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Abstract

In soil mechanics, liquefaction is the phenomenon that occurs when saturated, cohesionless soils temporarily lose their
strength and stiffness under cyclic loading shaking or earthquake. The present work introduces an optimal performance
model by comparing two baselines, thirty tree-based, thirty support vector classifier-based, and fifteen neural network-based
models in assessing the liquefaction potential. One hundred and seventy cone penetration test results (liquefied and non-
liquefied) have been compiled from the literature for this aim. Earthquake magnitude, vertical-effective stress, mean grain
size, cone tip resistance, and peak ground acceleration parameters have been used as input parameters to predict the soil
liquefaction potential for the first time. Performance metrics, accuracy, an area under the curve (AUC), precision, recall,
and F1 score have measured the training and testing performances. The comparison of performance metrics reveals that the
model Runge—Kutta optimized extreme gradient boosting (RUN_XGB) has assessed the liquefaction potential with an overall
accuracy of 99%, AUC of 0.99, precision of 0.99, recall value of 1, and F1 score of 1. Moreover, model RUN_XGB has a
true negative rate of 0.98, negative predictive value of 1, Matthews correlation coefficient of 0.98, and average classification
accuracy of 0.99, close to the ideal values and presents the robustness of the RUN_XGB model. Finally, the RUN_XGB
model has been recognized as an optimal performance model for predicting the liquefaction potential. It has been noted that
a low multicollinearity level affects the prediction accuracy of models based on conventional soft computing techniques, i.e.,
logistic regression. This research will help researchers choose suitable hybrid algorithms and enhance the accuracy of seismic
soil liquefaction potential models.
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1 Introduction
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Fig. 1 After the Turkey—Syria earthquakes (2023): a liquefaction at the edge of Hatay city, and b soil liquefaction in northern Syria (Gazetas and

Garini 2023)

occurred in Niigata (1964) and Alaska (1964) earthquakes
due to medium to fine-grained saturated cohesionless soils.
Casagrande (1936) introduced a concept for sandy soil based
on a critical void ratio to understand the liquefaction phe-
nomenon. Casagrande stated that (i) the dense sand behaves
like dilated if it is subjected to shear and (ii) on the other side,
the volume decreases in loose sand (Das and Luo 2016). The
critical void ratio is "no volume or void ratio change during
shear." Casagrande explained that the deposits of sand always
have a void ratio that is more significant than the critical void
ratio. The volume and void ratio of sand decreases under the
vibration action. A deep degree of liquefaction, which occurs
due to an increase in pore water pressure, was observed
in Chile (2010), Wenchuan; China (2008), Kocaeli; Turkey
(1999), Tangshan; China (1976), Niigata; Japan (1964), and
Alaska; USA (1964) during the earthquakes (Sharma et al.
2021). The re-liquefaction occurred on the Pacific Coast of
Tohoku (Japan) due to aftershocks (Yu et al. 2013). In 2019,
ground shaking and slope failure occurred in the Poonch and
Rajouri districts because of the Mirpur earthquake. Because
of these earthquakes, the liquefaction phenomenon happened
in different areas of Jammu and Kashmir (Ansari et al. 2022).
Recently, two earthquakes, M7.8 and M7.5, hit Turkey—Syria
on February 6, 2023 (Baltzopoulos et al. 2023). Significant
liquefaction has been captured and caused severe damage
to both surface buildings and underground infrastructure, as
shown in Fig. 1.

Liquefaction is a drastic phenomenon that needs to be
measured during an earthquake to decrease the liquefaction-
induced damage. The empirical methods (based on in situ
index tests) and laboratory methods (on undisturbed soil sam-
ples) are the main strategies for computing the liquefaction
(Kumar et al. 2022a, 2023a). The lab procedures are chal-
lenging because of the need to keep the sample undisturbed
and reconsolidated. The high-quality cycle simple shear test-
ing is the most expensive and extremely difficult. The cyclic

@ Springer

triaxial testing does not accurately represent the significant
loading conditions for most seismic issues. Stress, strain, and
energy-based methods determine the liquefaction potential.
Youd and Idriss (2001) presented four methods for liquefac-
tion analysis: (1) the Becker penetration test-BPT, (2) the
in situ shear wave velocity test, (3) the cone penetration test-
CPT, and (4) the standard penetration test-SPT. Robertson
and Campanella (1985) introduced the CPT-based methods
(an alternative approach to the SPT-based method) to deter-
mine soil liquefaction potential. It should be noted that each
of these methods is fundamentally deterministic, calculat-
ing the factor of safety (FOS) against liquefaction while
ignoring the numerous process uncertainties. The regional
variance of many relevant parameters, such as unit weight
and fine content, is the significant source of uncertainty in
assessing liquefaction potential (Kumar et al. 2022a, 2023b).
Mechanical and human errors affect the accuracy of esti-
mating the liquefaction potential by the SPT/CPT test. In
terms of the cyclic resistance ratio (CRR) and the cyclic
stress ratio (CSR), the safety factor against liquefaction is
computed. However, FOS > 1 may not always identify a non-
liquefaction event, and conversely, FOS1 may not always
result in liquefaction due to uncertainties associated with all
these factors and the selected model. The boundary curve that
separates liquefaction from non-liquefaction instances in the
deterministic analysis is known as a “performance function”
or "limit-state function." Many researchers have attempted
to quantify the limits of the limit-state function. The proba-
bilistic liquefaction reaction has been calculated in terms of
liquefaction potential using probabilistic or statistical meth-
ods (Haldar and Tang 1979; Seed and Idriss 1971; Youd and
Nobble 1997; and Toprak et al. 1999). The published models
were developed using the post-liquefaction database. Still,
these analyses did not consider the uncertainty of indepen-
dent variables (inputs) and models. The output liquefaction
potential may be inaccurate if significant uncertainties relate
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to the parameters and model. By estimating its probabilistic
value and carrying out a reliability analysis while considering
the model and parameter uncertainties, it is possible to avoid
the difficulties brought on by the stochastic character of the
input parameters used to determine liquefaction potential.
Therefore, researchers and scientists applied soft comput-
ing techniques to assess the liquefaction potential using the
in situ test database (Samui and Hariharan 2015). In recent
decades, soft computing techniques have increased because
of the availability of in situ databases (Kumar et al. 2023c).
These techniques are more accurate and frequent than tradi-
tional methods in assessing the liquefaction potential.

Mase et al. (2023) assessed the liquefaction potential
by applying the energy concept to a database collected
from 38 Bengkulu City, Indonesia sites. Sahin and Demir
(2023) evolved a greedy search-optimized stacking ensemble
learning (G_SEL) approach using the Automated machine
learning framework to estimate the liquefaction potential.
The authors noted 98% accuracy of G_SEL for the SPT and
CPT database and 99% accuracy of G_SEL for the shear
wave velocity (SWV) database. Sun et al. (2023) reported
that ground motion intensity measures are not able to predict
the liquefaction potential because of rupture distance and
earthquake magnitude. Kurnaz et al. (2023) employed sup-
port vector regression (SVR), decision tree (DT), random
forest (RF), and artificial neural network (ANN) techniques
to assess the factor of safety (FOS) against liquefaction.
The researchers found the ANN technique more efficient
(determination coefficient = 0.99) than other techniques in
assessing the FOS. Jas and Dodagoudar (2023a) reviewed
the articles published between 1994 and 2021. The reviewers
concluded that a reliable and efficient assessment of lique-
faction potential can be achieved by improving the database
and re-configuring the existing soft computing techniques.
Jas and Dodagoudar (2023b) employed the extreme gradient
boosting-Shapley additive explanations (XGBoost-SHAP)
approach for assessing the liquefaction potential using 253
data points. For this purpose, the researchers selected many
input variables (Mag, o'y, 0y, @max, dave, (GcN)avgs (F'sN)avg,
I, FC, gcines, rds CSR, and K) to employ the XGBoost-
SHAP model. The research revealed that the SHAP technique
(testing accuracy = 88.24%) minimizes the gap between
traditional liquefaction field knowledge and soft comput-
ing methods. Ge et al. (2023) developed a region-specific
fragility function using the Hierarchical Bayesian Model
(HBM). The researchers noted that HBM performed better
than the lumped parameter model (in case of a large database)
and independent parameter model (in case of insufficient
data). Demir and Sahin (2023) determined the liquefaction
potential prediction capabilities of extreme gradient boosting
(XGBoost), gradient boosting, and adaptive boosting tech-
niques. The researchers found that the XGBoost technique
is better than other techniques. Zhou et al. (2022) used CPT,

SPT, and SWV databases to employ the genetic (GA) and
grey wolf (GWO) optimized RF models. The authors noted
that the GWO_RF model performed better for the CPT and
SPT databases, while the GA_RF model performed better
for the SWV database. Demir and Sahin (2022) compared
random forest (RF), rational forest (ROTF), and canonical
correlation forest (CCF) techniques in assessing the lique-
faction potential using the CPT database. The researchers
concluded that CCF and ROTF models are more precise in
predicting the liquefaction potential than traditional RF mod-
els. Ozsagir et al. (2022) implemented ANN, RF, stochastic
gradient descent (SGD), k-nearest neighbors (kNN), SVM,
logistic regression, and DT techniques. It was noted that
the DT model attained higher accuracy, i.e., 90%, in pre-
dicting the liquefaction potential than implemented models.
The researchers also found that the assessment of liquefac-
tion potential is affected by the mean grain size of soil, i.e.,
Dsp. Ghani and Kumari (2022) performed first-order second-
moment (FOSM) regression analysis (based on the reliability
index) to assess liquefaction. Kumar et al. (2022a) found
the best parameters for assessing the liquefaction poten-
tial. The authors reported that the FOS-based method is
more accurate than the liquefaction potential index (LPI)
and liquefaction severity index (LSI) methods. Furthermore,
Kumar et al. (2022b) assessed the probability of liquefaction
using artificial neural network optimized by teaching—learn-
ing (ANN_TL), shuffled complex evolution (ANN_SCE),
imperialist competitive (ANN_IC) ant lion (ANN_AL), ant
colony (AC), and artificial bee colony (ANN_ABC) algo-
rithms. The ANN_AL model outperformed the other model
by achieving determination coefficients of 0.682 and 0.723 in
this study’s training and testing phases. Kumar et al. (2022c)
employed five ML models (XGBoost, RF, GBM, SVR, and
GMDRH) for predicting soil liquefaction potential. The author
used SPT test data from 620 case records. In the reported
study, the analysis was carried out with six input variables,
i.e., d, (N1)eo, FC, 0y, amax, and My, and it was reported
that the XGBoost model achieves the best prediction among
all employed models. Ghani et al. (2022) implemented par-
ticle swarm (PS), genetic (GA), and firefly (FF) algorithms
in an adaptive neuro-fuzzy inference system (ANFIS). The
researchers found that the ANFIS_FF model assessed the
liquefaction with residuals (RMSE) of 0.069 in the testing
phase, which is excellent compared to other developed mod-
els. Zhang et al. (2021a) computed soil liquefaction using
an extreme learning machine (ELM) via 226 CPT samples.
The ELM model obtained a prediction accuracy of 87.50%
in the testing phase, configured by a sign activation function
and fifteen neurons. Zhang et al. (2021b) employed GWO-
optimized SVM using the SPT database. The researchers
noted that the GWO algorithm improved SVM accuracy by
combining the SWV and SPT databases. Zhang et al. (2021c¢)
used SWV and SPT databases to predict liquefaction utilizing
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deep neural networks (DNN). The authors trained and tested
multilayer fully connected neural network models using SPT
and combined SPT-SWV databases. The authors noted that
the SPT-SWV database-tested model performed better than
the SPT database-tested model, i.e., 93%. It was observed
that including the SWV database improves the prediction
accuracy of the computational models. Zhou et al. (2021a)
predicted liquefaction potential using hybrid GWO_SVM
and GA_SVM models. The investigators utilized SPT, CPT,
and SWV databases and reported that model GWO_SVM
predicted liquefaction potential with an accuracy of 98.25%,
90.32%, and 32.31%, respectively, higher than the GA_SVM
model. Zheng et al. (2021) compared ANN and SVM models
in assessing liquefaction and concluded that ANN is bet-
ter than the SVM model. Zhou et al. (2021b) implemented
a PSO-optimized kernel ELM model (PSO_KELM) using
CPT and SWV databases. The combination of CPT and SWV
gives a significant accuracy for the PSO_KELM model, i.e.,
83.6%. Kumar et al. (2021) employed an emotional back-
propagation neural network (EDNN) model for predicting
liquefaction and concluded prediction accuracy was 89%
higher than the deep learning model, i.e., 79%. Alizadeh et al.
(2021), Hu (2021), Ahamd et al. (2021), Kim et al. (2021),
Ghorbani and Eslami (2021), Demir and Sahin (2021), and
Khan et al. (2021) noted that soft computing techniques are
reliable and accurate in assessing the liquefaction of soil.
Zhang et al. (2020) assessed liquefaction potential using
a calibrated SPT method via region-specific variability. Xing
et al. (2020) computed the liquefaction using a multilayer
perceptron neural network model. Rollins et al. (2020)
performed a dynamic cone penetrometer (DCPT) test at
Avasinis, Italy, for a sandy gravel alluvial soil profile with
20% to 40% gravel content. The researchers obtained cor-
rected values at three sites, i.e., loose to medium—dense soil
profiles. Park et al. (2020) predicted liquefaction-induced
settlement at Pohang by applying the ANN model. The
authors found that the ANN model developed by utilizing
cyclic stress ratio corrected N-SPT and unit weight attains
a higher performance in assessing the liquefaction-induced
settlement, i.e., 86.01%. Nong et al. (2020) investigated
the effect of cyclic loading frequency on sand liquefaction
assessment. The investigators collected clean soil having rel-
ative densities of 80% and 40% for dense and loose sand,
respectively. It was noted that sand liquefaction resistance
increases with the loading frequency. The maximum increase
in cyclic resistance was found at 19% and 15% for dense
and loose sand, respectively, when the frequency becomes
0.1 to 0.5 or 1 Hz. Njock et al. (2020) applied a new
evolutionary neural network (EVONN) with a t-distributed
stochastic neighbor embedding algorithm. The proposed
EVONN model attained 97% testing performance in this
research. Mahmood et al. (2020) employed Bayesian neural
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network models using the CPT database to assess liquefac-
tion potential. The researchers implemented the interpretive
structural modelling (ISM) technique to construct the hybrid
model and noted that the proposed hybrid model assessed
the liquefaction potential with an accuracy of 97.248%. The
liquefaction potential can be assessed by (i) evolutionary
polynomial regression technique (Ghorbani et al. 2020); (ii)
multi-objective feature selection algorithm (Das et al. 2020);
(iii) multivariate adaptive regression splines (Chen et al.
2020); (iv) ICA-optimized multi-objective generalized feed-
forward neural network (Abbaszadeh and Maghsoudi 2020).
Abbaszadeh and Maghsoudi (2020) developed ICA models
with MOGFFN to predict soil LP using ¢’y (kPa), amax(g),
CSR, FC (%), SPT value, CRR, rq, V¢ (m/s), and y (KN/m3),
as an independent variable. The authors used 296 data points
in the reported study. Based on the research findings, the
ICA-MOGFFN (R = 96%) is better than the MOGFFN
(94%) approach for predicting soil liquefaction potential.
Zhou et al. (2019) constructed a stochastic gradient boosting
(SGB) model using SPT and CPT databases to predict lique-
faction potential. It was noted that the SPT-based SGB model
achieved an accuracy of 95.45% in the testing. Sabbar et al.
(2019) compared the ANN and genetic programming models,
and ANN outperformed the genetic programming model with
a determination coefficient of 0.864. Rahbarzare and Azadi
(2019) implemented hybrid GA and PSO-optimized fuzzy
SVM models. The radial basis function (RBF) kernel-based
model obtained 99.09% accuracy in assessing liquefaction.
Kutanaei and Choobbasti (2019) assessed the liquefaction
potential around a submarine pipeline during the earth-
quake. The researchers employed ANN with the local RBF
differential quadrature method. The researchers found that
liquefaction potential decreases with increasing hydraulic
conductivity, deformation module, and Poisson ratio. Kur-
naz and Kaya (2019a) employed an ensemble group method
of data handling (E_GMDH) model using the CPT database
to predict liquefaction. The accuracy of ANN, SVM, LR,
RF, GMDH, and E_GMDH was compared. The authors
noted that E_GMDH outperformed the other computational
models with an accuracy of 98.36%. Furthermore, Kurnaz
and Kaya (2019b) used the E_GMDH model for the SPT
database to predict liquefaction. Model E_GMDH attained
an accuracy of 99.30% higher than ANN, SVM, LR, RF, and
GMDH. Johari et al. (2019) used a jointly distributed random
variables (JDRV) method for liquefaction prediction using
SWYV and SPT databases. The researchers concluded that the
JDRYV method predicts liquefaction potential for SWV better
than the SPT database. Youd (2018) assessed liquefaction-
induced lateral spread displacement using multiple linear
regression. Tang et al. (2018) used the SPT database to assess
the liquefaction hazards by applying a Bayesian neural net-
work (BNN). The authors compared the BNN model with
ANN. It was noted that the BNN model assesses ground
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Table 1 Details of soft computing models available in the literature

S. no Soft computing approaches Details of Input Parameters Accuracy References
Variables Count
1 XGBoost_SHAP Mag, oy, 6’v, amax, davgs (deN)avgs 253 88.24 Jas and Dodagoudar (2023)
(FSN)an7 I, FC, Jc1Ncs> I'ds CSR,
and K,
2 RF D, qc, Rt, 0y, 07y, amax, Mw, dw, 479 93.24 Demir and Sahin (2022)
FC, CSR
XGBoost Z, (N1)s0, FC, 0’y, amax, and My, 620 89.40 Kumar et al. (2022c)
PFEMS (N1)60, FC, 6’y, amax, and My, 834 91.20 Kumar et al. (2022a)
ICA_MOGFFN 0’y, amax, CSR, FC, SPT value, 296 96.00 Abbaszadeh and Maghsoudi (2020)
CRR, 14, Vg, and y
6 BN (N1)60, FC, 0’y, amax> My, PGA, 210 84.90 Hu and Liu (2019)
ST, GWT, and tq
7 PSO_GA_FSVM dcs 0’vs D50, @max, and My 109 100.00 Rahbarzare and Azadi (2019)
8 KFDA_LSSVM D, oy, 0’y, SC, Vs, amax, and My, 1029 88.56 Hoang and Bui (2018)
9 LR_MARS M, h, Ry, oy, 67y, amax; 226 89.30 Zhang and Goh (2016)
M, Ry, oy, 07y, Jc» Dso, amax; 170 91.10
M, h, oy, 0y, dc 466 87.90
10 PSO_SVM M, dy, ds, oy, 0y, dc» amax»> D50, 79 96.55 Xue and Yang (2016)
and Ty, 0y
11 ANN T and qcIN NA 99.99 Erzin and Ecemis (2015)
12 BOSVMs M, dy, ds, oy, 0’y de» amax»> D50, 79 96.40 Zhang et al. (2022)
and Ty, 0’y
13 ANN Oy, 0y, D50, (N1)60, @max> Mw, 370 99.60 Hsu et al. (2017)

and t,y)

cracks, sand boils, settlement, lateral spreading, and sever-
ity of liquefaction-induced hazards with high accuracies,
i.e., 90.9%, 91.8%, 83.6%, 95.5%, and 93.6%, respectively.
Nejad et al. (2018) implemented an RF model using the
SWYV database to evaluate the liquefaction potential. The
researchers noted that the RF model achieved over 92%
accuracy in assessing the liquefaction potential. Mola-Abasi
et al. (2018) used the CPT database to assess the liquefac-
tion using a triangular chart. The authors summarized that
the triangular chart is more efficient for assessing the lig-
uefaction. Hoang and Bui (2018) estimated liquefaction by
employing hybrid kernel fisher discriminant analysis with
the least square support vector machine (KFDA_LSSVM).
It was noted that the KFDA improves the prediction accu-
racy of the LSSVM model in estimating liquefaction. Hsu
etal. (2017) constructed ANN models using 370 case studies
with input parameters (o', o'y, Dso, (N1)60, @max> Mw, and
Tay,0'y) to predict the soil LP. The ANN model has a 99.6%
success rate in correctly predicting when liquefaction and
non-liquefaction will occur. Zhang and Goh (2016) mapped
acomparative study between the LR-MARS model and ANN
techniques to predict soil LP based on three datasets (75, 56,
and 116 cases) for testing. In the Ist case study, the input
parameters are My, h, Ry, o'y, 0y, and amax; however, M, Ry,

Ov, 'y, gey D50, Gmax and My, h, oy, o'y, gc, and apm,x are
for the 2nd and 3rd case studies respectively. The LR-MARS
approach performed better than the ANN model based on SR
evaluation testing results, i.e., 89.3%, 91.1%, and 87.9% for
the 1st, 2nd, and 3rd case studies. Xue and Yang (2016) con-
structed a PSO-SVM model to predict the LP of soils using
My, dy,d, oy, 0"y, gc, Gmax> D50, and t,y, o’y for 79 CPT
records. Study findings showed that the created PSO-SVM
approach’s classification accuracy rate (96.55%) is higher
than those of a grid search, among other methods (i.e., sim-
plified CPT and Seed techniques with an accuracy rate of 67%
and 74%). Erzin and Ecemis (2015) mapped a comparative
study among the ANN model, simulation, and experimen-
tal observations to estimate the liquefaction resistance. The
authors used T and q¢in for ANN models 1 and 2, respec-
tively. The ANN model attained higher test performance (R =
0.999) than the field liquefaction screening chart (R = 0.69).
Numerous investigators and scientists published several soft
computing models to predict the liquefaction potential, as
summarized in Table 1.
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1.1 Gap identification

The published research reveals the superiority of soft com-
puting models over conventional methods in terms of pre-
diction accuracy. Still, these computational methods are
more suitable if an extensive database is available. Each
soft computing method has limitations, including machine
and hybrid learning methods, and no accurate method is
suggested to assess soil liquefaction potential. The ANN
technique is the most famous for assessing liquefaction
but doesn’t establish the relationship between the inde-
pendent and dependent variables. On the other side, the
logistic regression (LR), k-nearest neighbor (kNN), sup-
port vector classifier (SVC)-based on linear, polynomial,
and Gaussian kernels, least square support vector classifier
(LSSVC)-based on linear, polynomial, and Gaussian kernels,
decision tree (DT), random forest (RF), gradient boosting
(GB), adaptive boosting (ADB), extreme gradient boosting
(XGB), light gradient boosting (LGB), ensemble tree stack-
ing (ETS), ensemble tree voting (ETV), and artificial neural
network (ANN)-based on adam, stochastic gradient descent,
Broyden-Fletcher—Goldfarb—Shanno models have not been
employed and compared in assessing the liquefaction poten-
tial. Furthermore, the Slime Mold Algorithm (SMA), Harris
Hawks Optimizer (HHO), Runge—Kutta Optimized (RUN),
Particle Swarm Optimizer (PSO), and Genetic Algorithm
(GA) have not been used to construct hybrid soft computing
models. The hybrid models work efficiently and achieve high
prediction accuracy in the case of large databases. Still, the
impact of a small database on the accuracy of hybrid models
has not been studied for hybrid computational models. Also,
the literature study demonstrates that the impact of multi-
collinearity on the accuracy of conventional and hybrid soft
computing models has not been investigated in predicting the
liquefaction potential.

1.2 Novelty of the present work

The novelty of this research has been mapped based on the
gap found in the literature and mentioned as follows:

e This research develops the logistic regression (LR), k-
nearest neighbor (kNN), support vector classifier (SVC)-
based on linear, polynomial, and Gaussian kernels, least
square support vector classifier (LSSVC)-based on lin-
ear, polynomial, and Gaussian kernels, decision tree (DT),
random forest (RF), gradient boosting (GB), adaptive
boosting (ADB), extreme gradient boosting (XGB), light
gradient boosting (LGB), ensemble tree stacking (ETS),
ensemble tree voting (ETV), and artificial neural network
(ANN)-based on adam, stochastic gradient descent, Broy-
den—Fletcher—Goldfarb—Shanno models and investigates
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the liquefaction potential prediction capabilities developed
models.

e This research optimizes the models using Slime Mold
Algorithm (SMA), Harris Hawks Optimizer (HHO),
Runge—Kutta Optimized (RUN), Particle Swarm Opti-
mizer (PSO), and Genetic Algorithm (GA). It maps a
comparison among hybrid models, i.e., RUN_XGB,

SMA_ADB, SMA_RF, SMA_GB, HHO_LGB,
SMA_DT, SMA_LSSVC_RBF, SMA_ANN_Adam,
PSO_SVC_RBF, HHO_SVC_L, SMA_SVC_P,

SMA_LSSVC_P,SMA_LSSVC_L, SMA_ANN_IBFGS,
and SMA_ANN_SGD to study the effect of the limited
database on the accuracy of hybrid models.

e This research illustrates the impact of multicollinearity on
the accuracy of the developed conventional and hybrid
models for the first time.

1.3 Research significance

This research introduces an optimal performance model by
comparing conventional and hybrid soft computing models.
This work will help geotechnical engineers find the possibil-
ities of liquefaction using soft computing techniques in case
of a limited database.

2 Research methodology

The present research introduces the optimal performance
soft computing model for predicting the soil liquefaction
potential. For this purpose, a database has been compiled
from the published article by Ahmad et al. (2021). The
data proportionality method has been applied, and train-
ing and testing databases have been created by randomly
selecting 70% and 30% of the database. Furthermore, mod-
els based on logistic regression (LR), k-nearest neighbor
(kKNN), support vector classifier (SVC)-based on linear,
polynomial, and Gaussian kernels, least square support
vector classifier (LSSVC)-based on linear, polynomial,
and Gaussian kernels, decision tree (DT), random forest
(RF), gradient boosting (GB), adaptive boosting (ADB),
extreme gradient boosting (XGB), light gradient boosting
(LGB), ensemble tree stacking (ETS), ensemble tree voting
(ETV), and artificial neural network (ANN)-based on adam,
stochastic gradient descent, Broyden—Fletcher—Goldfar-
b—Shanno approaches have been developed and optimized
by Slime Mould Algorithm (SMA), Runge-Kutta Opti-
mizer (RUN), Particle Swarm Optimization (PSO), Harris
Hawks Optimization (HHO), and Genetic Algorithm (GA).
Thus, RUN_XGB, ET_voting, SMA_ADB, SMA_GB,
SMA_RF, ST_Stacking, HHO_LGB, kNN, SMA_DT,
SMA_LSSVC_RBF, SMA_ANN_Adam, PSO_SVC_RBF,
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Fig. 2 Illustration of research methodology of the present work

HHO_SVC_L, SMA_SVC_P, SMA_LSSVC_P,
SMA_LSSVC_L, SMA_ANN_IBFGS, logistic regres-
sion, and SMA_ANN_SGD models have been developed,
trained, tested, and analyzed. The soft computing models
have been developed using the Python platform. The metrics,
such as recall, F1, TNR, NPV, FPR, FNR, FDR, FOR, ACA,
and MCC, have measured the performance and accuracy of
the models. Based on performance metrics, the optimum
performance soft computing model has been recognized
in predicting the soil liquefaction potential. Furthermore,
the optimum performance model has been validated by
comparing the models available in the literature (Ahmad
et al. 2021). Figure 2 illustrates the research methodology
of the present work.

3 Data analysis and computational
approaches

3.1 Data analysis
The present investigation has been carried out using the

database published by Ahmad et al. (2021). The database
includes 170 case history records of both liquefied and

non-liquefied sites. These records have been collected from
field observations of nine distinct earthquakes that occurred
around the world: the Niigata earthquake in 1964, the San
Fernando Valley earthquake in 1971, the Haicheng earth-
quake in 1975, the Tangshan earthquake in 1976, the Vrancea
earthquake in 1977, Imperial Valley earthquake in 1979,
Nihonkai—Cho earthquake in 1983, Saguenay earthquake in
1988, and Loma Prieta earthquake in 1989. The database
comprises 66 non-liquefaction and 104 liquefaction case his-
tory records. Five parameters, such as earthquake magnitude
(M), peak ground acceleration (amax, in g), cone tip resistance
(qc, in MPa), mean grain size (Dsg), and vertical-effective
stress (o’y, in kPa), have been selected out of six parameters
for this research. The descriptive statistics of the five param-
eters obtained from the literature are mentioned in Table 2.

Table 2 presents that that database contains Dsg, oy,
Amax, M, and ¢, in the range of 0.016 to 0.480 mm, 13.9
to0 227.50 kPa, 0.1 t0 0.6 g, 5.9 to 7.8, and 0.38 to 26.0 MPa,
respectively. Several researchers have suggested that the
database must be reliable and cover the full range of param-
eters to achieve better assessment (Khatti and Grover 2023a;
Lu et al. 2020; Huang et al. 2020; Cavaleri et al. 2017). In
addition, the frequency distribution of each parameter input
variable is illustrated in Fig. 3.
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Table 2 Statistical description of the features

Features Unit Count Mean StDev Minimum Maximum 1Q25 1Q50 1Q75
Dso mm 170 0.168 0.102 0.016 0.480 0.07225 0.160 0.243
o’y kPa 170 78.586 44.857 13.900 227.50 48.325 65.950 100.475
Amax g 170 0.284 0.134 0.100 0.60 0.200 0.230 0.400
M - 170 7.297 0.605 5.900 7.800 7.100 7.700 7.800
qe MPa 170 6.414 5.241 0.380 26.00 2.257 4.905 8.830
Lorentz | !
1.0 [ x0 [ga
< A osof - oo
E 0.84 :Amax; 0723
% qc |4.905 - -40.77
O 064 D o'v{ 031 1
>
2 o'v - 065
o J
% 04 amax
= - M amax 0.51 1 r 1053
qc F 4042
0.0 T T T T T
0 50 100 150 200 M+ 0.36 0.57 0.54 1 o
Fig. 3 Frequency distribution of features
0.18
0.07

3.1.1 Pearson product moment correlation coefficient

Pearson product-moment correlation coefficient (I) is a
method to determine the relationship or correlation of the pair
of variables. The relationship between variables is defined as
very strong (& 1.0</ < +0.81), strong (£ 0.80</ < £0.61),
moderate (£ 0.60</ < +0.41), weak (£ 0.40<1< +0.21),
and no (£ 0.20 < I < =+ 0.00) correlation (Hair et al. 2013;
Khatti and Grover 2021). However, five input variables, M,
amax (in g), ¢ (in MPa), Dsg (in mm), and ¢’y (in kPa),
have been used to assess the soil liquefaction potential in the
present research. The Pearson product-moment correlation
coefficient has been computed and presented in Fig. 4.

Figure 4 demonstrates that (i) Dsg weakly correlates with
M, amax, qc, and o’y, (i) o’y moderately correlates with
M and apay, (iii) M moderately correlates with ap,x, and
(iv) qc has no relationship with M and amax. The correla-
tion coefficient is the preliminary method to determine the
multicollinearity of independent variables. However, the cor-
relation coefficient method is one of the multicollinearity
methods used to find the multicollinearity of input variables.
Since the input variables have weak to moderate correlations.
Therefore, it may be noted that the independent variables
have multicollinearity. The variance inflation factor (VIF) is
another method for determining the multicollinearity level,
which has been discussed in the next section.
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Fig. 4 Demonstration of relationship among variables in terms of the
correlation matrix

3.1.2 Multicollinearity analysis

When big data is utilized in artificial intelligence for more
precise predictions, multicollinearity is a phenomenon that
happens throughout the regression process (Chan et al. 2022).
When performing a linear multivariable regression analysis,
multicollinearity occurs (1) when dependent and independent
variables do not significantly correlate (2) when independent
and dependent variables are highly associated (3). Pairwise
scatterplot, Pearson’s correlation coefficient, and variance
inflation factor (VIF) are utilized to find the multicollinearity
in the database. (Shrestha 2020; Obite, 2020; Garg and Tai
2012; Mansfield and Helms 1982; Gunst and Webster 1975).
This section uses the variance inflation factor to determine
the multicollinearity. VIF’s mathematical representation is:

1

where R? is the coefficient of determination. The determina-
tion coefficient is estimated for each independent variable
using the regression technique. The multivariable linear
regression analysis is conducted for each independent vari-
able to determine the VIF. One independent variable is
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Table 3 Results of multicollinearity analysis

Particulars Coefficients Standard Error t Stat P-value Lower 95% Upper 95% R? VIF
Intercept - 0.4282 0.4566 - 0.9379 0.3497 - 1.3297 0.4733 - -

Dso 0.8495 0.2912 29171 0.004 0.2745 1.4245 0.2689 1.3678
o’v - 0.0013 0.0008 - 1.7273 0.086 - 0.0029 0.0002 0.4676 1.8783
Amax 0.6113 0.2372 2.5776 0.0108 0.143 1.0796 0.3533 1.5464

M 0.1688 0.0567 2.9783 0.0033 0.0569 0.2808 0.4446 1.8004

qc - 0.0629 0.0055 — 11.4195 0 - 0.0738 - 0.052 0.2161 1.2757

retained among the others as the dependent or target inde-
pendent variable. According to a number of experts, the
troublesome multicollinearity of the input variables always
has a variance inflation factor (VIF) of greater than 10. (Vit-
tinghoff et al. 2006; Witten and James 2013; Menard 2002).
Moreover, many investigators have reported that the 2.5 or 5
is considerable multicollinearity or collinearity of datasets
(Menard 2002; Johnston et al. 2018). However, the level
of multicollinearity hasn’t been clearly defined. Therefore,
Khatti and Grover (2023b) proposed a level of multicollinear-
ity. In this work, the multicollinearity analysis has been
performed for M, amax, gc, Dso, 0’y input variables and is
given in Table 3.

Table 3 reveals that earthquake magnitude (M), peak
ground acceleration (amax), cone tip resistance (g.), mean
grain size (Ds), and vertical-effective stress (o’y) have weak
multicollinearity levels. Thus, the compiled database is suit-
able for the present study.

3.1.3 Hypothesis testing

The ANOVA and Z tests have been performed in this research
toidentify the hypothesis. ANOVA testing is a parametric sta-
tistical test used to determine the hypotheses of the different
forms of research work. Always run the ANOVA test when
there are more than 30 points. (Sawyer 2009; Larson 2008;
Gelman 2005; Christensen 1996). The research hypotheses
(HR) for the present work are (i) q. plays an important role in
assessing the liquefaction potential than D5, and (ii) all input
parameters have an equal influence in assessing the liquefac-
tion potential. The results of the ANOVA test are mentioned
in Table 4.

Table 4 reveals that the input parameters satisfy the
research hypothesis (HRr) and reject the null hypothesis (Ho).
It can be seen that all input variables present F > F crit and p
< 0.005. The z test is a statistical analysis used to determine
the hypothesis and the statistical significance of a discovery
or correlation. (Kim 2017; Lin and Mudholkar, 1980; Law-
ley 1938). The results of the z test for input parameters in
assessing the liquefaction potential are given in Table 5.

Table 5 illustrates that input parameters have z one tail
lower than z two tail, presenting the research hypothesis for
the present research as true. To sum up, the ANOVA and z
tests accept the research hypothesis (HR) for this study, i.e.,
(1) qc plays an important role in assessing the liquefaction
potential than Dsg and (ii) all input parameters have an equal
influence in assessing the liquefaction potential. However,
Goh (1996) reported that qc is more sensitive than Dsg in the
liquefaction potential prediction.

3.2 Computational approaches

In this study, the conventional and hybrid approaches are
arranged into four groups for comparison purposes: base-
line, tree-based, support vector machine (SVM)-based, and
artificial neural network (ANN) models. The adopted soft
computing approaches are discussed as follows:

3.2.1 Baseline models

Logistic regression (LR) Logistic regression is a widely used
statistical model for binary classification problems. It is a
linear model that uses a logistic function to convert a linear
combination of independent variables into a probability of
the response variable (Hastie et al. 2009).

K-nearest neighbors (kNN) K-nearest neighbors (kNN) is a
non-parametric instance-based learning algorithm that oper-
ates without making assumptions about the underlying data
distribution. It utilizes the concept of proximity to classify
or predict the grouping of a given data point. (Hastie et al.
2009).

Support vector machine (SVM) SVM is a popular machine
learning algorithm for solving classification and regression
problems. The selection of the best hyperplane that separates
between classes is based on the width of the margin between
classes (James et al. 2013). Kernel Support Vector Machine
(K-SVM) is a machine learning algorithm that models non-
linear relationships between input and output variables. In
this study, three SVM models are implemented based on
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Table 4 Results of the ANOVA

test Inputs  Source of variation ~ SS df MS F P-value F crit
Dso Between groups 16.66876 1 16.66876 133.6429  2.85E-26  3.869118
Within groups 42.15744 338 0.124726
o’y Between groups 516,804.7 1 516,804.7 513.6187 8.35E-70  3.869118
Within groups 340,096.6 338  1006.203
Amax Between groups 9.115144 1 9.115144  70.96825 1.05E-15  3.869118
Within groups 43.41264 338 0.12844
M Between groups 3799.587 1 3799.587 12,561.78  2.2E-269  3.869118
Within groups 102.2355 338 0.302472
qe Between groups 2862.243 1 2862.243 206.5872 6.87E-37  3.869118
Within groups 4682.953 338 13.85489
Table 5 Results of z test for
input parameters Parameters D o’V Amax M qc Liquefaction
Mean 0.1689 78.5865 0.2843 7.2976 6.4146 0.6118
Known variance 0.0105 2012.167  2012.167 2012.1671 2012.1671  0.2389
Observations 170 170 170 170 170 170
Hypothesized mean  0.0000 0.0000 0.0000 0.0000 0.0000
difference
b4 —11.5616  22.6632 —0.0952  1.9432 1.6866
P(Z< =z)onetail 0.0000 0.0000 0.4621 0.0260 0.0458
z Critical one tail 1.6449 1.6449 1.6449 1.6449 1.6449
P(Z< =z)twotail  0.0000 0.0000 0.9242 0.0520 0.0917
z Critical two tail 1.9600 1.9600 1.9600 1.9600 1.9600

the kernel function, namely: linear kernel (SVC_L), polyno-
mial kernel (SVC_P), and Gaussian kernel (SVC_RBF). The
Least Squares Support Vector Machine (LSSVM) is a type
of SVM algorithm that aims to minimize classification error
rather than maximize the margin between the hyperplane and
the data points. LSSVM aims to find a hyperplane that sep-
arates the data points into two classes while minimizing the
classification error. LSSVM minimizes the sum of squared
errors between the predicted and actual class labels, subject
to a constraint that ensures that all data points are correctly
classified (Suykens and Vandewalle 1999). In this study, three
kernel functions have been implemented, i.e., linear, polyno-
mial, and Gaussian function kernels, and related models are
designated as LSSVC_L, LSSVC_P, and LSSVC_RBF.

3.2.2 Tree-based models

Decision tree (DT) A decision tree is a non-parametric hier-
archical model commonly used for solving classification and
regression problems. It is a tree-like structure that partitions
the input space based on the values of the input variables
to make predictions about the output variable (Hastie et al.
2009). The present research has implemented entropy as a
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measure of information gain, defined as the amount of infor-
mation needed to describe data accurately. If the data is
homogeneous, the entropy equals 0. If not, the entropy will
increase towards 1.

Random forest (RF) Random Forest is an ensemble method
that combines multiple decision trees to make predictions
by aggregating their results. It uses randomness in data
sampling and feature selection processes to improve the
model’s robustness and generalization capabilities (Hastie
et al. 2009).

Gradient boosting (GB) Gradient boosting is a popular
ensemble learning method that combines multiple weak
models to make more accurate predictions. The Gradient
Boosting algorithm minimizes a loss function using gradi-
ent descent (Hastie et al. 2009). By adding weak learners
to the model, the algorithm gradually reduces the residual
errors, thereby improving the model’s accuracy.

Adaptive boosting (ADB) Adaptive boosting, also known
as AdaBoost, is an ensemble learning method that combines
multiple weak models to make more accurate predictions.
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The basic idea of AdaBoost is to iteratively train a series
of weak classifiers on weighted versions of the training data
(Hastie et al. 2009). The final classifier is a weighted com-
bination of these weak classifiers, where the weights are
determined by their overall performance in the training pro-
cess.

Extreme gradient boosting (XGB) XGBoost (eXtreme Gra-
dient Boosting) is a popular decision tree-based ensemble
learning algorithm for classification, regression, and rank-
ing tasks. XGB is based on the gradient boosting framework
(Chen and Guestrin 2016). XGB calculates the negative gra-
dient of the loss function concerning the current predictions
and fits a new tree to the negative gradient. This process con-
tinues until a stopping criterion is reached or a predefined
number of trees has been added.

Light gradient boosting (LGB) The light gradient-boosting
machine (LGB) algorithm is based on gradient boosting,
which involves iteratively adding weak learners to improve
the overall model performance. LGB does not grow a tree
level-wise. Instead, it grows tree leaf-wise. It chooses the
leaf it believes will yield the most significant decrease in
loss (Ke et al. 2017).

Ensemble tree stacking (ETS) Stacking is an ensemble
learning method that involves using the predictions of the
individual models as input to a second-level model, which
learns to combine these predictions to make a final predic-
tion. This second-level model is typically a linear model, such
as logistic regression or a support vector machine, but it can
also be another tree-based model (Rokach 2019). Combin-
ing random forest and gradient boosting algorithms allows
the ensemble stacking tree classifier to produce more accu-
rate and stable predictions while maintaining computational
efficiency.

Ensemble tree voting (ETV) Voting is an ensemble learning
method that combines the predictions of multiple models to
make more accurate predictions. This combination is done
by selecting the most frequent prediction. Voting can be per-
formed in different ways, such as simple majority voting or
weighted voting, where each model’s vote is weighted based
on its performance on the validation set (Rokach 2019). Like
the stacking approach, the most accurate models, i.e., RF,
GB, and XGB, have been compiled using voting techniques.

3.2.3 Neural network-based models

Artificial Neural Network (ANN) is an approach to deep
learning inspired by the structure and function of the human
brain. ANNs consist of interconnected layers of nodes,
or neurons, that process input data and produce output

predictions. One of the key components of ANNS is the opti-
mization algorithm used to update the weights and biases
of the model during training. The choice of an optimization
algorithm can have a significant impact on the performance
of the model. Three commonly used optimization algorithms
are Adam, Stochastic Gradient Descent (SGD), and Quasi-
Newton-based optimizer (Ibfgs).

Adam is an adaptive learning rate optimization algorithm
that adjusts the learning rate of each weight based on the
magnitude of the gradients and the second moments of the
gradients. It allows Adam to adapt to different data types and
converge faster than other optimization algorithms. Adam
also includes bias-correction terms to improve performance
on small datasets (Kingma and Ba 2015). SGD is a stochastic
optimization algorithm that updates the model weights using
the gradient of the loss function concerning the weights.
SGD updates the weights in small batches, which reduces
the computational cost and can lead to faster convergence
(Goodfellow et al. 2016). However, SGD can suffer from
slow convergence and be sensitive to the choice of learning
rate and batch size (Lin et al. 2020). Quasi-Newton methods
(Ibfgs) are optimization algorithms that use an approximation
of the Hessian matrix to update the model’s weights. Quasi-
Newton methods can converge faster than SGD and are less
sensitive to the choice of learning rate and batch size (Good-
fellow et al. 2016). However, they can be computationally
expensive.

3.3 Hyperparameters tuning

Hyperparameter tuning is a critical task in machine learning
that aims to optimize the hyperparameters of a given ML
model. In this study, the hyperparameters of the tree-based
models were the tree depth, the number of estimators for
ensemble models, and the learning rate for boosting-based
models. For the SVM-based models, the hyperparameters are
the scale and regularization parameters. Finally, the hyper-
parameters refer to the number of layers and neurons in each
layer for the ANN-based models. Five hyperparameter tun-
ing algorithms, i.e., Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), Slime Mold Algorithm (SMA),
Harris Hawks Optimization (HHO), and RUNge Kutta opti-
mizer (RUN), to examine the optimization performance of
swarm-based, bio-based, and evolutionary-based algorithms.
Each optimization algorithm was run for each model dur-
ing the cross-validation until no further improvement in the
accuracy score was noticed. The optimization algorithms are
briefly discussed as follows:

3.3.1 Particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) is a metaheuristic opti-
mization approach that mimics the collective behavior of
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social animals, such as flocks of birds (Clerc 2010). The
PSO algorithm maintains a population of potential solutions
or particles that traverse through a search space to find the
optimal solution. Each particle represents a potential solu-
tion to the optimization problem. Its motion is governed by
its previous best position and the best position discovered by
the swarm so far (Clerc 2010). The iterative process contin-
ues until a stopping criterion, such as a maximum number of
iterations or a satisfactory solution, is achieved.

3.3.2 Genetic algorithm (GA)

The genetic algorithm is a technique based on natural selec-
tion, the process that propels biological evolution, and it
is used to solve both limited and unconstrained optimiza-
tion issues. In binary classification, binary chromosomes are
implemented. Then, two parent chromosomes are randomly
selected, and their fitness is evaluated by measuring the error
metrics. More error means less fit, and crossover and muta-
tion are to be applied to the original solutions for better fitness
and less error. This procedure is repeated over generations of
solutions until the required fitness is achieved.

3.3.3 Slime mold algorithm (SMA)

The Slime Mold Algorithm (SMA) is a bio-inspired
optimization technique miming slime mold organisms’
growth and foraging behaviors. Slime mold, also known
as Physarum polycephalum, exhibits remarkable problem-
solving capabilities despite lacking a centralized nervous
system. SMA leverages the principles of this biological
organism to guide the search for optimal solutions in
complex optimization problems. Inspired by slime mold’s
self-organization and adaptability, SMA employs positive
feedback, negative feedback, and random explorations to
explore the search space efficiently and converge toward opti-
mal solutions (Li et al. 2020).

3.3.4 Harris hawks optimization (HHO)

Harris Hawks Optimization (HHO) is an optimization algo-
rithm inspired by the hunting behavior of Harris’s hawks,
a species of raptors known for their exceptional group
cooperation during hunts. HHO introduces a hierarchical
leadership structure among the hawks, where a dominant
leader coordinates and guides the group’s hunting strategy.
This hierarchical leadership structure fosters effective explo-
ration and exploitation of the search space. The algorithm
employs diverse mechanisms, such as position updating,
exploration through randomization, and exploitation through
information sharing to optimize solutions. In HHO, the hunt-
ing process is simulated through mathematical equations
that guide the movement of the hawks in the search space.
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By emulating the cooperative hunting behavior of Harris’s
hawks, HHO aims to enhance the efficiency and effectiveness
of optimization processes, particularly in handling complex
and multimodal problems (Heidari et al. 2019).

3.3.5 Runge-kutta optimizer (RUN)

The Runge—Kutta optimizer (RUN) is an optimization algo-
rithm based on the popular Runge—Kutta numerical integra-
tion method commonly used in solving differential equations.
The Runge—Kutta method approximates the solution of a
differential equation by iteratively calculating the function
values at different points within a given interval. RUN adapts
this concept to the optimization domain by treating the hyper-
parameter optimization as a dynamic system and utilizing
numerical integration to find optimal solutions. In RUN, can-
didate solutions are treated as trajectories in the search space,
and the optimization process is viewed as a trajectory opti-
mization problem. By iteratively updating the positions of the
trajectories using Runge—Kutta integration, RUN explores
and exploits the search space to locate promising regions and
converge toward optimal solutions. Using the Runge—Kutta
method in optimization allows for efficient search space
exploration, particularly in problems with complex dynamics
and interdependencies between hyperparameters (Ahmadi-
anfar et al. 2021).

3.4 Configuration of hybrid models

In this study, the SMA, HHO, RUN, PSO, and GA
optimization algorithms have been implemented, and
RUN_XGB, SMA_ADB, SMA_RF, SMA_GB, HHO_LGB,
SMA_DT, SMA_LSSVC_RBF, @ SMA_ANN_Adam,
PSO_SVC_RBF, HHO_SVC_L, SMA_SVC_P,
SMA_LSSVC_P, SMA_LSSVC_L, SMA_ANN_IBFGS,
and SMA_ANN_SGD hybrid models have been employed.
These hybrid models have been configured with the follow-
ing hyperparameters, as mentioned in Table 6.

3.5 Evaluation metrics

A confusion matrix is the most important tool for evaluating
the performance of a classification model. It comprehen-
sively summarizes the model’s performance by comparing
predicted and actual labels. True positives, true negatives,
false positives, and false negatives are used to calculate other
evaluation metrics, such as precision, recall, and F1 score.
Table 7 shows a typical confusion matrix for a binary classi-
fication problem (Hastie et al. 2009).

Precision is the proportion of true positives among all
the positive predictions made by the model. It measures the
model’s ability to identify positive examples correctly. High
precision means that the model makes fewer false positive
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Table 6 Configuration of hybrid models

Hybrid Models Hyperparameters

RUN-XGB Learning rate = 0.57967808; Estimators
= 153; Max depth = 2

SMA-ADB Estimators = 185; Learning rate =
0.76809871

SMA-GB Learning rate = 0.62206498; Estimators
= 30; Max depth = 4

SMA-RF Max depth = 9; Estimators = 27

HHO-LGB Learning rate = 0.32571603; Estimators
=69

SMA-DT Max depth =2

SMA-LSSVC-RBF
SMA-ANN-Adam

Sigma = 0.1; Gamma = 0.64497407

Learning rate = 0.19395991; Hidden
layer sizes = (3,1,1)

PSO-SVC-RBF Gamma = 3.53716106e-02; C =
7.06565338e + 02

HHO-SVC-L Gamma = 4.85396728e-01; C =
5.23750445¢ + 02

SMA-SVC-P Gamma = 0.59147854; C =
121.92240537

SMA-LSSVC-P Sigma = 3.14099178e + 03; Gamma =
9.06860154e-01

SMA-LSSVC-L Sigma = 3.98097589% + 03; Gamma =

SMA-ANN-Ibfgs

SMA-ANN- SGD

9.86913073e-01

Learning rate = 0.5936825; Hidden layer
sizes = (5,3,3)

Learning rate = 0.01; Hidden layer sizes
=@3,LD

Table 7 Typical confusion matrix for binary classification

Predicted
Classes

Negative (0) False

Positive (1)

Actual Classes

Positive (1) Negative (0)

True Positive False Positive
(TP) (FP)

True Negative

Negative (TN)

(FN)

predictions. The mathematical expression for precision is
(Ahmad et al. 2021).

. Trp )
precision = m 2)
The recall is the proportion of true positives among all
the actual positive examples in the data, as mentioned in
Eq. 3. It measures the model’s ability to correctly identify all
the positive examples. The high recall means that the model
makes fewer false negative predictions.

TP
recall = —— 3)
TP+ FN

F1 score is the harmonic mean of precision and recall,
as mentioned in Eq. 4, and it provides a single measure of
the model’s overall performance. It is a useful metric when
the number of positive and negative examples in the data is
imbalanced. A high F1 score indicates that the model has a
good balance of precision and recall.

| — 2%« TP
" 2%xTP+FP+FN

“

The other classification measure implemented in this study
is the area under the curve (AUC). The AUC is a metric that
measures the model’s ability to distinguish between positive
and negative classes. It is computed as the area under the
receiver operating characteristic (ROC) curve, which plots
the true positive rate against the false positive rate for differ-
ent classification thresholds. A model with an AUC of 1.0
has perfect discrimination between the two classes, while a
model with an AUC of 0.5 has no discrimination ability and
is essentially random. The accuracy is also implemented to
evaluate the model performance. The accuracy measures the
proportion of correctly classified instances out of the total
number of instances, as mentioned in Eq. 5. It is a simple
and intuitive performance measure, but it can be misleading
in cases where the class distribution is imbalanced. Evaluat-
ing the classification performance based on other metrics is
also important.

| TP+TN )
ccuracy =
YT TPYTN+FP+FN

Some more performance metrics have been used to mea-
sure the performance of the models in the training and testing
phases (Kumar et al. 2022a).

TN
TNR= — (6)
TN + FP
TN
NPV = —— (7
TN + FN
FP
FPR= — 8)
FP+FN
FN
FNR= —— ©)
TP+FN
FP
FDR= —— (10)
FP+TP
FN
FOR= ——— (1)
FN+TN
FPR+ FNR
ACA =1 LERH AR (12)

2
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B TP«TN—FPxFN
T (TP+TN)TP+ FN)TN + FP)(TN + FN)
(13)

McC

where TN is the true negative, TP is the true positive, FP is
the false positive, FN is the false negative, TNP is the true
negative rate, NPV is the negative predictive value, FPR is
the false positive rate, FNR is the false negative rate, FDR
is the false discovery rate, FOR is the false omission rate,
ACA is the average classification accuracy, and MCC is the
Matthews correlation coefficient.

4 Results and discussion

In the present research, seventy-seven computing models (2
baseline, 30 tree-based, 30 SVC-based, and 15 NN-based)
have been developed to determine the optimum performance
model for assessing the soil liquefaction potential. The train-
ing and validation phase results have been discussed in the
following sections and summarized in Table 8.

4.1 Simulation of soft computing models
4.1.1 Baseline models

The training and testing phase results of logistic regression
and kNN models have been presented in terms of the AUC
curve in (Fig. 5a, b). Figure 5 reveals that the logistic regres-
sion model has attained 0.51 and 0.50 AUC in the training and
validation phases. Conversely, the KNN model has attained
better AUC than logistic regression models in both phases,
i.e., 0.90.

Tree-based models Five optimization algorithms have been
implemented for hyperparameters tuning of tree-based mod-
els. In this study, DT, RF, GB, ADB, XGB, and LGB
tree-based soft computing approaches have been employed
and optimized by each SMA, RUN, PSO, HHO, and GA algo-
rithm. Figure 6 Illustrates the validation accuracy matrix for
the optimized tree-based models.

Figure 6 presents that models SMA_DT, RUN_DT,
PSO_DT, HHO_DT, and GA_DT obtained equal validation
accuracy, i.e., 0.92 in assessing soil liquefaction poten-
tial. Furthermore, models SMA_RF, RUN_RF, PSO_REF,
HHO_RF, and GA_RF achieved the validation perfor-
mance of 0.96, 0.94, 0.94, 0.88, and 0.88, respectively.
It is found that the SMA_RF model outperformed the
SMA_DT, RUN_DT, PSO_DT, HHO_DT, and GA_DT as
well as RUN_RF, PSO_RF, HHO_RF, and GA_RF mod-
els. In addition, the comparison of SMA_GB, RUN_GB,
PSO_GB, HHO_GB, and GA_GB models showed that
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model SMA_GB (= 0.96) assessed the liquefaction poten-
tial better than RUN_GB (= 0.94), PSO_GB (= 0.94),
HHO_GB (=0.94), and GA_GB (= 0.92) models in the val-
idation phase. Conversely, the comparison of SMA_XGB,
RUN_XGB, PSO_XGB, HHO_XGB, and GA_XGB mod-
els showed that the SMA_XGB (= 0.98) model can predict
the liquefaction potential of soil than RUN_XGB (= 0.96),
PSO_XGB (= 0.96), HHO_XGB (= 0.94), and GA_XGB
(= 0.92) models. The SMA, RUN, PSO, HHO, and GA-
optimized LGB models didn’t perform well in predicting soil
liquefaction potential. Model SMA_LGB performed better
than RUN_LGB (= 0.88), PSO_LGB (= 0.88), HHO_LGB
(= 0.86), and GA_LGB (= 0.86) models with an accu-
racy of 0.90 only. Thus, models SMA_DT, SMA_REF, and
SMA_GB attained higher validation accuracy because the
SMA algorithm has a high exploration and exploitation
ability. In the case of the ADB and LGB soft computing
approaches, models HHO_ADB and HHO_LGB have higher
accuracy because the HHO algorithm consists of fast con-
vergence and strong local search capability. Interestingly,
it has been observed that model XGB has outperformed
because of the stability of the RUN optimization algo-
rithm. Based on the validation accuracy comparison, models
SMA_DT, SMA_RF, SMA_GB, HHO_ADB, RUN_XGB,
and HHO_LGB have been identified as the best architectural
model and compared with stacking and voting soft comput-
ing approaches. Figure 7(a) and (b) compares training and
validation accuracies for the best architectural tree model,
stacking, and voting soft computing models in terms of the
AUC curve. Figure 7 reveals that the RUN-XGB model has
an AUC value of 0.98, close to the voting model in the vali-
dation phase.

SVC-based models Support vector classifier models have
been employed to assess the liquefaction potential using
SVC and LSSVC approaches. Linear, polynomial, and radial
basis function kernels have been implemented to employ the
SVC and LSSVC models. Thus, SVC_L, SVC_P, SVC_RBF,
LSSVC_L, LSSVC_P, and LSSVC_RBF models have been
employed and optimized by each SMA, RUN, PSO, HHO,
and GA algorithm. Figure 8 demonstrates the validation accu-
racy matric for the SVC-optimized models.

Figure 8 demonstrates that the HHO-optimized linear
kernel function-based SVC model has outperformed with
0.82 accuracy in the validation phase. The performance
comparison of linear kernel function-based LSSVC models
shows that the optimization algorithms have not impacted
accuracy in the validation phase. Thus, all optimized linear
kernel function-based LSSVC models have attained 0.55
validation accuracy, comparatively less than the HHO-
optimized linear kernel function-based SVC model. Also,
Fig. 8 reveals that the SMA-optimized polynomial kernel
function-base SVC model has obtained higher accuracy in
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Table 8 Performance results of developed models for liquefaction and non-liquefaction cases
Model Phase Accuracy  AUC Liquefaction Non-Liquefaction Rank
Precision  Recall  Flscore  Precision  Recall F1 score
RUN_XGB Training 1 1 1 1 1 1 1 1 1
Validation ~ 0.98 0.98 0.96 1 0.98 1 0.96 0.98
all 0.99 0.99 0.99 1 1 1 0.98 0.99
ET_Voting Training 1 1 1 1 1 1 1 1 2
Validation ~ 0.98 0.98 0.96 1 0.98 1 0.96 0.98
all 0.99 0.99 0.99 1 1 1 0.98 0.99
SMA_ADB Training 1 1 1 1 1 1 1 1 3
Validation ~ 0.96 0.96 1 0.92 0.96 0.93 1 0.96
All 0.988 0.99 1 0.98 0.99 0.97 1 0.99
SMA_GB Training 1 1 1 1 1 1 1 1 4
Validation ~ 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
All 0.98 0.98 0.99 0.99 0.99 0.98 0.98 0.98
SMA_RF Training 0.99 0.99 1 0.99 0.99 0.98 1 0.99 5
Validation ~ 0.96 0.96 0.93 1 0.96 1 0.92 0.96
all 0.98 0.98 0.98 0.99 0.99 0.98 0.97 0.98
ST_Stacking training 1 1 1 1 1 1 1 1 5
Validation  0.94 0.94 0.9 1 0.95 1 0.88 0.94
All 0.98 0977 097 1 0.99 1 0.95 0.98
HHO_LGB Training 1 1 1 1 1 1 1 1 5
Validation 0.9 0.9 0.86 0.96 0.91 0.95 0.84 0.89
All 0.97 0.96 0.96 0.99 0.98 0.98 0.94 0.96
KNN Training 0.92 0.89 0.91 0.99 0.94 0.97 0.8 0.88 6
Validation ~ 0.88 0.88 0.81 1 0.9 1 0.76 0.86
All 0.91 0.89 0.88 0.99 0.93 0.98 0.79 0.87
SMA_DT Training 0.86 0.86 0.93 0.85 0.89 0.75 0.88 0.81 7
Validation ~ 0.92 0.92 0.89 0.96 0.93 0.96 0.88 0.92
All 0.87 0.87 0.92 0.88 0.9 0.82 0.88 0.85
SMA_LSSVC_RBF  Training 0.87 0.845 0.88 0.94 0.91 0.86 0.76 0.81 8
Validation ~ 0.86 0.86 0.81 0.96 0.88 0.95 0.76 0.84
All 0.87 0.85 0.86 0.94 0.9 0.89 0.76 0.82
SMA_ANN_Adam Training 0.8 0.84 0.97 0.73 0.83 0.65 0.95 0.77 9
Validation ~ 0.88 0.88 0.92 0.85 0.88 0.85 0.92 0.88
All 0.83 0.85 0.95 0.76 0.84 0.71 0.94 0.81
PSO_SVC_RBF Training 0.85 0.81 0.84 0.96 0.9 0.9 0.66 0.76 10
Validation ~ 0.78 0.78 0.7 1 0.83 1 0.56 0.72
All 0.835 0.79 0.8 0.97 0.88 0.93 0.62 0.75
HHO_SVC_L Training 0.83 0.8 0.85 0.9 0.88 0.78 0.71 0.74 11
Validation ~ 0.82 0.82 0.77 0.92 0.84 0.9 0.72 0.8
All 0.83 0.8 0.83 0.9 0.87 0.82 0.71 0.76
SMA_SVC_P Training 0.85 0.81 0.84 0.96 0.9 0.9 0.66 0.76 12
Validation ~ 0.76 0.76 0.69 0.96 0.81 0.93 0.56 0.7
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Table 8 (continued)

Model Phase Accuracy  AUC Liquefaction Non-Liquefaction Rank
Precision  Recall  Flscore  Precision  Recall F1 score
All 0.83 0.79 0.8 0.96 0.87 0.91 0.62 0.74
SMA_LSSVC_P Training 0.83 0.75 0.8 1 0.89 1 0.51 0.68 13
Validation  0.72 0.72 0.65 1 0.79 1 0.44 0.61
All 0.8 0.74 0.75 1 0.86 1 0.48 0.65
SMA_LSSVC_L training 0.74 0.63 0.72 1 0.84 1 0.27 0.42 14
Validation  0.54 0.54 0.53 1 0.69 1 0.08 0.15
All 0.68 0.59 0.66 1 0.8 1 0.2 0.33
SMA_ANN_Ibfgs Training 0.65 0.5 0.66 1 0.79 0 0 0 15
Validation 0.5 0.5 0.51 1 0.68 0 0 0
All 0.61 0.5 0.61 1 0.76 0 0 0
Logistic regression Training 0.65 0.5 0.66 1 0.79 0 0 0 16
Validation  0.51 0.5 0.51 1 0.68 0 0 0
all 0.61 0.5 0.61 1 0.76 0 0 0
SMA_ANN_SGD Training 0.65 0.5 0.66 1 0.79 0 0 0 17
Validation 0.5 0.5 0.51 1 0.68 0 0 0
All 0.61 0.5 0.61 1 0.76 0 0 0
Bold values correspond to an optimum performance model
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Fig.5 Illustration of AUC curve for baseline models in a training and b validation phase

the validation phase, i.e., 0.76. Moreover, Fig. 6 presents
that all optimized polynomial kernel function-based LSSVC
models have gained 0.73 validation accuracy. Again, the
optimized SVC models, HHO_SVC_L and SMA_SVC_P,
have outperformed the optimized LSSVC models in assess-
ing the liquefaction potential. Figure 8 demonstrates that the
PSO-optimized RBF kernel function-based SVC model has
achieved (.78 validation accuracy, which is comparatively
higher than other optimized RBF kernel function-based
SVC models. Interestingly, it has been observed that the
impact of the optimization algorithm has been determined
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for LSSVC models after implementing the RBF kernel
function. Conversely, Fig. 8 reveals that the SMA-optimized
RBF kernel function-based LSSVC model has obtained 0.86
validation accuracy, followed by RUN_LSSVC_RBF,
PSO_LSSVC_RBF, HHO_LSSVC_RBE Model
GA_LSSVC_RBEF has attained the least validation accuracy,
ie., 0.51. Thus, models HHO_SVC_L, SMA_SVC_P,
PSO_SVC_RBF, SMA_LSSVC_L, SMA_LSSVC_P, and
SMA_LSSVC_RBF have been recognized as the best
architectural model in predicting the liquefaction potential
of soil. Figure 9(a) and (b) demonstrates the AUC curve
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Fig. 6 Illustration of the accuracy of tree-based optimized models

property for the best architectural SVC-based models in the
training and validation phases.

Figure 9(a) and (b) illustrates that model
SMA_LSSVC_RBF has attained 85% (training = 0.85)
and 86% (validation = 0.86) AUC values in training and
validation phase, respectively, comparatively higher than
the other best architectural SVC-based models. The results
show that the RBF kernel function is better if the database
has complex and nonlinear patterns or clusters. The radial
basis kernel function, consisting of one hidden layer, helps
generalize the targets. The comparison based on kernel
functions presents that RBF kernel function-based SVC and
LSSVC models have higher AUC values than linear and
polynomial kernel-based SVC and LSSVC models.

Neural network-based models The artificial neural net-
work models have been employed with Adam, sgd, and 1bfgs
algorithms to predict the liquefaction potential. Each SMA,
RUN, GA, HHO, and PSO algorithm has optimized each
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Fig. 8 illustration of validation accuracy matric for the optimized SVC-
based models

ANN_adam, ANN_sgd, and ANN_Ibfgs model. The valida-
tion accuracy of the employed models has been drawn, as
shown in Fig. 10.

From the study of Fig. 10, the following Observa-
tions have been mapped: (i) model SMA_ANN_adam has
gained higher validation accuracy, i.e., 0.88, than other opti-
mized ANN_adam models; and (ii) all optimized ANN_sgd
and ANN_Ibfgs models have attained equal accuracies in
the validation phase. Finally, models SMA_ANN_adam,
SMA_ANN_sgd, and SMA_ANN_lbfgs have been deter-
mined as the best architectural models for predicting lig-
uefaction potential. The area under the curve (AUC) has
been calculated for the best architectural ANN-based mod-
els, as shown in Fig. 11. Figure 11(a) and (b) illustrate that
model SMA_ANN_adam has gained higher AUC in training
(= 0.84) and validation (= 0.88) than SMA_ANN_sgd and
SMA_ANN_Ibfgs models.
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Fig. 7 Illustration of AUC curve for tree-based models in a training and b validation phase
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4.2 Discussion on results

The overall comparison demonstrates that models kNN,
SMA_DT, SMA_RF, SMA_GB, HHO_ADB, RUN_XGB,
HHO_LGB, stacking, voting, HHO_SVC_L, SMA_SVC_P,
PSO_SVC_RBF, SMA_LSSVC_L, SMA_LSSVC_P,
SMA_LSSVC_RBF, SMA_ANN_Adam, SMA_ANN_sgd,
and SMA_ANN_Ibfgs have obtained higher AUC, i.e.,
0.5, 0.9, 0.92, 0.96, 0.96, 0.96, 0.98, 0.90, 0.94, 0.98, 0.82
0.76, 0.78, 0.54, 0.72, 0.86, 0.88, 0.5, 0.5. Finally, models
kNN, RUN_XGB, SMA_LSSVC_RBF, and PSO_ELM
have been identified as the best architectural models for
predicting liquefaction potential. However, the AUC has
been plotted to summarize the receiver operating charac-
teristic (ROC) curve. The ROC curve has five degrees of
ratings: not discriminating (0.5-0.6), poor (0.6-0.7), fair
(0.7-0.8), good (0.8-0.9), and excellent (0.9-1.0) (Bradley
1997). Table 8 compares the accuracies of all models
developed in the present research. Table 8 shows that (a)
model kNN has attained overall accuracy of 91% and an
AUC of 0.89, presenting a good degree of rating; (b) model
kNN has gained 0.88 and 0.98 precisions in the training
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and validation phase; (c) model RUN-XGB has achieved
accuracy, and AUC of 0.99; (d) the precision (liquefaction
= 0.99, non-liquefaction = 1.00), recall (liquefaction =
1.00, non-liquefaction = 0.98), and F1 score (liquefaction
= 1.00, non-liquefaction = 0.99) of model RUN_XGB
demonstrates that model RUN_XGB is highly capable of
predicting non-liquefaction and liquefaction cases; (d) AUC
value for model RUN_XGB reveals that model has predicted
liquefaction potential with an excellent degree; (e) model
SMA_LSSVC_RBF has predicted liquefaction potential
with higher precision (liquefaction = 0.86, non-liquefaction
= 0.89), recall (liquefaction = 0.94, non-liquefaction =
0.76), and F1 score (liquefaction = 0.90, non-liquefaction
= 0.82) than other SVC-based soft computing models.;
and (f) model SMA_ANN_adam has predicted the lig-
uefaction potential with better precision (liquefaction =
0.95, non-liquefaction = 0.71), recall (liquefaction = 0.76,
non-liquefaction = 0.94), and F1 score (liquefaction = 0.84,
non-liquefaction = 0.81) than other neural network-based
models. To sum up, the RUN_XGB model has been identi-
fied as the optimum performance soft computing model for
predicting soil liquefaction potential. The XGB approach
utilizes more accurate approximations to find the best tree
model. The RUN algorithm involves slope calculations
at multiple steps at or between the current and following
discrete time values. Therefore, model RUN_XGB has
predicted liquefaction potential with higher accuracy in the
training and validation phases. Furthermore, the prediction
accuracy of model RUN_XGB has been cross-validated by
comparing the published model by Ahmad et al. (2021), as
shown in Table 9.

Table 9 demonstrates that the GB model has also outper-
formed the published model by Ahmad et al. (2021). Hence,
it can be stated that the GB model is the best architectural
model for assessing soil liquefaction potential.
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Table 9 Details for validation of
the GB model References Phase Liquefaction Non-Liquefaction
Precision Recall F1 Precision Recall F1
Ahmad et al. (2021)  Testing  0.7647 1.00 0.8667 1.00 0.68 0.8095
Present study Testing ~ 0.9800 0.98 0.9600 1.00 0.98 1
Table 10 Results of performance metrics for developed models
Model Phase FPR FNR TNR NPV FDR FOR MCC ACA
Ideal values Ideal 0.00 0.00 1.00 1.00 0.00 0.00 —lto+1 1.00
kNN Training 0.22 0.05 0.78 0.89 0.11 0.11 0.75 0.86
Testing 0.16 0.00 0.84 1.00 0.13 0.00 0.85 0.92
All 0.20 0.04 0.80 0.93 0.12 0.07 0.79 0.88
RUN_XGB Training 0 0 1.00 1.00 0 0 1.00 1.00
Testing 0.04 0 0.96 1.00 0.03 0 0.96 0.98
All 0.01 0 0.98 1.00 0.009 0 0.98 0.99
SMA_LSSVC_RBF Training 0.24 0.06 0.75 0.86 0.12 0.13 0.71 0.84
Testing 0.24 0.038 0.76 0.95 0.19 0.05 0.74 0.86
All 0.24 0.05 0.75 0.89 0.14 0.1 0.72 0.85
SMA_ANN_Adam Training 0.048 0.27 0.95 0.65 0.033 0.35 0.65 0.84
Testing 0.08 0.15 0.92 0.85 0.08 0.15 0.76 0.88
All 0.06 0.24 0.94 0.71 0.05 0.28 0.68 0.85

*Bold values correspond to the best architectural model

4.3 Analysis of soft computing models

After a thorough analysis of AUC and the accuracies of
the best architectural model, the capabilities of baseline,
tree-based, SVC-based, and ANN-based models have been
analyzed by implementing TNR, NPV, FPR, FNR, FDR,
FOR, ACC, and MCC performance metrics. The results of
TNR, NPV, FPR, FNR, FDR, FOR, ACA, and MCC met-
rics for all soft computing models are given in Table 10. The
comparative study of baseline, tree-based, SVC-based, and

ANN-based models reveals that models kNN, RUN_XGB,
SMA_LSSVC_RBF, and SMA_ANN_adam have attained
higher AUC values in the training and validation phase.
Therefore, the TNR, NPV, FPR, FNR, FDR, FOR, ACA,
and MCC performance metrics of models kNN, RUN_XGB,
SMA_LSSVC_RBF, and SMA_ANN_adam have been com-
pared and found that model RUN_XGB has attained 0.98
TNR, 1.0 NPV, 0.01 FPR, 0.0 FNR, 0.009 FDR, 0.0 FOR,
0.99 ACA, and 0.98 MCC, comparatively better than other
models and close to the ideal values. Hence, the RUN_XGB
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model has been recognized as an optimum performance _
model for predicting soil liquefaction potential. R SN
In addition, cross-validation has been performed for 38|l S 235
the best architectural models, i.e., kNN, RUN_XGB,
SMA_LSSVC_RBF, and SMA_ANN_adam, using 10 k-
fold. For the cross-validation, the computation cost of the E
best architectural models, developed by a k-fold value of 5, g
has been compared with the k-fold value of 10, as given in 22
Table 11. 53
Table 11 illustrates that model RUN_XGB (based on k = = § g) - -
5) has attained an 11.242 s computational cost, higher than “f % g " &R
other best architectural models. In the case of a 10 k-fold =103 : xRS
value, the model RUN_XGB obtained 21.997 s computa- E; "
tional cost, which is comparatively higher than the 5 k-fold CE> S
and the best architectural models (based on k = 10). The ] é
comparison of the computational cost of RUN_XGB (based ~| 3 €258
on 5 and 10) cross-validates and introduces the RUN_XGB £ 3 == =
model as an optimum performance model in predicting the g
soil liquefaction potential. § §
% Elzziog
3= S o A v
5 Summary and conclusions Sl é S3S3SS
The present research has been carried out to introduce an g
optimal performance model for predicting the liquefaction % 2 § g =
potential using 170 results of cone penetration testing. For 3 S o =2
that aim, two baselines, thirty tree-based, thirty SVC-based,
and fifteen NN-based models, have been employed, trained, =
tested, and analyzed. Accuracy, AUC, precision, recall, and £ é
F1 score metrics have been implemented to measure the pre- 'é 3
diction capabilities. The following significant outcomes of éﬁ 2 §
the research have been drawn: § é %
g 8 =
e Capabilities of Soft Computing Models — The kNN has g E %ﬁ Pl g
assessed liquefaction potential better than logistic regres- 5 o) § IS = 'g
sion. Conversely, models based on tree, kernel & instance, S| g %
and artificial neural network approaches attained higher % é % =
accuracy. Still, models RUN_XGB, SMA_LSSVC_RBE, S| v g 2
and SMA_ANN_Adam have outperformed with an accu- g lel é g § § § é
racy of over 80%. The accuracy of the comparison betwef?n g £ 5 2s 2SS %
conventional and hybrid models reveals that the hybrid < g E
model efficiently predicts the liquefaction potential com- S| §| g g
pared to conventional models. g i§ ;n 2w e e é
e Optimum Performance Model — Model RUN_XGB has 5| | E Sz Q9| =@
. . . . S| 8| 8 S & o o =
been identified as an optimum performance model with an &l OlFE S s c S| 2
overall accuracy of 0.99 and AUC of 0.99. Also, model 8 2
RUN_XGB has higher precision (0.99 for liquefaction, 1 E g
for non-liquefaction), recall (1 for liquefaction, 0.98 for % & = g*
non-liquefaction), and F1 score (1 for liquefaction, 0.99 é S\ '§ §
for non-liquefaction). The analysis of FPR, FNR, TNR, S Z m Zl §
NPV, FDR, FOR, MCC, and ACA metrics presents the = i) E <Z: i
robustness of the RUN_XGB model in predicting the liq- 2 2 Z <7 < =
. . S S z =2 = m
uefaction potential. == 2 @ &6l %
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e Impact of Multicollinearity — The multicollinearity analy-
sis reveals that the input variables, such as M, apax, qc, D50,
o’y, have weak multicollinearity (VIF < 2.5). However, the
impact of multicollinearity has been observed for conven-
tional soft computing models, i.e., logistic regression. In
the presence of multicollinearity, the conventional models
estimate the unreliable coefficient with less interpretation
capability; these models are less stable and have an over-
fitting issue. Conversely, the optimized soft computing
models have performed better in weak multicollinearity
because of the optimization technique.

To sum up, the present study introduces the RUN_XGB
model as the optimum performance soft computing model for
predicting soil liquefaction potential. The prediction capa-
bilities of RUN_XGB reveal that the RUN_XGB model may
be employed for slope stability analysis. The present study
may also be extended by creating an artificial database to
reduce the multicollinearity of the database used in this
study. One of the limitations of the employed models in
this work is determining the optimal structure using dif-
ferent analyses. Therefore, it is suggested to optimize the
coefficients/weights of the employed models using meta-
heuristic optimization algorithms, i.e., squirrel search algo-
rithm (SSA), improved squirrel search algorithm (ISSA),
grey wolf optimizer (GWO) algorithm, random walk grey
wolf optimizer (RW_GWO) algorithm, sailfish optimizer
(SAO) algorithm, sandpiper optimization algorithm (SOA).
Also, the dimensionality analysis may be carried out by cre-
ating different combinations of the significant features to
analyze the performance of ML models. This research will
help earthquake and geotechnical engineers decide the lig-
uefaction phenomenon during an earthquake.
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