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Abstract
In structural engineering applications, such as the construction of foundations, earth dams, rock fill, slope stability assess-
ment, and roads and railroads, the undrained shear strength (USS) is an essential metric. In recent times, certain empirical
and theoretical methodologies have emerged in the estimation of the USS by utilizing soil characteristics and conducting
field tests. The majority of these methodologies entail underlying correlation-based presumptions, thus yielding imprecise
outcomes. Furthermore, traditional methods often exhibit minimal efficiency in terms of time and cost. Since these types of
examinations are deemed not economical, employing distinctive approaches in projecting their outcomes appears essential.
The advancement of artificial intelligence (AI) techniques leads to the development of novel models and algorithms. Utilizing
these techniques allows researchers to select a predictive approach as an alternative to experimental methodologies. The
present study implemented the AI methodology to assess the USS of soils with high sensitivity. The multi-layer perceptron
(MLP) was employed as a means to address a problem in the development of a machine learning methodology. This approach
employs empirical samples to address a specific problem. Four predictor variables, overburden weight (OBW), liquid limit
(LL), sleeve friction (SF), and plastic limit (PL), were utilized for training the models. To enhance the resultant output, a
set of three optimizers, namely the dynamic control cuckoo search (DCCS), smell agent optimization (SAO), and bonobo
optimizer (BO), were employed. This research significantly advances USS evaluation for sensitive soils by employing the
MLP and three optimizers. It introduces a sophisticated AI approach, promising improved accuracy and efficiency compared
to traditional methods in geotechnical engineering.

Keywords Undrained shear strength · Multi-layer perceptron · Dynamic control cuckoo search · Bonobo optimizer · Smell
agent optimization

1 Introduction

The undrained shear strength (USS) is the soil’s ability to
resist shear stresses and is commonly utilized as a measure
of this capability. When performing calculations related to
various geotechnical topics, such as settlement induced by
external forces, the USS value is widely standard as a crucial
parameter (Behnam Sedaghat et al. 2023; Akbarzadeh et al.
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2023; Sharma and Singh 2018). Accurate evaluation of USS
is crucial for the authentic assessment of its sub-structure
constancy. The USS value of the soil can be assessed through
either in situ evaluations or laboratory examinations.

Geosciences, integral to geotechnical engineering, involve
the study of Earth materials and their interactions. Essen-
tial components include soil mechanics, the cone penetration
test (CPT) for in-situ analysis, USS as a key parameter for
sub-structure stability, and laboratory examinations for pre-
cise property determination. Recent advancements include
the application of machine learning (ML), such as support
vector machines (SVM) (Wang 2005; Kordjazi et al. 2014)
and artificial neural networks (ANN) (Mojumder 2020;
Sulewska 2017; Shahin et al. 2001; Majdi and Rezaei 2013),
to predict geotechnical properties, showcasing an evolving
interdisciplinary approach in the field. The CPT is a geotech-
nical method involving a cone-tipped probe pushed into the
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ground, measuring resistance to penetration. It efficiently
assesses soil properties, including shear strength and USS.
CPT conducted on site are efficient for identifying types
of soil, evaluating their properties such as shear strength,
and various other geotechnical applications. Compared to
traditional methods such as boring and experimental test-
ing, in-situ CPT is a reliable, efficient, and cost-effective
technique for evaluating soil characteristics. The CPT exam-
ination provides valuable and in-depth information about
soil stiffness and strength that can aid in determining the
soil’s ultimate bearing capacity (UBC), making it a useful
tool for obtaining consistent soil profiles. In recent years,
certain experimental methods have been expanded in order
to estimate the USS using parameters obtained from in-situ
cone penetration testing (Lunne 1982; Senneset 1982; Kha-
jeh et al. 2021). Despite this, a variety of methods involve
certain assumptions and judgments when selecting appro-
priate factors for correlation coefficients, such as the cone
tip factor, Nkt in CPT profiles and USS, which can have an
impact on the calculation of shear strength. The assessment
of the USS may be imprecise for different site scenarios due
to this issue. For a true stability assessment of sub-structures,
the USS should be evaluated accurately. Lab or field testing
can be used to calculate the USS value of the soil. The qual-
ity of the collected data determines how accurate laboratory
tests, such the undrained triaxial compression test and the
direct shear test, can be (Prasad et al. 2007; Buò et al. 2019).

Additionally, this precision is significantly influenced by
the friction coefficient of penetrometers at diverse depths
(Tran et al. 2017; Tran and Sołowski 2019). The USS tests
conducted in laboratories are found to be both laborious and
time-consuming. The quality of laboratory conditions and
imprecisions encountered in USS values obtained from soil
samples also contribute to the challenges mentioned above
(Zumrawi 2012). Experimental correlation techniques are
frequently employed when measurements related to soil’s
USS are absent or unreliable. The utilization of thesemethod-
ologies is predicated upon the distinct attributes intrinsic
to the soil (Hansbo 1957; Chandler 1988; Larsson 1980;
Mbarak et al. 2020).

In recent years, the field of geotechnical engineering has
experienced a notable proliferation in the application of ML
techniques. The extensive utilization of diverse analytical
models for the prediction of geotechnical properties of soils
has been comprehensively documented in the existing lit-
erature (Onyelowe et al. 2021, 2022, 2023a, 2023b, 2023c;
Gnananandarao et al. 2020). Specifically, the friction capac-
ity of driven piles (Samui 2008), the soil’s shear strength (Ly
and Pham 2020), the bearing resistance of shallow founda-
tions (Kuo et al. 2009), and the peak friction angle of soils
(Padmini et al. 2008) have been estimated using advanced
methodologies such as SVM, ANN, and regression tree

analysis (Kanungo et al. 2014). In contrast to singleMLmod-
els like the least square support vector machine (LSSVM),
hybrid ML models have been used in geotechnical research
to improve the prediction power of models. Using cuckoo
search optimisation (CSO) to forecast soil shear strength is
one example of this (Tien Bui et al. 2019). The shuffling
frog leaping algorithm (SFLA), salp swarm algorithm (SSA),
wind-driven optimisation (WDO), and elephant herding opti-
misation (EHO) are some of the hybridmodels that have been
used to estimate soil shear strength (Moayedi et al. 2020).

A number of civil engineering applications, such as the
investigation of frozen soil liquefaction and foundation set-
tling using piles, have seen positive outcomes from the
application of ANN (Tavana Amlashi et al. 2023; Das and
Basudhar 2006; Ikizler et al. 2010; Nejad and Jaksa 2017;
Yuan et al. 2022). The utilization of ANNs for the estimation
of USS from CPT is proposed as a means of mitigating the
limitations of traditional methods (Samui and Kurup 2012).

ANN methodologies exhibit a propensity to iterate the
learning process of the human brain through prior examples
and are then acquired bymeans of variousmathematical algo-
rithms. AnANNwas employed to conduct a survey aiming to
develop a model with improved accuracy in estimating USS
through the utilization of CPT data. The data presented in
this study consisted of empirical investigations and unevent-
ful soil examinations conducted across different sites within
Louisiana. Numerous ANNmodels were trained by incorpo-
rating diverse soil properties, such as sleeve friction (SF) and
cone tip resistance. The results of the investigation demon-
strate that theANNapproach exhibited superior performance
in estimating the UBC of soil relative to the conventional
method. The perspective mentioned above emphasizes the
promising utility of these methodologies in the analysis
of soil (Abu-Farsakh and Mojumder 2020). In a previous
study, Bayesian optimization was utilized to optimize Ran-
dom Forest (RF) and data-driven extreme gradient boosting
(XGB) algorithms for the purpose of uncovering the relation-
ships that exist between soil properties and the USS (Zhang
et al. 2021). In previous studies, notably in Jamhiri et al.
(2021, 2022), TA-based models demonstrated commendable
results; however, a critical imperative exists to explore and
implement innovative models grounded in ML and meta-
heuristic algorithms.

This paper uniquely contributes by unveiling the potential
of employing the MLP model, integrating novel optimiza-
tion algorithms, with a focus on predicting USS from CPT
records. The study introduces a ML model designed to
predict USS, leveraging an experimental dataset from rep-
utable sources. Employing an MLP, the study constructs
robust compositemodels integrating bonobo optimizer (BO),
dynamic control cuckoo search (DCCS), and smell agent
optimization (SAO) techniques for USS prediction in soils.
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This amalgamation enhances predictive precision by opti-
mizing model parameters, ensuring robust and efficient
predictions for USS. The resulting composite models exhibit
a heightened ability to handle complex relationships within
the dataset, improving adaptability to diverse data patterns.

Moreover, the streamlined optimization process of meta-
heuristics contributes to efficient convergence, ultimately
bolstering model efficiency and generalization. In essence,
this integration offers a synergistic approach that signifi-
cantly augments the overall performance and versatility of
the MLP model in soil applications. Various performance
metrics, including R2, RMSE, NRMSE, and n10_index, are
thoughtfully examined to evaluate the suggestedmodels’ cor-
rectness.

2 Materials andmethodology

2.1 Data gathering

The present study segments the USS data acquired through
experimental techniques into four input variables, namely
plastic limit (PL), liquid limit (LL), overburden weight
(OBW), and SF. Subsequently, the USS value assumes the
role of the identified output parameter. The dataset was strat-
ified into two distinct phases: a train phase, which accounted
for 70% of the data, and a test phase, which comprised
30% of the data. To predict the USS of soil from the CPT,
the CPT dataset recorded from corresponding bore log data
was gathered from different sites in Louisiana (Mojumder
2020). A quantitative representation of the parameters used
in the model creation is shown in Table 1. This table
exhibits certain distinct characteristics, encompassing the
highest permissible value (Max) and the measure of vari-
ation denoted by the standard deviation (St. Dev). In the
context of statistical analysis, the terms standard deviation
(SD), mean (M), and minimum (Min) are often employed.
The present investigation has yielded findings on the extreme
values of SF, with maximum and minimum values of 1.4
and 0.02, respectively. Additionally, the variables L(50, 12),
LL(133, 24), and OBW(3.64, 0.03)were observed. Further-
more, the study set a target range for USS, with the upper and
lower limits for this variable set at 5670 and 100, respectively.

2.2 Multi-layer perceptron (MLP)

TheMLP is a frequently employed Neural Network method-
ology, typically trained using the backpropagation algorithm.
The MLP has been designed specifically for modeling
asset processes and facilitating the acquisition of knowl-
edge through estimation and train techniques. MLP Neural
Networks have gained recognition as a valuable tool formod-
eling complex and nonlinear processes that frequently occur

in real-world scenarios. This is largely due to the innate
adaptability of MLP networks, which possess formidable
approximation capabilities (Moayedi and Hayati 2018).
Three interconnected layers make up the architecture of an
MLP model: Input, Output, and Hidden. The number of pre-
dictor variables is displayed by a few nodes in the input layer.
Moreover, a single hidden layer within an MLP possesses
the capability to represent multifarious functions through its
respective hidden neurons proficiently. An insufficient quan-
tity of neurons results in suboptimal functionality of neural
networks. On the other hand, MLP neural networks pose
challenges not only with regard to the complexity of training
but also with a proclivity to overfitting. The nodes located in
the output layer are correlated with the number of variables
that have been modeled.

AnMLPNeural Network is used in the function modeling
challenge using one predictor to create a generalization of the
nonlinear function (h) in which X ∈ RD → Y ∈ R1. The
variables denoted as Y and X correspond to the input and
output parameters, in that order. The h denotes the function
as mentioned above, and it is mathematically expressed in
the form of Eq. (1):

Y = h(X) = s2 + M2 × (kb(s1 + M1 × X)) (1)

M1 and M2 represents the weight matrixes of the output
and hidden layers, respectively. s1 and s2 are bias vectors of
the hidden and output layers, respectively. kb referred to the
initiation purpose.

Both academic writing and real-world applications fre-
quently use the activation functions of the tan–sigmoid and
log–sigmoid. The equations in question have been denoted
as Eqs. (2, 3) collectively:

hb(T ) = 1

1 + exp(−T )
(2)

hb(T ) = exp(T ) − exp(−T )

exp(T ) + exp(−T )
(3)

T denotes the input activation function.

2.3 Dynamic control cuckoo search (DCCS)

TheCuckoo birds are renowned for theirmagnificence, likely
due to their forceful reproductive method or their melodious
vocalizations (Yang and Deb 2009; Mareli and Twala 2018;
Nguyen et al. 2016). Certain species of birds lay their eggs
in shared nests, allowing them to selectively abandon some
of the eggs in order to increase the likelihood of success-
fully hatching their own. Somebird species exhibit obligatory
brood parasitism, where they deposit their eggs in the nests
of other bird species, leading to a boost in their reproductive
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Table 1 The examination of
input and output variables
statistically

Components Abbreviation Properties

Max Min Average St. Dev

SF(i) Sleeve friction 1.4 0.02 0.4245 0.2893

LL(i) Liquid limit 133 24 63.49 19.886

PL(i) Plastic limit 50 12 27.48 6.9404

OBW(i) Over burden weight 3.64 0.03 1.5688 0.8238

USS(i) Undrained shear strength 5670 100 1271.9 968.60

success. To simplify the identification of the standard DCCS
algorithm, three idealized rules are utilized:

1. The nests that hold excellent eggs are preserved to ensure
their availability for future generations.

2. Every individual bird lays a singular egg that is subse-
quently placed into any nest at random.

3. The quantity of host nests that currently prevail remains
steady, and the probability of a host bird detecting a
cuckoo’s egg is denoted as qb, which is a value that falls
within the range of 0 and 1.

The final conjecture can be approximated through the
introduction of a proportion pa of alternative nests (contain-
ing new and distinct solutions) among the set of n host nests.

One way to express the local random walk is as Eq. (4):

xr+1
i = xri + as ⊗ F(qb − δ) ⊗ (xrj − xrl ) (4)

xrj and x
r
l are different answers selected randomly using a

permutation. F(u) is aHeaviside-related function. δ is a value
chosen at random from a regular distribution. as demon-
strates the step’ s magnitude. ⊗ is the vectors’ entry-wise
output.

To execute the global random walk, Lévy flights are used:

xt+1
i = xti + aL(t , τ) (5)

α > 0 is the scaling factor for step size, and

L(t , τ) = τ�(τ)sin
(

πτ
2

)

π

1

t1+τ
, (t"t0 > 0) (6)

The initial solution was developed regarding the succeed-
ing:

x = bL + (bU − bL) × rand(size(bL)) (7)

A random number generator with a uniform distribution
between 0 and 1 is referred to as a rand. The jth nest’s highest
range is represented by bU, and its lowest range by bL.

Figure 1 shows the flowchart of DCCS combined with
MLP.

2.4 Bonobo optimizer (BO)

The BO is an advanced meta-heuristic algorithm that draws
inspiration from the reproducible techniques and societal
conduct of Bonobos. Das et al. (2019) created a population-
oriented version of the BO algorithm. In essence, bonobos
are divided into smaller groups, termed fission, to search
for food and rest during the night. The incorporation of
the method into the BO algorithm aimed to improve the
search process’s efficiency. The algorithm examines the nat-
ural techniques and solutions used by bonobos as it has
attained the optimal level of response. The Bonobo species
uses four distinct methods to reproduce and create new bono-
bos, including extra-group mating, promiscuous, restrictive,
and consortship (Das et al. 2019). The mating strategies
may experience modification contingent upon the prevailing
phase circumstance, whether negative (NP) or positive (PP).
The current study clarifies the relationship between the PP
state and the bonobo community under circumstances that
provide enough food availability, genetic variety among the
bonobos, advantageous mating results, and defense against
potential threats from neighboring populations. Conversely,
theNPdenotes a detrimental circumstancewithin the broader
societal context.

2.4.1 Promiscuous and restricted mating methods

The stage probability parameter, denoted asmm, corresponds
to the mating behavior exhibited by the Bonobo species. Ini-
tially, the value of the variable representing the amount ofmm

is set at a value of 0.5, with incremental upgrades occurring
throughout successive iterations. According to Eq. (8), the
value is deemed to be identical or lower than mm.

n_bo j = boij + q1t
a
(
aboj − boij

)
+ (1 − q1)t

tflag(boij − bomj )

(8)

bo = bonobo. n_boj and aboj are the jth the variables of
the new progenies. j is a variable number between zero and
one. e stands for the number of variables. In q1, a random
value between 0 and 1 is determined. boij and bo

m
j determine
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Fig. 1 Scheme of DCCS coupled with MLP

the values of the bonobos’ ith and mth associated variables,
respectively. ta and t t are called division coefficients for abo

and mth bonobos, respectively.
When the ith bonobo achieves a more favorable outcome

compared to the mth bonobo, it results in promiscuous mat-
ing. The flag has been denoted with the number 1 under these
circumstances. Alternatively, in order to restrict pairing, a
value of −1 is attributed to the abo combination.

2.4.2 Methods of mating extra-group and consort ships

If the value of the part mm is lower than that of q, the occur-
rence of these mating types will ensue. Alternatively, if the
value of q2 is equivalent to or lower than the probability of
extra-group mating for the given group (mxgm), the resultant
outcome will involve a bolstering of the solution through the
process of extra-group mating.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

boij + e

(
q23+q3−2q−1

3

)(
Var_max j −boij

)

αbo
j ≥ boij

boij − e

(
−q24+2q4−2q−1

4

)(
boij−Var_min j

)

q3 ≤ me

boij − e

(
q23+q3−2q−1

3

)(
boij−Var_min j

)

αbo
j ≤ boij

boij + e

(
−q24+2q4−2q−1

4

)(
Var_max j −boij

)

q3 ≥ me

(9)

The initial value of the me was set to 0.5, followed by
gradual improvements aligned with the evolution’s inherent
characteristics. This process enhances the search algorithm
to produce the most promising results. The present study
utilizes the notation Var - min j and Var - max j to represent the
lower and upper limits of the jth variable correspondingly.

Alternatively, in certain scenarios, the application of the
consortship mating technique leads to the production of a
distinctive progeny, wherein the quantity of q2 exceeds that
of mxgm, in accordance with Eq. (10):

n_bo j =
{
n_bo j + eq5flag(1 + q1)

(
boij − bomj

)
q6 ≤ me

bomj otherwise
(10)

In the present set of equations, the variables q1, q2, q3, q4,
q5 are defined as randomquantities that assume valueswithin
the range of zero and one. The schematic representation of the
proposed algorithm coupled with MLP is depicted in Fig. 2.

2.5 Smell agent optimization (SAO)

The sense of smell plays a critical role in upholding the
world from its onset. The majority of living organisms detect
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Fig. 2 Scheme of BO coupled with MLP

Fig. 3 Scheme of SAO coupled with MLP

Table 2 The results of hyperparameters for MLP

Layer’s Num Fitted structure of each layer

MLDC MLBO MLSA

Layer 1 30 13 21

Layer 2 29 9 9

16 12 20

Layer 3 30 6 12

30 24 30

16 9 27

the existence of noxious substances in their surroundings
through their olfactory receptors (Buck 2004; Sakalli et al.
2020; Axel 2005). Incorporating the human sense of smell
into the development of SAO is a normal occurrence (Axel
2005; Chapman and Cowling 1990; Abdechiri et al. 2013).
The SAO’s overarching structure is determined by three
modes, primarily derived from the smell perception steps.
Firstly, the olfactory agent detects the olfactive molecules,
evaluates their spatial position, and subsequently discerns a
course of action; to either pursue the origin of the scent or dis-
regard it. Secondly, the agent follows the scent particles in its
quest to locate the source of the odor, relying on its previous
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modes of decision-making. Finally, the final mode of opera-
tion serves to impede agents frombecoming entrappedwithin
localized minima, hence safeguarding the agent’s ability to
maintain its trail.

2.5.1 Sniffingmode

The initial stage of the process involves randomly identify-
ing a location for the commencement of diffusion of odor
molecules towards the agent, given that olfactory molecules
possess a tendency to propagate in the directionof their target.
The smell molecules can be initialized through the utilization
of the mathematical formula designated as Eq. (11):

x (t)
i =

⎡

⎢
⎣

x(1, 1) x(1, 2) x(1, D)

. . .

x(N , 1) x(N , 2) x(N .D)

⎤

⎥
⎦ (11)

N is the overall number of scent molecules. D stands for
the total number of the decision variables.

The position vector in Eq. (11) can be produced by apply-
ingEq. (12),which allows the agent to choose its ownoptimal
location inside the search space.

x (t)
i = lbi + r0 × (ubi − lbi ) (12)

The terms “ub” and “lb” denote the upper and lower
bounds established as a result of the variables of decision,
correspondingly. r0 refers to a random value from zero to
one.

Every individual scent molecule is allocated a fundamen-
tal velocity with which it diffuses from the smell source
through the application of Eq. (13).

υ
(t)
i =

⎡

⎢
⎣

υ(1, 1) υ(1, 2) υ(1, D)

. . .

υ(N , 1) υ(N , 2) υ(N .D)

⎤

⎥
⎦ (13)

Every individual smell molecule serves as a potential
indication of a potentially viable solution. The locus of
potential explanations is derived from the situation vector
x (t)
i ∈ RN , as demonstrated in Eq. (11), and the molecular

rapidity υ
(t)
i ∈ RN , as articulated in Eq. (13). The velocity

of the molecules is increased through the implementation of
Eq. (14):

xt+1
i = x (t)

i + υt+1
i × �t (14)

The expression �t = 1 denotes that the agent advances
along the path of the optimization process in a parallel

manner. The spatial coordinates of smell molecules are deter-
mined using Eq. (15):

xt+1
i = x (t)

i + υt+1
i (15)

Each smell molecule possesses unique diffusion veloci-
ties, which facilitate its positional updates and evaporation
during the process of scent analysis. The calculation of the
revised velocity of scent molecules is accomplished through
the utilization of Eq. (16):

υt+1
i = υ

(t)
i + υ (16)

The update variable for velocity, denoted by υ, is obtained
by applying Eq. (17):

υ = r1 ×
√
3KT

m
(17)

The term k denotes the smell fixation factor that serves to
normalize the impact of both mass and temperature on the
scent molecules’ kinetic energy.

The mass and temperature of the scent molecules are
denoted by m and T , respectively.

Equation (15) is used to assess the scent molecule’s fitness
at the updated sites.

Consequently, the process of sniffing has been accom-
plished, thereby enabling the determination of the precise
location of the agent denoted as xtagent.

2.5.2 Trailing mode

In the secondoperationalmode, the simulated behaviors of an
agent are directed toward the determination of the source of a
particular smell. During the process of searching for a smell
source, the agent can detect a new location that has a higher
concentration of smell molecules through smell perception.
The agent seizes the opportunity to explore the novel location
by utilizing Eq. (18):

xt+1
i =x (t)

i + r2 × olf ×
(
xtagent − x (t)

i

)

− r3 × olf ×
(
xtworst − x (t)

i

)
(18)

r2 and r3 are numbers from zero to one. r2 penalizes the
stimulus of olf on xtagent and r3 penalizes the effect of the olf
on xtworst.

The agent records xtagent and the xtworst gained from the
mode of smelling. The aforementioned data play a pivotal
role in the algorithm’s capacity to establish a state of equi-
librium between exploitation and exploration, as denoted by
Eq. (18).
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Fig. 4 The USS hybrid models’
output convergence curve

Table 3 Developed assessment
results of models by evaluators Hybrid models Sections Evaluators

RMSE R2 NRMSE n10_index

MLDC1 Train 140.99 0.9816 1.0071 0.6143

Test 171.36 0.9610 2.8561 0.5667

MLBO1 Train 257.79 0.9584 1.8414 0.3357

Test 221.52 0.9436 3.692 0.5333

MLSA1 Train 165.82 0.9730 1.1844 0.6429

Test 193.55 0.9510 3.2259 0.5667

MLDC2 Train 102.13 0.9906 0.7296 0.6857

Test 142.44 0.9783 2.3741 0.6333

MLBO2 Train 200.79 0.9715 1.4342 0.5071

Test 244.99 0.9623 4.0833 0.4

MLSA2 Train 129.70 0.9841 0.9264 0.6786

Test 177.43 0.9580 2.9572 0.6167

MLDC3 Train 73.474 0.9949 0.5248 0.8143

Test 88.434 0.9905 1.4739 0.8333

MLBO 3 Train 164.69 0.9860 1.1764 0.6071

Test 196.67 0.9565 3.2778 0.5833

MLSA 3 Train 100.97 0.9903 0.7212 0.7786

Test 116.96 0.9809 1.9494 0.6667

2.5.3 Randommode

Smell molecules may differ in intensity over time if there is a
considerable segmentation in their distance fromone another.
This variance might confuse the agent, which would cause
the odor to disappear and make tracking extremely difficult.
Due to its incapacity to remember trailing information, the
agent is prone to being stuck in local minima. When the
previously described situation occurs, when the agent enters
the random mode, as shown by Eq. (19),

xt+1
i = x (t)

i + r4 × SL (19)

Step length is denoted by SL. r4 is a random number that
stochastically penalizes the quantity of SL.

Figure 3 indicates the scheme of SAO coupled with MLP.

2.6 Methods for evaluating performance

A range of evaluators were employed to appraise the appli-
cation of hybrid models in predicting the USS’s value. The
coefficient of determination (R2), Root mean Square Error
(RMSE), Normalized Root mean square error (NRMSE),
and n10_index are among the performance measures that
are examined in this study. By calculating the difference
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Fig. 5 The expected and measured values’ scatter plot

between expected and actual values, these metrics are fre-
quently used in statistical analysis to assess the precision and
accuracy of models. The coefficient denoted as R2 is indica-
tive of the extent of linear correlation between the actual
and anticipated quantities. The RMSE is the square root of
the average squared difference between estimated and actual
values. In contrast, NRMSE normalizes RMSE by dividing
it by the range of observed values, offering a dimensionless
metric for more interpretable model accuracy assessment,
especially across datasets with varying scales. Additionally,

the n10_index is a performance metric that evaluates the per-
centage of predicted values falling within a factor of 10 of
the corresponding actual values.

Equations (20–23) provide the values of these metrics as
stated above.

R2 =

⎛

⎜
⎜
⎝

∑n
i=1

(
bi − b

)(
di − d

)

√[∑n
i=1

(
bi − d

)2][∑n
i=1

(
di − d

)2]

⎞

⎟
⎟
⎠

2

(20)
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Fig. 6 The line-symbol diagram comparing the measured and expected USS

123



Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:3749–3765 3759

Fig. 7 Based on a time series
graphic, the models’ error
percentages are displayed
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Fig. 7 continued

RMSE =
√√√√1

n

n∑

i=1

(di − pi )2 (21)

NRMSE =
√

1
n

∑n
i=1(di − bi )2

1
n

∑n
i=1(bi )

(22)

n10 − index = n10

n
(23)

The sample numbers are denoted by n, the experimental
value is shown by bi, the predicted value is shown by di,

the experimental amount’s mean is represented by b and the
predicted value’s mean is denoted by d .

3 Results and discussion

3.1 Hyperparameters and convergence curves

Hyperparameters are predefined settings in ML that signifi-
cantly impact a model’s performance and optimization. This
study focuses on only one crucial hyperparameter (Neuron),
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Fig. 8 The error % of created
hybrid models using the half-box
normal plot
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and its effects on the MLP model’s performance, detailed
in Table 2. The research underscores the importance of care-
fully fine-tuning this hyperparameter for optimal results. This
involves a deliberate and judicious selection and adjustment
process to achieve precision and robust generalization while
mitigating issues like overfitting and prolonged training.

This study examined how well nine models (three models
in three layers) predicted USS by tracking their convergence
progress using RMSE as the selected metric. The results of
these evaluations are showcased in Fig. 4. Models had initial
RMSE values of just under 200 forMLSA3 to just above 650
for MLBO1. As the convergence process proceeded, there
was a conspicuous decrease in RMSE values for all models.
Considering the models’ performance during the iterations 0
to 150, it became evident that theMLDC3model experienced
the best performance and finished its convergence process
with almost 50 for RMSE value.

3.2 Comparingmodels’performance

In the current work, nine different hybrid model types were
created to forecast theUSSutilizingMLP in conjunctionwith
the DCCS, BO, and SAO algorithms. A training set and a
test set, comprising 70% and 30% of the data, respectively,
are separated out of the data in these hybrid models. Four sta-
tistical measures (R2, RMSE, NRMSE, and n10_index) were
used to obtain a comprehensive assessment of the effective-
ness of the deployed optimizers. The results are shown in
Table 3. This section determines which model is better than
the other by analyzing statistical metrics.

The R2 for first layer models clearly shows that, with
0.9816 and 0.9610 in the training and testing phases, respec-
tively, MLDC1 achieves the greatest results. When RMSE,
NRMSE, andn10_index are compared as three different eval-
uator types during the training and testing phase,MLDC1has
the lowest mistakes.

Moving on to the second layer, MLDC2 is related to the
maximumvalues ofR2 =0.9906 andR2 =0.9783 in the train-
ing and testing sections. With scores of 102.13 and 142.44
in the RMSE training and testing phases, respectively, that
model (MLDC2) has the best performance. Moving on to
the third layer, the MLDC3 shows the best results for all four
criteria, indicating that it may be used to estimate USS value.

It is clear from comparing all nine models that the max-
imum values of R2, RMSE, NRMSE, and n10_index for
MLDC3, MLBO1, MLBO1, and MLDC3 are, respectively,
0.9949, 257.79, 1.8414, and 0.8143 during the training phase.
Furthermore, for MLDC3, MLBO2, MLBO2, and MLDC3,
the maximum values of R2, RMSE, NRMSE, and n10_index
in the testing portion are 0.9905, 244.99, 4.0833, and 0.8333,
respectively. None of the ninemodels have received adequate
training since the R2 values for each model in the test section
are less than those in the train section. All things considered,

out of the nine hybrid models, MLDC3 has the top ratings
from four evaluators. It can therefore be applied appropri-
ately in practical settings.

Figure 5 displays fragmented presentations that illustrate
the relationship between the measured and anticipated val-
ues of the USS. The two assessment sets that the numerical
data in question relates to are RMSE and R2. By acting as
a distributed controller, RMSE causes an increase in density
when its evaluation metric’s value decreases. In addition, the
Test and Train data points aremoved along the central axis by
the R2 evaluator. Numerous other variables are included in
this picture, such as the centerline at position Y = X , a linear
regression model, and two lines that are drawn at Y = 0.9X
and Y = 1.1X , respectively, below and above the centerline.
The incorrect prediction of values that are greater than or
less than the actual values results from the intersections of
the line’s upper and lower ends, respectively.

In this investigation, the LSSVR model was combined
with three different optimizer strategies that were applied
throughout the training and testing stages to create three
unique models. The results of this investigation are shown
in Fig. 5. Given the uniform directionality and closeness of
the data points to the centerline, the R2 of MLDC3 seems to
be more favorable than that of the other models. The empir-
ical data showed that the precision of the Train phase values
withdrew from that of the test phase in every case, but it
was especially apparent in the setting of MLSA2. Overall,
the results show that the MLDC3 hybrid model, which com-
bines the MLP approach with the third-layer SAO optimizer,
produced the best results in terms of R2 and RMSE during
the learning and validation stages when the data from Fig. 5
is taken into account. The reason for this discovery is that the
model performs better in R2 and can make smaller mistakes.

The agreement between themeasured and anticipatedUSS
values for each of the three hybrid model categories is evalu-
ated in Fig. 6. The two separate sections of the diagrams are
the ones devoted to validating and learning models. When
an MLP is used in conjunction with a DCA method, the
projected USS of hybrid models in the first layer MLDC1
shows superior conformity with evaluated testing and train-
ing data. Moving on to the second and third layers, MLDC2
and MLDC3 have the best accordance status in the Train
and Test models, respectively. Conversely, the combination
of MLP and BBO in the third layer, or MLBO3, clearly dis-
plays the least favorable agreement status of models.

Figure 7 shows the discrepancies between the measured
USS values for three different hybrid model types in 3 layers
with nine models total. This figure shows that the training
and testing sets of models’ maximum errors for MLBO2 are
betweenmore than−60% and 150%.Conversely, in both the
train and test models, minimum error values are associated
with MLDC3, where the majority of errors are concentrated
in the range of −50% to 90%.
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The distribution of errors in the anticipated USS values is
shown by the box plot in Fig. 8. It is clear that all 3 models
have a graph with a sharp state during the training phase of
theMLPmodel, which indicates greater dispersion; however,
during the Test phase, these curves have taken on a flatter
shape, indicating that the data has become less accurate and
more dispersed. Therefore, all of the created models in this
layer have typically been trained incorrectly. In the test and
train phases, MLDC2 had the best prediction performance in
the second layer. Nearly every result in the third layer is in
the range of 0% in MLDC3, which performs the best out of
all the 9 hybrid models.

4 Conclusion

To determine the soil’s USS, a multi-layer perceptron (MLP)
model was employed in the current study. Even though the
results obtained using the traditional method were effective,
they had several shortcomings. The laboratorymethod is con-
sidered inefficient in terms of timemanagement and involves
significant costs.Artificial intelligence (AI)was used in place
of the software-based technique to overcome the aforemen-
tioned constraints. It was noted that the system’s estimation
of the USS showed a high degree of accuracy. The created
models used four input variables OBW, PL, LL, and SF
with the goal parameter USS to achieve the intended out-
come. The correctness of the suggestedmodelswas evaluated
using five different performance indicators in this study: R2,
RMSE,NRMSE, and n10_index. The study used three differ-
ent meta-heuristic optimisation techniques BO, DCCS, and
SAO to improve the system’s performance. It can be inferred
and calculated from the results that:

The characteristics that were researched were used to
construct prediction models for the USS estimation. The
suggested models demonstrated a good degree of accuracy
in forecasting the USS when compared to the experimental
data.

• In MLDC1, MLBO1, MLSA1, MLDC2, MLBO2,
MLSA2,MLDC3,MLBO3, andMLSA3, respectively, the
sprinkling value of the projected data in the Test phase
compared to the Train phase dropped by 2.1, 1.54, 2.26,
1.24, 0.94, 2.65, 0.42, 3, and 0.94%.

• The models suggested may understate the USS by an aver-
age of about 160, according to the contrast ofmeasured and
anticipated values. In the learning phase, the MLBO1 had
the largest error in the RMSE(257.9), while in the valida-
tion phase, the MLBO2 had the largest error (249.99); the
MLDC3 had the lowest error (73.47).
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Appendix

Test dataset

SF LL PL OBW USS

0.9 77 34 1.85 2390

0.47 81 39 1.98 1370

0.4 63 32 2.11 1090

0.92 68 35 2.53 3280

0.21 71 37 0.13 570

0.11 88 36 0.65 120

0.71 66 29 1.72 1470

0.52 73 25 1.85 2420

0.38 85 29 1.99 1560

0.42 57 32 2.25 1460

1.02 79 25 2.51 2280

0.67 42 15 2.66 2140

0.2 100 32 0.19 350

0.11 75 36 0.3 100

0.12 56 23 0.52 130

0.39 33 16 1.16 2890

0.57 61 23 1.92 1780

1 41 19 0.14 2250

0.75 61 23 0.69 2320

0.87 61 23 0.96 2320

0.87 61 23 1.16 2320

0.18 61 23 1.28 2320

0.3 61 23 1.39 2320

0.53 24 12 1.76 2210

0.56 51 28 0.27 1650

0.85 60 29 0.46 1680

0.69 70 36 0.59 1770

0.46 87 42 0.67 1390

0.26 85 39 0.74 660
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Test dataset

SF LL PL OBW USS

0.27 58 33 0.87 620

0.39 86 41 0.94 750

0.9 100 45 1.01 1240

0.82 103 46 1.1 1360

0.53 76 18 0.77 760

1.1 32 20 1.24 1380

0.22 49 29 0.15 870

0.35 39 22 0.8 1250

0.27 32 19 1.03 950

0.28 70 35 1.19 1220

0.26 88 41 1.32 1600

0.64 43 23 1.68 1980

0.62 52 29 1.84 4460

0.76 47 29 0.25 1020

0.77 82 41 0.83 1270

0.45 84 39 1.03 1680

0.8 64 33 1.39 1510

0.83 42 24 1.77 1700

0.16 32 23 1.19 420

0.16 39 26 1.39 563

0.18 40 27 1.47 527

0.15 69 31 1.64 375

0.62 70 31 2.5 571

0.53 85 34 2.1 1366

0.14 55 25 0.3 260

0.07 63 24 1.27 570

0.14 76 32 1.44 740

0.15 65 27 1.55 650

0.13 51 21 1.66 410

0.16 73 26 1.91 1290

0.16 72 17 3.03 1610
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