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Abstract
Joint damage initiates a consequential form of damage in the beam-to-column connection in a steel frame structure. Many
traditional damage detection techniques are not suited for such cases. However, available vibration-based methods are unable
to provide a general joint damage detection technique that can be applied to all types of structures. The primary objective of
this study is to develop a connection damage identification technique for a 3D frame using a convolutional neural network
(CNN) model. For that purpose, a five-story steel 3D frame is considered. An impact hammer is utilized to excite the structure
and collect acceleration responses at various points under both undamaged and damaged conditions. From these responses,
scalogram images are generated, which serve as input for the CNN-based deep learning technique. The results are then
compared with those obtained using the AlexNet model. The training and testing results demonstrate that the technique can
effectively differentiate between undamaged and damaged classes, showcasing its potential as an automated tool for the health
monitoring of frame connections. The robustness of the technique is further computationally verified through environmental
variability, along with the localization and severity of the damage.

Keywords Structural health monitoring · 3D steel frame structure · Multi-story structure · Joint damage · Convolution neural
network · AlexNet · Temperature variability

1 Introduction

Nowadays, human beings are continuously fashioning to
build steel-framed structures like buildings, bridges, dams,
electrical transmission towers, etc., due to economic bene-
fits, ease of construction, and the well-being of the nation.
These structures have different structural members that are
connected by rivets, bolts, and welding joints. In their ser-
vice period, these structures are prone to connection damage
due to man-made mistakes, corrosion, fatigue, environmen-
tal variability, and unpredictable events such as earthquakes,
and underground mines. If the damage to the structure is
not identified in its early stages, it spreads throughout the
structure and leads to its sudden failure, causing the loss of

B Maloth Naresh
maloth@nith.ac.in

1 Department of Civil Engineering, National Institute of
Technology Hamirpur, Hamirpur, Himachal Pradesh 177005,
India

2 Department of Civil Engineering, National Institute of
Technology Ravangla, Ravangla, Sikkim 737139, India

human lives as well as property. In this regard, structural
health monitoring (SHM) gives an exact solution to prevent
such sudden failures by continuously or regularlymonitoring
the structural integrity.

The SHM techniques are classified into local and global
(vibration) techniques. In the past, local techniques such
as acoustoelastic effect-based methods (Wang and Song
2019), ultrasonic techniques (Mutlib et al. 2016), vision-
basedmethods (Fukuda et al. 2010), piezoelectric impedance
methods, modal strain energy methods (Pal and Banerjee
2015), and displacements (Park et al. 2015) have also been
utilized in SHM to identify joint damage in frame struc-
tures. However, the local techniques are not suitable for most
structures because of their expense and inefficiency; hence,
researchers moved to vibration-based (VB) techniques. The
VB techniques are employed to assess the entire perfor-
mance of the monitored structure by converting its vibration
response into a meaningful damage identification parame-
ter that indicates the real condition of the structure, which
made the VB techniques more popular. The ultimate aim of
these techniques is to detect damage by processing data that

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41939-024-00424-4&domain=pdf


Multiscale and Multidisciplinary Modeling, Experiments and Design

is acquired from an acquisition system like accelerometers
and strain gauges (Bandara et al. 2014).

In recent years, machine learning (ML) models have
been extensively utilized in vibration-based health moni-
toring techniques. SHM using ML models addresses the
pattern identification problem (Fallahian et al. 2022). How-
ever, the effectiveness of the ML-based models depends on
the selected ML algorithms, samples, and the number of
learning samples.Among theMLmodels, deep learning (DL)
models have already become the most popular with their
impressive performance inmany scientific areas (Lecun et al.
2015). DL models use several learning layers that are multi-
layered to find out how input and output datasets are related.
Convolutional neural networks (CNN) are newly developed
DL techniques that adopt how the brain of humans works.
CNNs are an amazing tool for extracting and classifying fea-
tures. They aremostly used to recognize data like pictures and
videos (Konstantinidis et al. 2020). The complete overview
and working procedure of CNN are explained in Sect. 2.

A study (Yun et al. 2001) proposed a method for the
identification of joint damage in multi-story plane frames
using modal parameters and an ANN algorithm. In the work,
the damage was simulated by a rotational spring at the end
of a beam component, and the damage quantification was
denoted by the decreased ratio of the joint fixity factor.
It was found that the damage can be accurately estimated
even though the modal data were extremely contaminated
with noise. Similarly, studies (Huang et al. 2017; Ng 2014)
detected brace damage and joint damage in an ASCE bench-
mark building using the Bayesian framework. Lei et al.
(2014) proposed a model based on a two-step Kalman fil-
ter methodology for the identification of joint damage in a
frame under earthquake excitation. The SVM and principle
component analysis-based damage identification technique
was presented by Bolourani et al. (2021). A study (Chen
and Zang 2009) presented an ML technique for member
damage detection in ASCE benchmark building using the
Artificial Immune Pattern Recognition classifier. The results
show that the technique provides better accuracy compared to
Naïve-Bayes and KNN classifiers while it underperforming
SVM. A study (Salkhordeh et al. 2021) presented a decision-
tree-based classification model for detecting the intensities
of member damage in a braced steel frame structure. In the
work, the features, namely drift, correlation, and energy ratio,
were extracted from the raw acceleration data and classified
into damage levels. In addition, Gui et al. (2017) presented
an SHM method for a 3D steel frame structure using the
autoregressive (AR) and residual error feature-based SVM
algorithms. In the work, the features were obtained from
the acceleration time series data. Later, these features were
fed into the SVM algorithm to classify the damaged and
various undamaged cases. Rosso et al. (2023) examine the
noise effects of SHM on a subspace structure using different

machine learning algorithms. In their study, Mghazli et al.
(2023) presented the optimized-based methodology for the
selection of the optimal position of sensors in the application
of SHM.

Similarly, a scalogram image-based health monitoring
technique at the joint of steel frames was presented by Avci
et al. (2020), Pal et al. (2022), Paral et al. (2020), Sharma
and Sen (2020). In the study, the classification of undam-
aged and various damaged processes was achieved by the
CNN algorithm. Additionally, the crack damage in the con-
crete structures was identified using the CNN algorithm (Cha
andChoi 2017) and region-based (Cha et al. 2018) algorithm.
The comparative study of FFT and wavelet transform was
presented by Epp and Cha (2017) to identify internal damage
to a concrete structure. In a study (Ta et al. 2022), presented
corroded bolt loosening identification in a steel girder using
a mask region-based CNN algorithm.

Considering the feasibility of training the classifiers with
real-world data from the undamaged structure in addition to
simulated data for the damage cases. The simulated data can
be obtained experimentally using a downscaled laboratory
model of the monitored structure or mathematically with
an accurate finite element (FE) model. As a result, having
damaged data from an otherwise undamaged structure would
no longer be necessary (Avci et al. 2021; Bigoni and Hes-
thaven 2020; Pimentel et al. 2014). Using semi-supervised
or unsupervised ML and DL algorithms, which may pro-
cess limited label or fully labeled vibration data, is a further
approach to solving the problem. There are few studies in
the field of structural damage identification that use unsuper-
vised techniques. A study (Wang andCha 2021) suggested an
unsupervised DL method that uses a deep auto-encoder and
a one-class SVM with only measured acceleration response
data from baseline structures as training data to spot future
damage to structures. An unsupervised-based damage identi-
fication approach was presented by Cha and Wang (2018) to
identify joint damage in a 3D frame structure using a density-
peaks-based faster clustering algorithm. In the study, the crest
factor and wavelet coefficients were extracted from acceler-
ation data and used as input to the algorithm to classify the
damage cases. A comparative study of unsupervisedML and
DL algorithms was presented by Wang and Cha (2022) to
identify the loosening bolts in a steel bridge.

Changes in environmental and operational factors affect
the vibration properties of the structures. Changes in the
modal parameters of steel buildings due to environmental
effects have not been explored as much compared to bridge
structures (Xia et al. 2012). Specifically, temperatures are
important factors that affect the modal parameters of a steel
frame structure. Usually, a 5–10% variation in the natural
frequencies is to be observed daily and seasonally for bridge-
type structures (Cornwell et al. 1999; Peeters and Roeck
2015). Kim et al. (2007) performed an experimental study
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on a model of a steel bridge. It was noticed that when the
temperature rises by 1 °C, the first 4 frequencies decline by
0.64%, 0.33%, 0.44%, and 0.22%, respectively. Few stud-
ies on bridge structures that take temperature changes into
account are available (Song and Dyke 2006; Xu and Zhishen
2007) as an origin of environmental changeability. Nayeri
et al. (2008) proposed a damage detection technique for a
17-story steel 3D frame structure, and they observed a signif-
icant correlation between the variations in frequency and the
variations in temperature over a few hours. Yuen and Kuok
(2010) employed the Bayesian spectral density technique to
find out the modal frequencies of a 22-story building for a
year. The authors observed the first three frequency increases
when increasing the room temperature,whichwas the reverse
of their modeling analysis. In (Faravelli et al. 2011), noticed
changes in the frequencies of the 600-m TV Tower in a day.
As the temperature changes were about 3 °C, the frequency
changes were about 0.5%.

From the literature, it is evident that numerous techniques
have been studied to identify damage in plane frame struc-
tures as compared to 3D frame structures. Moreover, most
studies are carried out without considering temperature vari-
ations. Therefore, it is made clear that the CNN-based DL for
structural healthmonitoring at the connections of multi-story
3D steel frame structures under temperature variations is yet
to be addressed. Hence, the present study is motivated by the
need to develop an SHM technique for the identification of
damage at the connection of steel 3D frame structures using
scalogram images of vibration data under temperature vari-
ability. The contribution of the present study is as follows:

1. The development of a CNN-based SHM technique for
the health monitoring of connections in a multi-story 3D
framed structure.

2. The present study proposes the application of scalogram
images for damage detection, localization, and severity
of connection damage in a 3D frame structure.

3. The robustness of the technique for connection damage
identification in a 3D frame structure is further verified
through temperature variability.

2 CNN-based SHM technique

In the present work, an impact hammer is utilized to vibrate
the structures and receive the time-history acceleration
responses under undamaged and different damaged cases.
The time-history acceleration responses are converted into
frequency-domain scalogram images by employing the con-
tinuous wavelet transform (CWT) command in MATLAB.
Later, the convolutional neural network is trained and tested
with the scalogram image data set to classify the undamaged

and different damaged cases. In this context, the location and
severity of the damage are achieved under different temper-
ature variations.

2.1 Wavelet analysis

The wavelet technique is the most popular tool in signal
processing. It has been significantly utilized to find the dis-
continuity between two-time series signals (Yazdanpanah
et al. 2020). Amidst the various wavelet transform meth-
ods, continuous wavelet transform is employed to extract
the unique features that change over time, find the similar
time-changing sequence in different signals, and accomplish
time-confined filtering. Sudden changes in signals in the
wavelet component have bigger arbitrary values. For a par-
ticular signal y(t) in the time history realm, a continuous
wavelet transform is identified by integrating the multiplica-
tion of the signal and the complex conjugate of an original
(mother) wavelet function.

Wm, n �
∫ +∞

−∞
y(t)∅∗

m, n(y)dt (1)

Here, ∅m, n is a real or complex number function in the time
and frequency realm, * represents the complex conjugation
and it refers to the original wavelet denoted as;

∅m, n(w) � 1√
n

∅

(
w − m

n

)
(2)

Here, the real numbers m and n represent the scale and tran-
sitional variable correspondingly.

In the wavelet transform, the translation variable n spec-
ifies the position of the moving wavelet window. The scale
variable, m, indicates the width of the window. Because the
wavelet transformworks as a set of waves that are positioned
in both the time and frequency realms, the continuous wave
transform of the signal gives the time–frequency descrip-
tion, or scalogram, of the raw acceleration data. A scalogram
image represents the absolute value of the CWT coefficient
of data.

2.2 Image data set generation

The following steps are performed to create the datasets that
are used to train and test the CNN-based SHM technique:

• Step 1: Generate the time–frequency domain scalogram
images from the time history acceleration data by perform-
ing wavelet analysis.

• Step 2: Reduce the sizes of the scalogram images.
• Step 3: Adding the different levels of noise to the images
to generate a huge dataset.
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Fig. 1 The basic framework of
the CNN model

The CNN-based deep learning technique for SHMof a 3D
frame structure is developed to classify the different damage
cases as given in Table 2. In the present work, the scalogram
images are generated by performing a continuous wavelet
transform of time-history acceleration responses that are col-
lected under impact excitations. In this study, analytic Morse
wavelet functions are utilized as original wavelets based on
many trials. The RGB scalograms are stored as the image
and as input to the CNNmodel. To train the CNNmodel, the
data was collected under one undamaged and three different
damaged cases. The model is validated after the training pro-
cedure and employed to predict the set classes for the input
of test batch images.

It is observed from past studies that CNN requires a
huge number of image datasets for classification (Han et al.
2018; Sharma et al. 2018). However, in the health monitor-
ing domain, the experimental procedure can be repeated for
limited trials, which produce a limited number of images.
In the present work, each experimental case is repeated for
20 trials. In order to generate a huge dataset for training the
model, the image augmentation process is applied by adding
different levels of white Gaussian noise to raw experimental
scalogram images.

2.3 CNNmodel

CNN is a type of deep neural network that is used for
recognizing (Gopalakrishnan et al. 2017). CNN works and
recognizes images in the same way that our brain does. The
basic framework of the CNN model is shown in Fig. 1. The
whole framework is divided into two primary phases: fea-
ture extraction and classification. To consider all significant
aspects of the image, the size of the kernel and the number of
kernel filters are taken into consideration in the current study
as 8 × 8 pixels and 20, respectively. A stride, or moving in
the “horizontal” and “vertical” directions, is considered one
pixel. The image is sent to the feature selection layer, and
then selected features are fed to the classification layer.

The output is made by the classification neural network,
which works based on the image’s features. The feature
extraction neural network includes the sets convolution layer
(CL) and the sets pooling layer (PL). The input image is
transformed by a CL so that features can be extracted from
it; this process is achieved by a kernel (or filter). A kernel is
a small matrix whose height and width are less than those of
a convolved image. The PL makes a single pixel out of the
pixels that are adjacent to each other. Consequently, the PL
decreases the dimension of the image. As the main purpose
of a convolutional neural network is to process images, the
CL and PL operate in a 2D plane. Mean pooling and max-
pooling are the two types of pooling operations that may be
performed. However, prior research indicates that for image
processing, max-pooling performs better thanmean-pooling.
In the present study, the max pooling layer’s sliding win-
dow size is [2 × 2] and the stride’s sliding window size is
2, respectively. Max pooling chooses the sliding window’s
maximum value. This is one major difference between con-
volutional neural networks and other neural networks. After
the PL operation, the classification process starts in a fully
connected layer in the form of a linear transformation to
the input vector through a weight matrix (Gao and Mosalam
2018; Kim et al. 2021). In the present research, SoftMax is
utilized as the last layer of the CNN model, and it indicates
the probability of each class and shows that a particular image
corresponds to a specific class.

3 Experimental investigation

3.1 Experimental setup

For the validation of the proposed health monitoring tech-
nique, a five-story 3D steel frame structure is considered in
the i4S experimental laboratory, IIT Mandi (HP), India, as
shown in Fig. 2. Each component is made of grade 304 stain-
less steel. The frame specifications are given in Table 1. The
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Fig. 2 Experimental setup

Table 1 Physical parameters of the experimental model frame

Parameters Details

Height of column 200 mm

Clear length beam (Type-1) 300 mm (node-to-node distance
350 mm)

Clear length beam (Type-2) 350 mm (node-to-node distance
450 mm)

Cross section of a column 8 × 8 mm

Cross section of a beam 6 × 6 mm

Modulus of Elasticity 188.50 GPa

Shear modulus 75.50 GPa

Density 8067.0 kg/m3

Poisson’s ratio 0.265

ends of the beams and columns connect to incorporate the C-
shaped joint arrangement with a bolted connection, as shown
in Fig. 3 and the base of the frame is fixed with a C-clamp.

To vibrate the frame in a broad range of frequencies, the
frame is horizontally vibrated by an impact hammer with
a measurement range of ±2224N, resonant frequency of
≥ 22 kHz, and sensitivity of 2.25 Mv/N applied at the top of
the frame, as shown in Fig. 4 and measured impact excita-
tion depicted in Fig. 6. The piezoelectric accelerometers have
the model number 7101A-0050, type IETE, measurement
range 50 g, frequency range: 0.3/0.5–10,000 Hz, sensitivity:
100 mV/g, co-variance (g2): 7.73 × 10−8 are attached to the
middle of the beam and column (Fig. 4). TheDewesoftX data

Fig. 3 Schematic view of beam-to-column connection

acquisition system is used to collect acceleration responses
in the time domain. For collecting the excitation force and
the horizontal acceleration response, a seven-channel data
recording system is used. Specifically, the measurements are
taken in a horizontal direction perpendicular to the mem-
bers. The acceleration data were collected for various trials
from each sensor. The damage is induced by the complete
loosening of bolts at the (nodes) joints. In this context, the
acceleration data was collected under undamaged Fig. 5a and
different damaged Fig. 5b cases, as mentioned in Table 2, at
a constant sampling frequency of 500.0 Hz.

It has been found in the FFT curve of the force that its
amplitude is up to 50 Hz, almost constant. Hence, the force
measurement spectrum from the hammer is verified to be
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Fig. 4 Impact hammer location and accelerometer positions

Fig. 5 Acceleration signal for a undamaged (und) and b damaged
(dam3) cases

Table 2 Details of experimental cases

Cases Illustration

und All bolts are tightened

dam1 Joint no. 20 is loosened

dam2 Joint no. 14 is loosened

dam3 Joint no. 12 is loosened

Unseen dataset (und2, dam4, dam5, and dam6) tested with the
pretrained model

und2 All bolts were tightened after all damaged tests were
carried out

dam4 Joint no. 17 is loosened

dam5 Joint no. 16 is loosened

dam6 Joint no. 10 is loosened

constant within the analysed frequencies (0–250 Hz). The
Force spectrum for undamaged (und) and damaged (dam1)
cases are shown in Fig. 6a–d, respectively. It has been found
that the spectrum is similar for all the cases and for all tri-
als. To maintain the consistency of the data, the data were
normalized with respect to one particular excitation. There-
fore, it is considered that the decaying of the force spectrum
amplitude will not affect the outcome of the deep learning
model.

Using the sensor data, the natural frequencies are iden-
tified by performing an FFT approach. Along with the
commercial software ABAQUS, an FE model of the experi-
mental setup has been developed. The 3D frame model and
its mode shapes are shown in Fig. 7. This modelling aims to
carry out modal analysis on the numerical replica to enable
modal matching. The natural frequencies (Hz) of experimen-
tal and numerical studies for the undamaged case are given
in Table 3.

3.2 Temperature variability

In this section, both the localization and severity estimation
of damages to the 3D frame structure are carried out under
environmental changes using theCNN-based techniquemen-
tioned earlier. In this research work, temperature changes
were considered the origin of environmental changes (Sohn
2007).

Some previous studies (Cornwell et al. 1999; Faravelli
et al. 2011; Peeters and Roeck 2015) assumed either the
material’s density or Young’s modulus as the most affected
parameters due to the temperature variations. They observed
that when the temperature changes by 3C, the frequency of
steel tower structures changes by 0.5% on an hourly basis.
For bridge-type structures, on a daily or seasonal basis, the
frequency variation was 5–10%. In the present study, it is
observed that there are changes in the natural frequency range
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Fig. 6 Force spectrum of undamaged case for a trial 1, b trial 2, and force spectrum of damaged (dam1) case for c trial 1, d trial 2

from 0.7% to 2.95% per increasing 10 °C temperature. In
this research, a different method (circular shifting) was pro-
posed for creating synthetic data under temperature changes.
It would be better to state here that, due to the constraints of
lab equipment, tests at different temperatures cannot be done
in the lab.

Initially, the time-domain data was changed to create fre-
quency bands (Eq. 3) to determine the natural frequencies
of the structure. Then, the first natural frequency was moved
by + 0.50%, −0.50%, + 1%, −1%, −1.30%, and + 1.30%,
which may encompass a broad range of temperature changes
(± 9 °C). To figure out the procedure, an example of a + 1.3%
shifting of frequency is to be taken, as shown in Fig. 8. Due
to the shifting, some parts of the bands will extend outside
250 Hz, which was picked out and put at the beginning of the
bands, as shown in Fig. 9. In this process, there is no variation

in energy.

Zc(ω) �
√

2

π

∫ π

0
z(t)cos(ωt)dt (3)

Consequently, the shifted frequency bands have been
changed into the time domain by utilizing the inverse cosine
transform using Eq. 4. This changed dataset can be taken
as a synthetic experimental time-domain response of the
structure at various temperatures. Like this, the dataset was
created for the other cases as mentioned in the previous para-
graph.

z(t) �
√

2

π

∫ π

0
Zc(t)cos(ωt)dω t ≥ 0, (4)

As shown in Fig. 10a, it is observed that the original spec-
trum has a first natural frequency amplitude of 5.33075 Hz.
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Fig. 7 3D frame model in ABAQUS and its various mode shapes

Table 3 Comparison of natural frequencies (Hz) for undamaged case

S. no Frequency (Hz)

Experimental Numerical

1 5.330 5.518

2 6.257 6.534

3 7.682 7.893

Fig. 8 a FFT of actual experimental data and b FFT of shifted data.

When the spectrum is shifted by 1.3% Hz, the first natu-
ral frequency amplitude increases by 5.4519 Hz, which is
nearly equal to the shift by 1.3% Hz of the original spec-
trum. This indicates that when the spectrum is shifted to the
right side, its amplitudes increase. The comparison of orig-
inal and shift signals is shown in Fig. 10b, which facilitates
the visualization of variations in the (time-domain) original

Fig. 9 Frequency shifting
procedure
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Fig. 10 a Original and shifting
spectrum (time and frequency
domain), b comparison of
original and shifted signals (time
domain)
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Fig. 11 Scalogram images of a original and b shifted spectrum

signal (blue) and the shifted signal (red). Moreover, it is also
observed in the scalogram image Fig. 11b that shifting oper-
ations increase the amplitude of frequency peaks and intense
colours as compared to Fig. 11a.

3.3 Damage location and severity

After the dataset was created for the different temperature
levels, the dataset for both damaged and undamaged cases
was separated, as given in Table 2. After that, the original
experimental data was utilized to create the training images,
as previously mentioned, and the image dataset created from
the experimental synthetic datawas utilized to test themodel.
The localization and severity of the damage were achieved
using the same classification approach that was explained
earlier. In this work, 1 undamaged case and 3 different dam-
aged cases were each treated as a separate class, and each
class represents a particular location and severity of the dam-
age. The output of the study was reported in the results and
discussions section.

4 Results and discussions

For various configurations of the structure, the experimental
acceleration data was taken from the seven accelerometers.
The sensors are placed in themiddle of the beam and column,
as shown in Fig. 6. The acceleration signals for the undam-
aged (und) and damaged (dam3) cases are depicted in Fig. 6a,
b. Likewise, the acceleration responses are acquired for 4
cases: und, dam1, dam2, and dam3. In all cases, acceleration
time domain signals are received from all 7 sensors for 20 tri-
als and changed to time–frequencydomain scalogram images
by performing a continuous wavelet transform in MATLAB,
as shown in Fig. 12a, b. The time–frequency scalogram data

in this study provides time as well as frequency information,
serving as an extensive visual representation for the time and
frequency-based features, whereas the time-history data in
this study simply contains time-response information. For
this research, the scalogram images are taken into account
because the time–frequency image hasmore features than the
raw time-history data (Han et al. 2018; Sharma et al. 2018).
For each experimental trial, 7-scalogram images have been
produced, and for each configuration, 7 × 20 � 140 scalo-
grams are obtained. The size of the colour image is found
[876 × 656 × 3] (length × height × number of channels).
To minimize the computational work, the dimension of the
image is minimized to [224× 224× 3] pixels by performing
the imresize function in MATLAB.

Additionally, as shown in Fig. 13, employing the imnoise
function inMATLAB and adding Gaussian noise with a zero
mean and different variance to the reduced images results in
an image augmentation process. TheGaussian noise variance
has values between 0.01 and 1 (Shijie et al. 2017;Wang et al.
2016). In this study, the variance sets taken are 0.0001, 0.001,
and 0.01.

The study utilised a typical random uniform noise
approach to add to the original resized image dataset (y).
The process of creating a new dataset (y) from the original
dataset is defined mathematically by Eq. 5.

y � y + RND(0.0001, 0.01) × Noisei (5)

To include noise, a level of noise multiplied by a random
uniform number (RND) in the range (0.0001, 0.01) and a
model parameter Noisei , provide an adjustable option for
the amount of noise introduced during the data augmentation
procedure (Moreno-Barea et al. 2018).

In the present work, among 7 sensors (20 trials), 6 sensors
(20 trials) raw images are utilized for training and validation,
and 1 sensor (20 trials) raw images are utilized for testing
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Fig. 12 Scalogram images of undamaged (und) and damaged (dam3) respectively

Fig. 13 Scalogram image
development, reduced image, and
augmented image procedure

Acceleration data

CWT imresize Zero 
mean 

Gaussian 
noise

Scalogram image 

Pixels: 875×656

Resized image 

Pixels: 224×224
Augmented 

image

Table 4 Distribution of image
dataset for training, validation,
and testing

Experimental
cases

Experimental images Total Images (Experimental +
Augmented)

Training and Validation
(20 trials × 6 sensors)

Testing (20
trials × 1
sensor)

Training and Validation Testing

Training
(90%)

Validation
(10%)

Training
(90%)

Validation
(10%)

und 108 12 20 324 36 60

dam1 108 12 20 324 36 60

dam2 108 12 20 324 36 60

dam3 108 12 20 324 36 60

Total image dataset from all cases 1296 144 240

the CNN model (the positions of the sensors are shown in
Fig. 4). Further, the image augmentation is carried out by
adding zero-man Gaussian noise, as given in Table 4. For
each individual case, slight variation will be there due to
various disturbances during the experiment. Hence, for each
individual case, slight variation will be observed in the data.
However, when the structures are in different condition, then
there will be significant variation in the data compared other
conditions which will produce different sets of data. There-
fore, to train the CNN model, each case was repeated for 20

times which will ensure small variations in the data for an
individual case and large variations among the cases.

The training of themodel is stopped after 14,400 iterations
with 80 epochs, and the validation accuracy of the model is
found to be 94.38%, as shown in Fig. 14.

A tenfold cross-validation test is alsoutilized toget a confi-
dence level of accuracy for themodel, and the average results
of each class are presented in the confusion matrix (CM) in
Table 5. In the study, the testing results are computed as
(0.823 + 0.818 + 0.973 + 0.99) × 100/4 � 90.1%. From the
results, it is observed that the developed CNN-based SHM
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Fig. 14 Graph of the accuracy
and loss of the CNN model

Table 5 CM for average tenfold
classification testing results Cases dam1 dam2 dam3 und

dam1 0.823 0.108 0.064 0.005

dam2 0.171 0.818 0.011 0

dam3 0.011 0.011 0.973 0.005

und 0 0.005 0.005 0.99

technique can differentiate between undamaged and differ-
ent damaged cases with a testing accuracy of 90.1%. The
CM matrix’s diagonal elements (bold) represent the number
of accurately classified cases for each class.

Classes dam1, dam2, dam3, and und are labelled in this
matrix as actual cases (rows) and predictions (columns). The
normalised values are presented in a CM to represent the per-
centage of predictions for each actual class. Intersection over
Union (IoU) is often employed in themetric image classifica-
tion process. These sets represent a class’s true and expected
labels. The following is the formula for IoU:

IoU � TP

TP + FP + FN
(6)

whereTP is the true positive (the number of actual predictions
for a class). FP (false positives) is the number of incorrect pre-
dictions or occurrences for a class. FN (false negatives) is the
number of occurrences that belong to a class but belong to a
different class.

Considered the given matrix (Table 5) as an example for
one class (dam1) to illustrate this:

TP for dam1 � 0.823 (diagonal element of dam1).
FP for dam1 � sum of the dam1 column (0.823 + 0.171 +
0.011 + 0)—TP of dam1 (0.823) � 0.182.

FN for dam1 � sum of the dam1 row (0.823 + 0.108 + 0.064
+ 0.005)—TP of dam1 (0.823) � 0.177

IoU score for dam1 � 0.823

0.823 + 0.182 + 0.177
� 0.696

Similarly, IoU scores for each class.

IoU scores for dam2 � 0.728.
IoU scores for dam3 � 0.901.
IoU scores for und � 0.980

Mean IoU of all classes

� (0.696 + 0.728 + 0.901 + 0.980)

4
� 0.826

Further, the robustness of the developed CNN-based tech-
nique is examined by identifying the location and severity of
the damage under temperature variability. For that purpose,
four classes (und, dam1, dam2, and dam3) are considered. As
explained in Sect. 3, six different temperature changes were
considered, and the same network was tested for temperature
variation (± 9 °C temperature variation can be identified).
The average tenfold classification testing results are given in
Table 6, and the testing accuracy is 82.8%.

Additionally, to check the effectiveness of the developed
CNN-based technique, the floor level of the joint damage is
identified. For that purpose, four classes (und2, dam4, dam5,
and dam6) are considered, as given in Table 2. To meet this
objective, the scalogram images of the four cases are fed into
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Table 6 CM for average tenfold
classification testing results
under temperature variability

Cases dam1 dam2 dam3 und

dam1 0.853 0.129 0.009 0.009

dam2 0.23 0.752 0.018 0

dam3 0.009 0.009 0.982 0

und 0 0.005 0 0.995

Mean IoU of all cases � 0.821

Table 7 CM for average tenfold
classification testing results of
the pre-trained model

Cases dam4 dam5 dam6 und2

dam4 close to dam1 0.764 0.093 0.107 0.036

dam5 close to dam2 0.107 0.836 0.057 0

dam6 close to dam3 0.028 0.014 0.942 0.016

und2 close to und 0.001 0.007 0.022 0.970

Mean IoU of all cases � 0.785

the pre-trained model. The average testing results are given
in Table 7, and the testing accuracy is 87.8%. This implies
that if a damage case is near a particular training class, it
can be classified according to its closest class. This clearly
shows that the technique can detect the floor level of joint
damage even with the data for which the network has not
been trained.

Furthermore, a comparative study is performed by com-
paring the results of the CNN model with the AlexNet
model. The AlexNet model also provides better classifica-
tion accuracy. The complete overview of the AlexNet model
is presented in a study (Amanollah et al. 2023). To illustrate
how effectively the AlexNet model performed in the classi-
fication process, as shown in Fig. 15.

The training of the model is stopped after 1680 iterations
with 20 epochs, and the training and validation accuracy of
the model is found to be 95.63% and 95.33%, as shown in
Fig. 15a. The average testing results of each class are pre-
sented in the confusion matrix (CM) in Table 8.

From the results, it is observed that the AlexNet model
can differentiate between undamaged and different damaged
cases with a testing accuracy of 94.375%.

The robustness of the AlexNet model is examined by
identifying the location and severity of the damage under
temperature variability with a testing accuracy of 90.25% as
given in Table 9.

To check the effectiveness of the AlexNet model, the floor
level of the joint damage is identified with a testing accuracy
of 92.5% as given in Table 10.

5 Conclusions

In the present study, a health monitoring technique for joint
damage in a 3D frame structure using CNN is developed.
For that purpose, a five-story 3D steel building frame is con-
sidered. The robustness and effectiveness of the technique
for the detection, localization, and severity of damage were
examined for different temperature conditions and with the
unseen data collected from the different joints at the same
floor level.

• The average training and validation accuracy is found
to be 100% and 94.3%, respectively, whereas the testing
accuracy is 90.1%, which indicates that the technique can
differentiate between undamaged and damaged cases.

• The study considers the shifting of natural frequencies (+
0.50%, −0.50%, + 1%, −1%, + 1.3%, and −1.30%) as
the cause of temperature changes that may cover (± 9 °C)
variations. The results show that with these variations, the
technique can classify the cases with 82.8% accuracy.

• The floor level of the joint damage was also successfully
identified with an average testing accuracy of 87.8% using
unseen images that were not even used for training.

• The average training and validation accuracies of the
AlexNet model are found to be 95.63% and 95.33%,
respectively, whereas the testing accuracy is 94.37%,
which indicates that the technique can differentiate
between undamaged and damaged cases.

• The testing accuracy of the AlexNet model under consid-
eration of temperature variation is found to be 90.25%,
whereas the floor level of the joint damage was identified
with a testing accuracy of 92.25%.

• The IoU scores for every class show a strong classifica-
tion performance of the model between the classes while
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Fig. 15 Graph of the accuracy
and loss of the AlexNet model

Table 8 CM for average tenfold
classification testing results of
AlexNet model

Cases dam1 dam2 dam3 und

dam1 0.895 0.08 0.015 0.01

dam2 0.07 0.925 0.005 0

dam3 0 0.045 0.955 0

und 0 0 0 1.00

Mean IoU of all cases � 0.896
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Table 9 CM for average tenfold
classification testing results
under temperature variability

Cases dam1 dam2 dam3 und

dam1 0.88 0.10 0.015 0.005

dam2 0.18 0.80 0.02 0

dam3 0.015 0.015 0.97 0

und 0 0.025 0.015 0.96

Mean IoU of all cases � 0.828

Table 10 CM for average tenfold
classification testing results of
the pre-trained model

Cases dam4 dam5 dam6 und2

dam4 close to dam1 0.86 0.06 0.06 0.02

dam5 close to dam2 0.065 0.905 0.03 0

dam6 close to dam3 0.015 0.005 0.965 0.015

und2 close to und 0 0.025 0.005 0.970

Mean IoU of all cases � 0.861

considering false positives and false negatives. Based on
their IoU scores, it is observed that ‘dam3’ and ‘und’
classes show high separability and low confusion with
other classes.

• The results indicate that the proposed technique has the
potential for the development of an industry-grade automa-
tion tool for theSHMof connections in 3D frame structures
and will significantly contribute to the field of research.

• The study further emphasizes that before the technique
is generalized, the effects of the operational and environ-
mental variablesmust be validatedwith real-structure data,
which is ongoing research by the authors.
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