine slope stability. The SVNN-ANFIS
method provides a new, effective way to evaluate open-pit
mine slope stability in an uncertain environment. Nemato-
lahi et al. (2018) proposed the PSO FIS (Fuzzy Inference
System) and GA FIS models to predict the hydraulic con-
ductivity of saturated soil. They concluded that FIS trained
by PSO and FIS trained by GA could be good estimators in
filling the gap between available primary soil data and other
soil hydraulic characteristics. Moayedi et al. (2020) built 60
different ANNmodels, 12 hybridGA-ANFISmodels, and 36
PSO-ANFIS models to predict α in driven piles. They used
input parameters such as pile diameter, pile length, relative
density, embedment ratio (L/D), and both pile end resistance
and base resistance at a relatively 10% base settlement from
the CPT result, whereas the output was α. They confirmed
that the hybridized model is more efficient for the problem
above. Yang et al. (2020) also proposed a hybrid algorithm
of GA and PSOwith an ANFISmodel for the computation of
ground vibration during rock blasting. They gathered only 86
data for hybrid modeling and concluded that hybrid models
are more reliable for evaluating ground vibration. This indi-
cates higher reliability of the optimized GA-ANFISmodel in
estimating α ratio in driven shafts. The above literature study
of hybrid model conclude that intelligent hybrid models give
more accurate and reliable results than ANN, ANFIS, and
other SCmodels.Yang et al. (2020) andMoayedi et al. (2020)
used 80% of data in the training phase and 20% in testing.
Despite the researchers’ best efforts, the dataset is frequently
too small to determine its repeatability and applicability.
The severe flaws in earlier research on the determination of

safety factors for naturally occurring soil slopes are employed
techniques having a limited scope of data used, a restricted
range of calibration data, a limited scope of applicability,
non-generality of acquired data, and imprecise estimations
over unseen data. This study attempts to address all of these
issues by combining the nature-inspired algorithm with con-
ventional ANFIS to further enhance the process of modeling
mechanism in an extended database of reliability index (RI)
for prediction of safety of slope.

The present study proposes a comparative analysis of two
hybrid intelligent models, ANFIS-GA and ANFIS-PSOwith
ANFIS, to predict the safety of slopes and determine themost
influencing input parameter. Also, in the proposed research,
70%of the datawas used for the training phase and30% in the
testing phase. The novelty of the proposed study is to explore
the two evolutionary algorithms, GA and PSO, to enhance
the performance of the ANFIS model to predict the failure of
slopes for large datasets and also assess the effectiveness and
precision of applied hybrid models in comparison to ANFIS
model for slope stability problem in the field of civil engi-
neering.

2 Physical significance of study

Slope stability investigations are crucial in various fields,
including civil engineering, environmental science, and nat-
ural hazard assessment. The physical significance of slope
stability studies lies in understanding and managing the sta-
bility of slopes, which can have significant implications for
safety, infrastructure, and the environment as per Bharti
et al. (2021). Understanding the stability of slopes helps engi-
neers design structures that can withstand potential slope
failures, reducing the risk of accidents and property dam-
age. It contributes to predicting and preventing landslides,
which are often triggered by factors such as heavy rainfall,
earthquakes, or human activities. Authorities can implement
mitigation measures to protect communities and infras-
tructure by identifying landslide-prone areas. Agriculture,
forestry, and mining often involve working on or near slopes.
Slope stability studies help manage these activities to mini-
mize environmental impact and optimize resource extraction.
Existing infrastructure, such as roads and pipelines, may be
affected by changes in slope stability over time. Regular
slope stability assessments can guide maintenance and repair
efforts to ensure infrastructure’s continued functionality and
safety. Many SC models are being used and implemented
to estimate soil slope stability accurately. In the present
research, ANFIS, with its hybrid model ANFIS-GA and
ANFIS-PSO, has been deeply studied, elaborated on, and
described in subsequent sections of the paper. These hybrid
models are assessed through 11 performance parameters. In
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this work, we have done sensitivity analysis to evaluate the
factors that influence the reliability of soil slopes.

3 Dataset preparation

3.1 Data collection

This section covers developing a data set for modeling soil
slope variables. Figure 1 represents a basic soil slope model
simulation using GEOSTUDIO software. First, 206 natural
soil slope inputs were taken from the literature of Zhou et al.
(2019).That literature lists 206 natural soil slopes worldwide
with six input variables c, ϕ, U, α, H, and Ru, and output
FOS. In the present research, FOS has been evaluated for
206 datasets with their six inputs using theMorgenstern price
method to predict slope failure accurately. This method is a
classic method for analyzing slope stability. It is a LEM used
to check the stability pattern of slopes in soil mechanics.
Morgenstern and Price developed the technique in the 1960s.
In this method, firstly specify the geometric details of the
slope, including α, H, and any variations in soil layering, and
define the soil properties for each layer in the slope. This
includes c, ϕ, U, α, H and Ru. Then, potential failure surfaces
are identified within the slope. These surfaces are typically
assumed or determined based on geological considerations.
The slip surface with the lowest FOS has been considered as
the critical slip surface. The RI (βx) for 206 data is computed
to analyze the model’s reliability.

Practically, RI is computed by the formula

βx = E(F) − 1

σ(F)
(1)

where, βx = RI, E(F) = Expected value of safety factor, and
σ (F) = Standard deviation.

Finally, the data set has been prepared to have six input
data: H, α, φ, U, c, and Ru with one output βx.

3.2 Data preprocessing

Data preprocessing is critical in preparing data for machine
learning models, ensuring that the data is clean, relevant,
and suitable for training and testing. We must ensure the
model is trained on a subset of the data and tested on another
independent subset. Before training the model, review the
statistical distribution of the target variable in the training
and testing phases to ensure that they are representative of
each other. Statistical distributions of different variables in
the data set are tabulated in Tables 1 and 2.

Before training, we should scale the input and output data
between 0 and 1 using the following normalization equation.

Xnorm = X − Xmin

Xmax − Xmin
(2)

X represents the measured value, Xnorm is the normalized
value of the measured parameter, and Xmin and Xmax denote
the calculated parameters’ minimum and maximum values.
The available dataset was split into two sections to optimize
the network: training and testing. The training data set was
used to adjust the network parameters, and the testing data
was used to measure the model’s performance. In the present
research, 30 percent of the dataset was used for testing, and
70 percent was used for training.

Fig. 1 Soil slope model with and without Ru
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Table 1 Statistical distribution of
different variables in the testing
phase

Statistical
parameter

H α � c ϕ Ru Actual
reliability
(U)

Mean 0.1624 0.5900 0.5184 0.0924 0.5897 0.1792 0.4575

Standard
deviation

0.2028 0.2363 0.2113 0.1420 0.1724 0.2266 0.2930

Median 0.0826 0.5814 0.5181 0.0667 0.6095 0.2266 0.2930

Skewness 1.9550 − 0.3807 − 0.3472 4.7827 − 1.3201 0.6952 0.4420

Lower bound 0.0861 0.3488 0.7565 0.1413 0.7474 0.0000 0.3778

Upperbound 0.5814 0.9070 0.6736 0.1600 0.8081 0.0000 0.2051

Table 2 Statistical distribution of
different variables in the training
phase

Statistical
Parameter

H α γ c ϕ Ru Actual
reliability (U)

Mean 0.1611 0.5198 0.5274 0.0880 0.5876 0.1988 0.3493

Standard
deviation

0.2067 0.2258 0.2075 0.0814 0.1854 0.2311 0.2475

Median 0.0825 0.4651 0.5091 0.0800 0.6076 0.0000 0.2983

Skewness 2.0440 0.1977 − 0.2491 2.4033 − 0.7491 0.6513 1.1474

Lower
bound

0.6330 0.7441 0.7772 0.1166 0.7070 0.4000 0.3444

Upper
bound

0.4513 0.4651 0.5181 0.0700 0.4646 0.0000 0.5127

4 Proposed approaches

4.1 Adaptive neuro fuzzy inference system (ANFIS)

ANFIS is a SC system that conjugates the adaptability of neu-
ral networks with the interpretability of FL. Jang introduced
it in the early 1990s. This hybrid system aims to leverage the
strengths of fuzzy systems and neural networks for model-
ing and control purposes. There are two critical components
in this model. The first is a fuzzy inference system (FIS),
and the other is a neural network. ANFIS starts with a FIS,
which is based on FL principles. FL allows for represent-
ing and processing imprecise or uncertain information using
linguistic variables and fuzzy rules. This integrates a neural
network structure to learn and optimize the parameters of the
FIS adaptively. The structure typically consists of five layers,
with nodes representing specific functions:

Layer 1 (Input Layer): Nodes represent input variables. Input
variables in the present research are H, α, U, c, φ, and Ru (see
Fig. 2)
Layer 2 (Fuzzy Layer): Nodes compute the membership
grades for each linguistic term based on the input data.
Layer 3 (Rule Layer): Nodes compute the firing strengths of
the fuzzy rule nodes.

Layer 4 (Normalization Layer): Nodes normalize the firing
strengths.
Layer 5 (Output Layer): Nodes compute the overall output
of soil slope RI (see Fig. 2).

Here, H, α, U, c, φ, and Ru symbolize the input nodes.
A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2 indicate the
linguistic variables, and μA1, μA2, μB1, μB2, μC1, μC2,
μD1, μD2, μE1, μE2, μF1, μF2 represent the membership
function of the proposed node.

4.2 Genetic algorithm (GA)

GA is a robust optimization meta-heuristic search algorithm
inspired by the principles of genetics. It is a part of the broader
class of evolutionary algorithms. Genetic Algorithms are
handy for solving complex optimization problems compared
to traditional methods. Researchers have used genetic algo-
rithms as heuristic algorithms to address learning processes
and optimization issues in various domains. This algorithm
considers the structure as a population, and each population
member is referred to as a chromosome, which is a potential
solution to the problem. In this algorithm, distinct problem
variables function as an individual’s genes, as observed by
Mitchell (1998). In this research process, three operators are
used to generate the population: selection operator, crossover
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Fig. 2 Different layers used to analyze the ANFIS model

operator, and mutation operator. The selection operator is
used to compute the fitness function of each chromosome,
and the results are assessed at each level. The best solutions
to the problem are the best chromosomes for the present
research. TheCrossover operator combines the selected chro-
mosomes for better fitness. The crossover operator reported
by Saeidian et al. (2016) can be implemented using various
techniques, includingUniform, Cycle, N-Point, Tournament,
Order, Ranking Selection, and partially mapped. Nourani
et al. (2014) applied the mutation operator in a function node
(arithmetic operations) or a terminal node (variables and con-
stants). This operator randomly alters some chromosomes’
genetic information, which introduces diversity in the popu-
lation. These three operators are utilized to create new child
chromosomes, regarded as the following generation’s par-
ents. Furthermore, the pattern continues until the termination
requirement is satisfied.

4.3 Particle swarm optimization (PSO)

PSO is an optimization technique that draws inspiration from
nature and is frequently used to find approximations for opti-
mization and search issues. It was developed in 1995 by
James Kennedy and Russell Eberhart and was influenced by
the social interactions of fish and birds. This algorithm uses
swarm intelligence, where a population of possible solutions,
particles, moves through the solution space to explore the
ideal solution. Every particle within the swarm symbolizes
a possible resolution to the optimization problem. A pos-
sible solution is represented by a particle’s location in the

solution space. Each particle has a velocity that determines
its movement in the solution space. The velocity is adjusted
based on the particle’s previous velocity, its personal best
solution, and the best solution found by the entire swarm.
Each particle keeps track of its personal best solution and the
global best solution obtained by any particle in the swarm.
These guide the particle’s movement toward better solutions.
A system of mathematical equations is used to update the
position and velocity of every particle. The algorithm con-
tinues for several iterations or until a termination criterion
is met, such as finding a satisfactory solution. Wide-range
optimization such problems as feature selection, functional
optimization, parameter tuning, and neural network training
are all being effectively addressed by PSO. It is relatively
simple to implement and has fewer parameters to tune com-
pared to some other optimization algorithms. It is effective
in solving optimization problems with high-dimensional and
complex search spaces.

4.4 Hybrid methodology with flowchart

4.4.1 Optimization of GA with ANFIS model

ANFIS hybrid modeling starts from dataset preparation with
its normalization, as presented in Fig. 3. After normaliza-
tion, the dataset is split into training and testing. 70% of the
data has been used for the training phase, and 30% of the
data has been used for the testing phase. After the dataset
preprocessing, the ANFIS model’s structure, including the
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Fig. 3 Flow chart of ANFIS-GA hybrid model

number of fuzzy rules and the types of membership func-
tions, has been defined, and training starts with its training
dataset. Implement the Genetic Algorithm in MATLAB. In
the next step,with the help ofGAalgorithmbuilt-in functions
provided by MATLAB’s Global Optimization Toolbox, all
genetic operators, such as selection, crossover, and mutation,
have been defined according to the problem requirements.
The fitness function has also been described to evaluate
the model’s performance. The fitness function takes ANFIS
model parameters as input, evaluates the model’s perfor-
mance on the validation dataset, and returns a fitness score to
be maximized by the genetic algorithm. The following pro-
cess is to hybridize the ANFISmodel with the GAmodel and
integrate the ANFIS model with the genetic algorithm opti-
mization process. Membership functions and rules weight
parameters of the ANFIS model have been optimized with
GA, which defines the ANFIS parameters’ chromosome
representation and implements mechanisms for encoding,
decoding, and updating the chromosomes during the genetic
algorithm optimization process. Integrate the ANFIS model
with the genetic algorithm optimization process. Finally, the
genetic algorithm will be run to evolve the population of
ANFIS parameters over multiple generations, apply genetic
operators (selection, crossover, mutation) to generate new

offspring chromosomes and evaluate the performance of the
hybrid ANFIS-GA model using performance indices.

4.4.2 Optimization of PSO with ANFIS model with flowchart

In ANFIS PSO hybrid modeling, the dataset is first prepared
by creating and loading the data into MATLAB, presented in
Fig. 4. Then, the data is normalized and grouped by SSMD.
The dataset is split into training (70%) and testing (30%)
sets. Further, the ANFISmodel was createdwithMATLAB’s
Fuzzy Logic Toolbox, and the fuzzy inference system (FIS)
structure was defined, including the number of fuzzy rules
and types of membership functions. After that, the ANFIS
model is being trained using the training dataset. The PSO
algorithm has been implemented using MATLAB optimiza-
tion tools. PSO has optimized the fitness function, combining
the ANFIS model with the PSO optimization algorithm.
In the next step, the parameters of the ANFIS model have
been updated using the PSO algorithm until convergence.
The hybrid ANFIS-PSO model is tested using the testing
dataset to assess its generalization ability. Depending on
the performance of the hybrid model, further optimization
and refinement are being done to ANFIS-PSO parameters
or adjusting the model architecture to improve performance.
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Fig. 4 Flow chart of ANFIS-PSO hybrid model

Finally, the fitness is evaluated, and the global best is obtained
after updating position and velocity. If the result is ok, then
the parameter has been set, and the error has been computed
with the help of the statistics performance index.

5 Statistical performance parameters

5.1 Regression analysis

A statistical evaluation technique, regression analysis, exam-
ines the relationship between actual and model-predicted
values. Its primary goal is to explore the model and make
predictions or inter-causal relationships. These relationships
were drawn during the construction and validation of the
model phase. The most common type of regression is linear
regression, where the relationship between actual and pre-
dicted value is modeled as a linear equation. In the present
research, regression analysis is made using a scattered plot
prepared with the help of PYTHON programming.

5.2 Statistical measures

Several commonly used statistical parameters determine the
model’s performance. Different parameters have been used
to evaluate the present hybrid model’s accuracy. These para-
metric equations are as follows:

R2 =
∑N

i=1(di − dmean)
2 − ∑N

i=1(di − yi )2
∑N

i=1(di − dmean)
2

(3)

VAF (Variance account factor)

=
(

1 − var(di − yi )

var(di )
× 100

)

(4)

Ad j . R2 = 1 − (n − 1)

(n − p − 1)
(1 − R2) (5)

RMSE (Root mean square error) = √ 1

N

N∑

i=1

(di − yi )
2

(6)

PI (Persistence index) = Adj. R2 + (0.01 × V AF)

− RMSE (7)

WI (Willmott index)

= 1 −
[ ∑N

i=1(di − yi )2
∑n

i=1{|yi − dmean| + |di − dmean|}2
]

(8)

MAE (Mean Absolute Error) = 1

N

N∑

i=1

|(yi − di )| (9)

WMAPE (Weighted Mean Absolute Percentage Error)

= 1

N

N∑

i=1

∣
∣
∣
∣
yi − di
di

∣
∣
∣
∣ × 100 (10)
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NS (Nash−Sutcliffe Efficiency) = 1 −
∑

(di − yi )2
∑

(di − dmean)2

(11)

MAPE (Mean Absolute Percentage Error)

=
∑∣

∣
∣
di−yi
di

∣
∣
∣ × 100

N
(12)

MSE (Mean Square Error) =
∑

(di − yi )2

N
(13)

where dmean is the mean value of the observed data, yi is
the estimated ith value, N is the number of the data in the
sample, R2 is the coefficient of determination, RMSE is the
Root-mean-square error, and SD is the standard deviation.

5.3 Rank analysis

According to Zhang et al. (2020), rank evaluation is the easi-
estmethodof analysis to determine themodel’s effectiveness.
Rank prediction in the context of a machine learning model
typically involves evaluating and comparing the performance
of differentmodels or variations of amodel to determine their
effectiveness in solving a particular problem. It is the most
extensively adapted technique for assessing and contrasting
the efficiency of developed frameworks. This study employs
statistical factors to calculate their score, with their perfect
measures serving as a standard. It is based on how many
frameworks are being used. The highest value is awarded to
the outcomes framework that is best suited, and vice versa.
The total value of the score is entirely dependent on the qual-
ity ofmodels and their standard value for different parameters
applied in both the testing and training stages. One parame-
ter’s score may be ranked higher than the others evaluated for
model efficiency. When two parameters are scored, they will
be ranked equal. As a result, the top-ranked model receives a
top score value, while the worst model receives a low score
value. A specific predictive model’s total score is computed
as the sum of total score measures for testing and training
data sets.

5.4 Sampling distribution with Metropolis–Hastings

Metropolis–Hastings (MH) is one of the strong Markov
ChainMonte Carlo algorithms (MCMC) commonly used for
sampling from a probability distribution. Markov chain is
constructed for the desired distribution, called equilibrium
distribution. It is a powerful statistical technique used to
sample complex probability distributions. It is advantageous
when direct sampling from the distribution is impractical or
impossible. MCMC methods generate a Markov chain that
converges to the target distribution, allowing the sampling of

representative values.MCMCmethods aim to create samples
from a distribution that approximates the target distribution.
Convergence is assessed by checking whether the Markov
chain has reached a stationary distribution, meaning that
samples no longer change significantly. Once convergence
is achieved, the samples obtained from the Markov chain are
used as an approximation of the target distribution.

5.5 Sensitivity analysis

Sensitivity analysis is a technique used in various research
fields such as engineering, economics, finance, and environ-
mental science to evaluate how variations to input variables
affect a system’s or model’s output. It helps understand the
robustness and reliability of models and informs decision-
making by identifying which parameters significantly influ-
ence the results. The primary goal of sensitivity analysis is
to quantify and understand how variations or uncertainties
in input parameters affect the output of a model or system.
Sensitivity Analysis examines the impact of changing one
input variable at a time while keeping others constant. It
focuses on the immediate vicinity of a particular point in
the input space to understand the system’s behavior in that
region. It quantifies the contribution of each input parame-
ter to the variability in the model output. Sensitivity analysis
is applied in various fields, including finance (e.g., assessing
the impact of interest rate changes), environmental modeling
(e.g., understanding the influence of climate variables), and
engineering (e.g., evaluating the sensitivity of a structural
model to material properties).Sensitivity analysis is closely
related to uncertainty and risk management. By identifying
influential factors, decision-makers can focus on mitigating
or managing the most critical uncertainties. Sensitivity anal-
ysis assumes that input parameters are independent, which
may not be accurate in all situations. It also does not account
for potential interactions between parameters. It is a valuable
tool for decision-makers to gain insights into the behavior of
models, systems, or processes, especially when uncertainty
and variability are present. It aids in making informed deci-
sions and improving the robustness of models in the face of
changing conditions.

SHAP values are one of the powerful tools that repre-
sent sensitiveness. SHAP value stands for (Shapley Additive
explanations) in which input parameter performance is
assessed through the model’s output value. SHAP values
quantify the contribution of each input parameter by observ-
ing the difference between the actual model prediction and
the average prediction. The sumof SHAPvalues for all inputs
plus the average model prediction is approximately equal to
the exact model prediction for the given slope stability prob-
lem. Hence, SHAP values provide a clear interpretation of
input variables. Positive SHAP values show a positive con-
tribution to output prediction, while negative SHAP values
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Fig. 5 Regression plot of ANFIS model in training

Fig. 6 Regression plot of ANFIS-GA model in training

indicate a decreasing contribution to output prediction. In the
present research, the SHAP value is represented by a sum-
mary plot.

6 Results and discussions

6.1 Regression analysis

In machine learning, a regression plot of training and testing
data visually represents how well a model performs in the

Fig. 7 Regression plot of ANFIS-PSO hybrid model in training

Fig. 8 Regression plot of ANFIS hybrid model in testing

training and testing set. This plot helps to evaluate the abil-
ity of the meta-heuristic hybrid model. For the regression
plot, predicted and actual target values are collected for the
training and testing phases. Figures 5, 6, 7 show the regres-
sion plot of both the hybrid models, such as ANFIS-GA and
ANFIS-PSO along with ANFIS in training and Figs. 8, 9,
10 testing plot. It has been seen that the ANFIS-GA model’s
predicted value is closer to the actual than the ANFIS-PSO
model, and the ANFIS-PSOmodel is closer to the actual one
than the ANFIS model (Table 3).
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Fig. 9 Regression plot of ANFIS-GA hybrid model in testing

Fig. 10 Regression plot of ANFIS-PSO hybrid model in testing

6.2 Statistical measurement

Someerrormatrices and someperformancematrices evaluate
statistical efficiency. It has been seen that the ANFIS-GA
hybrid model is a statistically more efficient model.

6.3 Rank prediction

In this section, the ranking of hybrid models is predicted
based on the total score obtained through statistical indices
ranking in the testing and training phases. Total scores are
evaluated by adding scores obtained in testing and train-
ing for three models: ANFIS, ANFIS-GA, and ANFIS-PSO.
The estimated scores are 24, 64, and 44, respectively. Thus,
the highest scores are obtained in the ANFIS-GA model,
followed by ANFIS-PSO and ANFIS. ANFIS-GA hybrid
model has been proven more effective than ANFIS-PSO,
andANFIS-PSOhas been provenmore effective thanANFIS
(Tables 4, 5).

6.4 Sampling distribution graph

Metropolis Hasting’s empirical distribution shows the sam-
ple distribution graph (see Figs. 11, 12, 13, 14, 15, 16).

6.5 Sensitive analysis result

Figure 17 represents a sensitivity bar graph in which the bar
length represents the feature’s importance. Figure 18 illus-
trates the SHAP value of the dependent graph that indicates
the influencing behavior of input variables on output. The
longer the bar, the more influential the feature is in mak-
ing predictions. In Fig. 17, the longest bar is of pore water
pressure ratio, which means the most influencing parameter

Table 3 Statistical value of
different parameters obtained in
hybrid models along with ANFIS

Statistical
parame-
ter

Training statistical value Testing statistical value Ideal
value

ANFIS ANFIS-
GA

ANFIS-
PSO

ANFIS ANFIS-
GA

ANFIS-
PSO

R2 00.6783 00.7624 00.7378 00.6684 00.8143 00.7013 1

VAF 68.7643 76.2211 74.0646 64.4476 80.8319 69.7016 100

Adj.R2 00.7575 00.7575 00.7575 00.7422 00.7422 00.7422 1

PI 01.3328 01.3980 01.3717 01.3046 01.4248 01.2802 2

RMSE 00.1345 00.1217 00.1264 00.1642 00.12570 00.1591 0

WI 00.8986 00.9319 00.9200 00.8764 00.9466 00.9073 1

MAE 00.1127 00.0912 00.0902 00.1267 00.0968 00.1170 0

WMAPE 00.2486 00.2612 00.2583 00.2871 00.2117 00.2556 0

NS 00.6854 00.7565 00.7373 00.6728 00.8128 00.7002 1

MAPE 48.6206 40.0227 45.4622 59.3262 44.3995 55.3007 0

MSE 00.0172 00.0148 00.0160 00.1391 00.1264 00.1290 0
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Table 4 Ranking evaluation
based on the different parameters
of hybrid models with ANFIS

Statistical
parameter

Training phase Testing phase

ANFIS ANFIS-GA ANFIS-PSO ANFIS ANFIS-GA ANFIS-PSO

R2 1 3 2 1 3 2

VAF 1 3 2 1 3 2

Adj.R2 3 3 3 1 1 1

PI 1 3 2 1 3 2

RMSE 1 3 2 1 3 2

WI 1 3 2 1 3 2

MAE 1 3 2 1 3 2

WMAPE 1 3 2 1 3 2

NS 1 3 2 1 3 2

MAPE 1 3 2 1 3 2

MSE 1 3 2 1 3 2

Total score 13 33 23 11 31 21

Table 5 Score and ranking of hybrid models

Phase ANFIS ANFIS-GA ANFIS-PSO

Training 13 33 23

Testing 11 31 21

Total score 24 64 44

Ranking 3 1 2

is pore water pressure ratio followed by friction angle, unit
weight of soil, angle of soil slope, cohesion, and then last one
is the height of slope that means the reliability of soil slope is
much affected by pore water pressure. In Fig. 18, the circle’s
color indicates the direction of the feature’s importance on
the model’s predictions. Here, red indicates a positive impact
(increases the prediction), while blue indicates a negative
effect (decreases the prediction). The red circle is marked
with a positive impact in the pore water pressure variable,
representing a high output impact.

7 Conclusions

This paper uses two strong hybrid models, ANFIS-GA and
ANFIS-PSO, along with the ANFISmodel in the assessment
of failure of soil slopes. This paper aims to predict the best
model for calculating slope failure in civil engineering. The
comparison results showed excellent agreement between the
predicted and measured data. For precise and robust results,
11 statistical parameters, including error and performance
matrices, have been computed for all three models. The final
conclusions of the research are as follows :

• ANFIS, ANFIS-GA, and ANFIS-PSO outcomes from
the suggested models have R2 values of 0.6783, 0.7624,
0.7378 during training, 0.6684, 0.8143, and 0.7013 dur-
ing testing. The R2 value is closest to the ideal value in
the ANFIS-GA model, and it is the strongest model for
solving significant data problems related to slope stability,
followed by the ANFIS PSO and ANFIS models.

• The ANFIS-GA hybrid model best matches slope stabil-
ity problems, outperforming the ANFIS-PSO and ANFIS
models because its predictive value is more accurate dur-
ing training and testing.

• The ANFIS-GA hybrid model yielded error matrices such
as RMSE, MAE, and MSE with values of 0.1217, 0.0912,
and 0.0148 in training and 0.12570, 0.0968 and 0.1391
in testing in contrast, and the ANFIS PSO model yielded
values of 0.1264, 0.0902, 0.016 in training, and 0.1591,
0.1170, 0.1290 in testing; the ANFISmodel yielded values
of 0.1345, 0.1127, 0.0172 in training, and 0.1642, 0.1267,
0.1391 in testing; these results indicate that the ANFISGA
model is more valuable and efficient for assessing slope
reliability in today’s practice than ANFIS-PSO followed
by ANFIS model.

• According to rank analysis, high scores indicate a signif-
icant consensus between the actual and expected classes.
The combined score for the ANFIS GA hybrid model was
64, the ANFIS PSO was 44, and the ANFIS was 24. The
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Fig. 11 Distribution of height of
slope

Fig. 12 Distribution of angle of
soil slope

ANFIS-GA hybrid model has been ranked highest in the
current study, followed by ANFIS-PSO in second place
and ANFIS in last place that means ANFIS-GA model is
more compatible for solving slope stability problem

• Metropolis–Hastings sampling distribution classifies the
soil slopes based on their input variables and reveals the
empirical distribution of every input variable.

• Sensitivity analysis shows the impact behavior of differ-
ent input variables on the reliability status of soil slope.
Themost influencing parameters are Ru and friction angle,
followed by unit wt. of soil slope, slope angle, and slope

height as shown in Figs. 17 and 18 that means the key fac-
tor impacting and playing a major part in the occurrence
of slope failure is pore water pressure.

• In civil engineering, hybridization of models using meta-
heuristic algorithms is an emerging artificial intelligence
system. It may improve the model’s efficiency for assess-
ing the failure status of any structure.

• TheANFIS-GAhybrid algorithm is themost capable algo-
rithm for predicting the reliability of soil slopes in large
data sets.
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Fig. 13 Distribution of cohesion
of soil slope

Fig. 14 Distribution of unit wt of
soil slope

• Last but not least, hybrid algorithms like ANFIS- GA and
ANFIS-PSO stand in a good position in Artificial intelli-
gence for predicting soil slope failure.

8 Research significance

Hybrid optimization of Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) presents a significant advancement in AI
methods for civil engineering. Civil engineering problems
involve complex, nonlinear relationships between various

parameters. Hybrid models such as ANFIS GA and ANFIS
PSO can model nonlinear systems and effectively handle
this complexity related to civil engineering problems. By
integrating hybrid optimization techniques like genetic algo-
rithms particle swarm optimization, ANFIS can refine its
parameters to fit the data better, resulting in more accu-
rate predictions and solutions. Hybrid optimization further
enhances the data-driven approach of the ANFIS model to
extract the most relevant information from the data, leading
to improved performance and reliabilitywhere large amounts
of data are often available from sensors, surveys, and simula-
tions related to civil engineering problems. Civil engineering
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Fig. 15 Distribution of friction
angle of soil slope

Fig. 16 Distribution of pore
water pressure ratio of soil slope

projects usually face uncertainties due to weather varia-
tions, material properties, and human error. ANFIS models
enhanced with hybrid optimization techniques can adapt to
these uncertainties by continuously updating their parameters
based on real-time data feedback. This adaptability improves

the robustness of the models and enhances their performance
under changing conditions. Therefore, hybrid optimization
with the metaheuristic model may be highly recommended
in civil engineering.
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Fig. 17 Feature importance of variables used in this work

Fig. 18 SHAP value of variables used in this work
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