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Abstract
In civil engineering applications, piles, categorized as deep foundations, provide solid support for buildings by being pushed
into the soil. The careful evaluation of the settling of foundations is crucial during the design phase due to their significant
load-bearing capability. Therefore, the management and evaluation of settlement present a significant challenge within the
piling design and construction domain. The novelty of this study could be combining the Adaptive Neuro-Fuzzy Inference
System (ANFIS) with the Equilibrium Optimizer (EO), the Black Widow Optimization Algorithm (BWOA), and Particle
Swarm Optimization (PSO), specific application to rock settlement prediction, use of local data, selection of key input
parameters, and practical implications. The findings suggest that all ANFE, ANFB, and ANFP have significant promise in
properly forecasting the pile settlement (SP). Uncertainty analysis depicts a better performance of the ANFE compared to
ANFB by gaining 0.4916 lower than 0.7485 in the train part and 0.7099 smaller than 0.94 in the test part. It is important to
note that deleting the UCS variable from the input category leads R2 to decrease and RRSE, MAE, and U95 to increase.
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1 Introduction

Rock-socketed piles use a combination of end bearing, shaft
resistance, and a hybrid of these two systems to protect
against imposed pressures. The use of piles in rock forma-
tions has been proposed as a potentially optimal arrangement
in scenarios where an unsteady soil foundation overlays
bedrock at a shallow depth (Sarkhani Benemaran et al.
2022a). Even if there is minimal pile displacement in these
circumstances, the structural frame’s resistance may impact
the extraordinary load-carrying capacity (Carrubba 1997).
Requirements for socketed piles are rising since there is a
rising requirement to improve piles’ structure and design effi-
ciency. Both practical and mathematical methods impact the
design of rock-socketed piles. A thorough modeling exami-
nation is, thus, planned. The findings show that bothmethods
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are suitable for building rock-based socketed piles (Ng et al.
2001).

The application of machine learning-based algorithms
to estimate various properties in civil engineering was
reported successfully recently (Sarkhani Benemaran et al.
2022b, 2024; Sarkhani Benemaran and Esmaeili-Falak 2023;
Esmaeili-Falak and Sarkhani Benemaran 2024). Neverthe-
less, due to the intricate nature of the pile’s motion, no more
dependable alternatives provide inaccurate estimates. Given
the significance of pile settlement (SP) in pile architecture, a
novel approach using soft computing techniques is presented
to anticipate SP (Carrubba 1997).The precision of the input
data plays a vital role in determining the effectiveness of esti-
mating heaps. The following statements aim to reassess the
relevant literature to determine the suitable input factors for
predicting the progress of SP . Based on an academic publi-
cation, several parameters have been identified as influential
in the settling of the pile’s foundations, such as the magni-
tude of the applied force, the length of the pile, the modulus
of shear of the soil, the width of the pile, and the angle at
which the shear force becomes insignificant (Randolph and
Wroth 1978).Within the framework of this specific geolog-
ical creation, prior research has found that the unconfined
compressive strength (UCS) of rocks acts a pivotal role in
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ascertaining the capacity of the pile, therefore influencing
the SP (Tirant 1992). The information analysis approach
was expanded to include the forecasting of foundation set-
tling by including traditional penetration test findings. The
present model was enhanced with around 1000 estimations
from other articles, like ground data (Nejad et al. 2009). A
neural network-based approach was developed to forecast
the settlement of raft foundations on non-cohesive soils. The
assessment or ground assessment included soil properties,
footingmeasurements, and strengthening criteria (Soleiman-
beigi and Hataf 2006). The evidence indicates that several
important variables are critical in determining the settling of
rock-socketed piles. These variables are the rock’sUCS, the
length-to-diameter ratio, the pile power, the proportion of the
pile’s length in the soil to its length in the rock, and amount
of NSPT (Shahin et al. 2002). Data mining techniques are
expanded algorithms to address geotechnical issues that are
discussed in many works (Momeni et al. 2015; Armaghani
et al. 2016). To accurately forecast the depth of scouring
around bridge piers (Najafzadeh and Barani 2011), as well
as the formation of scour pile groups resulting from wave
action (Najafzadeh and Azamathulla 2015), it is important
to possess a comprehensive understanding of the cohesive
properties of the soil (Najafzadeh et al. 2013). The genetic
algorithm and genetic programming, also referred to as gene
expression programming (GEP), are widely acknowledged
as predictive approaches in the field such as liquefaction
(Raja et al. 2023a). Through the use of approaches such as
GEP , it becomes feasible to create an innovative solution
by building a linkage between the input variables and their
related output. Several analytic methodologies, including
multivariate adaptable regression spline (MARS), Gaus-
sian method regression, and minimax probability machine
regression, have been extensively and correctly used in prior
research endeavors (Samui 2019; Le and Le 2021). The sys-
tematic application of GEP has facilitated the development
of effective resolutions for several challenges encountered in
geotechnical engineering (Dindarloo 2015).GEP was taken
into consideration while trying to determine the axial abil-
ity of the piles (Alkroosh and Nikraz 2011). The authors
proposed a unique description using the GEP technique to
approximate the deformation moduli of soil (Mollahasani
et al. 2011). Additional research was undertaken utilizing
three different algorithms, namely the multilayer perceptron,
supporting vector machine, and GEP , to forecast the UCS
of rock (Dindarloo 2015). The GEP approach is used to
ascertain the deformation modulus of a stratified sedimen-
tary rock creation (Alemdag et al. 2016).

A novel methodology has been devised to forecast SP
using GEP in conjunction with multiple linear regression.
To receive this data, a comprehensive study was performed
on a substantial number of rock samples that were gath-
ered from the project situated in Malaysia. Results suggest

a strong probability of achieving success in the GEP anal-
ysis, as demonstrated by R2 coefficients of 0.872 and 0.861
for the training and testing records, respectively. The root
mean square error (RMSE) values were around 1.29 and
1.65 for the training and testing, respectively, further demon-
strating the effectiveness of this method for forecasting SP
(Armaghani et al. 2018). A model derived from a soft com-
puting technique linked to swarming optimization was the
goal of several investigations to anticipate SP . The proba-
bility stage of the suggested hybrid algorithm’s performance
in forecasting pile settlement was shown to have coefficients
of determination that had been in the train 0.851 and test
0.079 (Armaghani et al. 2020).

Research uses an optimized Radial Basis Function Neu-
ral Network (RBFNN) to achieve its goals. This method is
used to evaluate how well the chosen methods perform in
the setting of this study. RBFNN have been proven to be
useful in a variety of scientific and technological contexts in
several types of research. An effective approach for rainfall
predicting involves the use of a hybrid RBFNN that has been
tuned using both Particle Swarm Optimization (PSO) and
genetic algorithm techniques (Wu et al. 2015). The alloca-
tion of resources has been achieved using quantum PSO and
RBF neural network techniques (Xu et al. 2016). The use of
RBF neural networks in conjunction with the cuckoo search
algorithm has been employed to accomplish the modeling of
overhead crane systems (Zhu and Wang 2017). The com-
putational analysis of a competitive swarm optimized RBF
neural network has been important in enhancing the accuracy
of short-term solar energy generation forecasts. Furthermore,
optimizing the RBFNN using a sine–cosine method has
successfully achieved sonar goal sorting.

Researchers in the study hoped to get an understanding
of how to use SV R to predict pile settlement. They may
improve the accuracy of the prediction with the addition of
meta-heuristic approaches like the Arithmetic Optimization
Algorithm (AOA) or the Grasshopper Optimization Algo-
rithm (GOA). When compared to the SV R − GOA′s R
value of 0.99, the SV R − AOA′s ratio of 0.994 is within a
reasonable margin of error (Ge et al. 2023). To precisely cal-
culate the vertical motions of piles under both dynamic and
static loading conditions, researchers have turned to using
Artificial Neural Networks (ANN ). Using a RBFNN , the
Equilibrium Optimizer Algorithm (EOA), and the GOA,
the ideal number of neurons in the hidden layer was calcu-
lated. After running simulations, the RMSE error ratios for
RBF − GOA (0.6312) and HRBF − EOA (0.5947) were
found (Jiang 2022). To find the right number of neurons in
hidden layers, this research suggests combining the Hybrid
Radial Basis Function (HRBF) neural networkmethodwith
the AOA and Biogeography-Based Optimization (BBO).
TheKlangValley transportation network, including theMass
Rapid Transit system inMalaysia, was the primary subject of
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the research, emphasizing assessing the settling of piles and
ground structures. For this study,we used the HRBF−AOA
and HRBF − BBO scenarios. Throughout making predic-
tions, the R values were 0.9825 for HRBF − AOA and
0.9724 HRBF − BBO (Zhang et al. 2022). Multivariate
adaptive regression splines (MARS) were proposed as a
method of forecasting pile settlement at varying degrees of
interface. Results show that the order 3 MARS framework
performs better than the others, with performance index (P I )
levels of training (0.0541) and testing (0.0951) [49], utiliz-
ing the P I as a holistic evaluation of network efficiency (Zuo
2022).

1.1 The objective of this study

The novelty of your study lies in several aspects:

• Integration of ANF I S with optimization algorithms:
Combining the Adaptive Neuro-Fuzzy Inference System
(ANF I S) with optimization algorithms like the Equilib-
rium Optimizer (EO), the Black Widow Optimization
Algorithm (BWOA), and PSO is innovative. This inte-
gration can potentially improve the accuracy and efficiency
of predicting pile settlement in rock formations compared
to using ANF I S alone or other traditional methods.

• Specific application to rock settlement prediction: This
study focuses on predicting the settlement of piles in rocks,
which is a critical issue in geotechnical engineering.While
there are various methods for predicting pile settlement,
applying ANF I S and optimization algorithms specifi-
cally to rock formations is relatively novel.

• Use of local data: This study utilizes data from the Klang
Valley Mass Rapid Transit (KVMRT ) project in Kuala
Lumpur, Malaysia. Using local data is important because
geotechnical conditions can vary significantly from one
location to another. Applying these methods to a specific
regional project adds a practical and site-specific dimen-
sion to the research.

• Selection of key input parameters: Your study identi-
fies and uses five key input parameters, including the
ratio of pile length in different layers, total length-to-
diameter ratio, uniaxial compressive strength, standard
penetration test results, and final bearing capacity. The
selection of these parameters and their combination within
the ANF I S framework represents a unique approach to
solving the problem of pile settlement prediction in rocks.

• Practical implications: The study’s findings can have
practical implications for engineering and construction
projects in regions with similar geological conditions to
Kuala Lumpur. Accurate prediction of pile settlement is
crucial for ensuring the stability and safety of structures,
and this research could potentially contribute to more reli-
able foundation design practices.

2 Methodology

2.1 Dataset and pre-processing

Creating a suitable dataset with extremely efficient depen-
dent variables is the first step in constructing a model for
forecasting. The most influential factors on a model’s results
should be described. The mentioned tests were conducted
with a pile evaluation instrument developed byPileDynamic,
Inc. The rate at which the pile undergoes distortion is gov-
erned by its dimension and length, as discussed earlier. This
article utilized the dataset related to the Klang Valley Mass
Rapid Transit (KVMRT ) project in Malaysia, where the
location and circumstances of the project are provided in
Fig. 1 (Armaghani et al. 2020). So, the present research looks
at the ratio of the length of the pile in the soil layer to the
pile length in the stone layer (Ls/Lr ) and the ratio of total
pile length to pile width (L p/D) to figure out how pile shape
affects things.Moreover, theUCS was added as the system’s
input for the purpose of forecasting pile collapse, owing to
its considerable importance. The metric NSPT has been gen-
erally acknowledged as a significant factor in assessing the
condition of the layer of soil. The input for the entire pile-
bearing ability (Qu) was also supplied since the force placed
on the pile directly affects sinking. To assess the settling of
the pile (SP), five input factors were applied. According to
the literature (Aghayari Hir et al. 2022; Bardhan et al. 2022;
Raja et al. 2023b; Sarkhani Benemaran 2023), several ratios
could be considered for dataset division into training and
testing portions, such as 70/30, 80/20, 75/25, and 90/10. In
the present study, the models were developed using all of
these ratios, and the best ratio of 75% / 25% was selected for
phases. Table 1 provides an overview of the inputs and out-
puts used in each model employed for this study, along with
their corresponding intensities. Furthermore, Fig. 2 presents
a visual representation of the bar chart and lognormal distri-
bution of inputs and output.

The Pearson correlation coefficient (Eq. 1) is used to
assess the magnitude and degree of the linear connection
between two discrete parameters. Itmeasures howeffectively
a straight line can capture the connection between the two
parameters. This statistic has a value that ranges from − 1
to 1. A complete positive linear connection is shown by a
coefficient of + 1, which means that if one variable rises,
the other rises correspondingly as well. A complete negative
linear connection, as shown by a coefficient of − 1, means
that when one variable rises, the other falls proportionately.
There is no linear link between the two variables, as shown by
a correlation coefficient of 0. The findings show that (Fig. 3),
with minor exceptions, the majority of the variables show
strong linear relationships. In addition to this, a 0.78 positive
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Fig. 1 Location of the KVMRT project

Table 1 The statistical values of the input and output variables

Abbreviation Unit Phase Min. Max. Avg. St. D. Skew.

Input Ls/Lr − Train 0.571 31.714 7.627 6.400 1.488

Test 0.29 27.43 5.37 6.75 2.08

L p/D − Train 5.420 31.563 15.627 6.345 0.395

Test 4.33 28.87 14.58 7.08 0.44

UCS MPa Train 25.324 68.489 42.918 12.552 0.346

Test 26.475 66.187 44.892 11.988 0.308

N − Train 2.920 166.423 75.912 59.551 0.050

Test 5.84 160.58 92.40 55.85 - 0.46

Qu kN Train 13,868.6 41,605.8 24,974.6 7904.4 0.4

Test 12,408.7 42,700.73 23,236 8257.9 0.944

Output SP mm Train 4.607 20.095 11.168 3.601 0.215

Test 4.494 18.972 10.457 3.898 0.542

connection between Ls/Lr and L p/D was found. In terms
of negative values, UCS and SP were separated by -0.753.

γz, t � covariance (z, t)

standard deviation (z) × standard deviation (t)
(1)

2.2 Equilibrium optimizer (EO)

The unique meta-heuristic algorithm known as EO was
introduced by Faramarzi et al. (Faramarzi et al. 2020) as
a means to address optimization challenges. This method
draws inspiration from the mass balancing mechanism used
in control-level systems. EO has commendable efficacy in
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Fig. 2 The lognormal distribution
of parameters in the train and test
phases
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Fig. 3 The Pearson correlation analysis

addressing evaluate optimization problems with dimensions
of up to 200. EO includes three important facets: the process
of initialization involves setting up the balance pool, which
consists of four members and their average position. In addi-
tion, the updating method incorporates an exponential part
and creation ratio. The fundamental principles of EO are
presented in the following manner. During the initialization
step, the locations of search agents, often referred to as par-
ticles, are randomly created inside the search space. This is
typically represented as:

Xinitial
i � lb + rini (ub − lb) (2)

The initialization location of the i − th particle, denoted
as Xinitial

i , is determined by a random vector, rini , which is
created from the interval (0,1). lb and ub respectively, signify
the minimum and maximum values for the design parameter.

The balanced pool of evolutionary optimization (EO)
comprises many agents of search that are in close proxim-
ity to the near-optimal answer. The balanced pool consists
of five candidates, namely four elements with the highest
fitness values and a fifth element determined by averaging
the positions of the four best-performing elements. Potential
choices inside the balance pool are first produced during the
startup step and then adjusted after every repetition during
the optimization stage.

Xeq , pool � {Xeq(1), Xeq(2), Xeq(3), Xeq(4), Xeq(ave)} (3)

The symbol Xeq , pool denotes a balance pool, whereas
Xeq(i)(i � 1, 2, 3, 4) indicates the four potential candi-

dates with the highest fitness values amid the elements. In
addition, Xeq(ave) refers to the average position of the four
best-performing particles seen so far. In each cycle, the opti-
mal particle to update the locations is selected randomly from
the balanced pool with the same chance.

The optimization method involves updating the balance
pool as well. During the update section, the EO framework
adheres to two primary rules to follow: the focus updating
rule, which is regulated by the exponential element (F), and
the equilibrium state rule, which is governed by the creation
ratio (G). The exponential element (F) has been officially
defined as:

F � a1sign(r1 − 0.5)[exp(−r2t) − 1] (4)

The variable a1, as stated by Faramarzi et al. (Faramarzi
et al. 2020), is set to a value of 2 to regulate the investigation
capability. The variables r1 and r2 represent random vectors
inside the interval (0,1), whereas t denotes the ratio of EO
and can be mathematically written as:

t � (1 − T /Miter )
(T /Miter ) (5)

where T is the current iteration andMiter represents themax-
imum number of iterations. The exploitation potential of EO
maybe regulated by adjusting the generation ratio (G), which
is defined as:

G � −P(Xeq − r2X (T ))F (6)

P �
{
0.5rdl .urd2 ≥ GP
0 rd2 < GP

(7)

Let Xeq represent the candidate chosen from the balance
pool as defined in Eq. (3).X (T ) denotes the present location.
The equation for GP may be expressed as GP � 0.5rd1,
where rd1 and rd2 are randomly generated values between 0
and 1. In addition, u represents the unit vector. The updating
method of search tools in EO is stated as follows:

X (T + 1) � Xeq + (X (T ) − Xeq )F + (1 − F)G/r3V (8)

The new location, denoted as X (T +1), is determined by a
random vector, r3, which is uniformly distributed across the
range (0, 1). In addition, V denotes a unit. In Formula (8),
the determination of the equilibrium concentration is mostly
governed by the first term. At the same time, the second term
predominantly influences searchability, while the third term
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primarily affects the exploitation ability. The procedure of
EO algorithm is provided step by step in Algorithm. 1.

Algorithm 1 EO’s steps Faramarzi et al. (2020)

20. End for

21. ++

22. End while 

1. Initialize the particles ( = 1,2,3, … , ) population

2. Fix the four particles’ suitable value in , , a great value

3. Fix value of variables 1 = 2; 2 = 1; = 0.5;

4. While ( < )

5. For every particle

6. Compute the particle’s suitable value if ( ⃗ )

7. Updating , ⃗ finer

8. End for 

9. ⃗ = ( ⃗ (1) + ⃗
(2) + ⃗

(3) + ⃗
(4))/4

10. The equilibrium pool ⃗ . = [ ⃗ (1), ⃗ (2), ⃗ (3), ⃗ (4), ⃗ ( )]

11. Finish the memory-saving

12. Utilizing Eq. (5), calculate 

13. For every particle

14. Choose a nominee at random from ⃗ .

15. Make the two vectors ⃗ and ⃗ at random.

16. Utilizing Eq. (4), compute ⃗

17. Utilizing Eq. (8), compute ( + 1)

18. Utilizing Eq. (7), compute 

19. Utilizing Eq. (6), compute 

2.3 Black widow optimization algorithm (BWOA)

Widows often inhabit forested areas as well as several other
regions around the world. One special kind of widow spi-
der is often referred to as the black widow, characterized by
its distinctive behavioral patterns. The black widow spider
often maintains a concealed presence during daylight hours,
reserving its activity for the nighttime when it retreats to
its web. The female black widow spider uses pheromones
to attract the male counterpart by marking certain areas of

her web during the mating process (El-Fergany 2018). By

reducing the size of the web, the first male widower to enter
the arena is able to steal attractive females from their male
rivals. In this particular reproductive behavior, the female
feeds the male partner in its entirety, afterward assuming the
responsibility of carrying the eggs inside a specialized egg
sac. Following the process of egg marking, the offspring par-
take in a period of sibling living together, during which they
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Fig. 4 Mutation

temporarily reside inside their mothers’ web. This arrange-
ment persists to the point when the offspring may even feed
their moms. Consequently, the widows who had strength and
physical fitness were more likely to succeed in this regular
pattern. The duration of the life of the widow is considered
to be a very effective approach for developing an optimal
algorithm.

2.3.1 A novel black widow optimization algorithm

In a manner similar to previous evolutionary algorithms, the
first phase of the innovative optimization process involves the
establishment of an initial population of spiders, and each
spider represents a potential solution. The primary objec-
tive of these female spiders, in conjunction with their male
counterparts, is to ensure the successful reproduction and
continuation of their lineage. During the mating period or
subsequent to it, the female widow spider engages in canni-
balistic behavior by consuming her male partner. Eventually,
she transfers preserved sperm into her sperm storage organs
and subsequently introduces them into the ovisacs. The ges-
tation period for spiders is around 11 days. During a certain
period ranging from a few days to a week, the offspring
cohabit inside the maternal web, during which instances of
sibling cannibalism have been seen. Finally, the little spiders
traverse the air currents.

2.3.2 Initial population

In the context of anoptimization problem involving N dimen-
sions, a window is conceptualized as an array of dimensions
(1 × Nvar ) that represents the solution to the optimization
problem. The array is represented by the following notation:

Widow � [x1, x2 . . . xNvar ] (9)

Each of the parameter amounts (x1, x2 . . . xNvar ) is rep-
resented as a floating-point number. The fitness an amount
of a widow is determined by evaluating the fitness func-
tion, denoted as f , at a widow consisting of parameters (x1,
x2 . . . xNvar ).

Fitness � f (widow) � f (x1, x2 . . . xNvar ) (10)

2.3.3 Generation

It is important to acknowledge that each couple is mutu-
ally separate, beginning the process of pairing to produce
offspring simultaneously, akin to natural occurrences. Every
couple has unique web compatibility. In nature, each suc-
cessful couple produces more than 1,000 eggs, but only a
few healthy spider lings survive. In the suggested process, it
is necessary to renew an array called alpha if a widow array
holding random numbers is present since this would result
in the creation of children. In the equation that follows, the
variables x1 and x2 are defined as parental entities, whereas
the parameters y1 and y2 are chosen to represent children.

{
y1 � α × x1 + (1 − α) × x2
y2 � α × x2 + (1 − α) × x1

(11)

This process is repeated Nvar/2 times, or until it is clear
that the random integers being used are unique.

2.3.4 Cannibalism

Within this particular stage, there are two distinct forms of
cannibalism. The first phenomenon under discussion is often
referred to as sexual cannibalism when the female black
widow spider consumes hermale partner either during or dur-
ing the mating process. The suggested method distinguishes
between females and men based on their respective fitness
scores. Sibling cannibalism is the second form, in which the
stronger spider lings use their weaker siblings. Identify if
spiderlings are strong or weak using the fitness amount.

2.3.5 Mutation

During this particular stage, the selection ofMuttpop is con-
ducted in a random manner, as seen in Fig. 4.

2.3.6 Convergence

Like other methods of evolution, it is possible to consider
three-stage scenarios: (A) a preset amount of rounds, (B) the
requirement that the fitness and amount of the best solution
remain unchanged for many iterations, and (C) the achieve-
ment of a certain degree of accuracy.
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2.3.7 Parameter setting

One crucial aspect of the suggested algorithm is the iden-
tification of several factors to get improved outcomes. The
factors in the study are the cannibalism rate (CR), procre-
ation rate (PP), and mutation rate (PM). The procedure of
BWO algorithm is provided step by step in Algorithm 2.

Algorithm 2 BWOA Hayyolalam and Kazem (2020)

12 : Choose an answer from 1.

13 :

14 : Keep the novel one into 2.

15 : End for
16 : Update = 2 + 3.

17 : Bringing back the optimal answer.

18 : Bring back the finest answer from pop

19 : End while

1 : Initialize: iterations’ highest number, procreating Rate, Cannibalism rate, mutation rate

2 : While Stop condition is not met do
3 : For = 1 to do
4 : Choose two random answers from pop1 to serve as parents.

5 : Create D offspring utilizing Eq. (11).

6 : Consume father 

7 : According to the rate of cannibalism, kill some of the offspring (recently gained answers)

8 : Keep the residual answers into 2.

9 : End for
10 : According to the rate of mutation, compute the mutation offspring number.

11 : For = 1 to do

2.4 Adaptive Neuro-Fuzzy Inference System
(ANFIS)

As a well-known machine learning technique, the ANF I S
algorithm has seen extensive use in the study and solu-
tion of challenging nonlinear problems (Jiang et al. 2019;
Masoumi et al. 2020). The present approach effectively com-
bines the neural network with the fuzzy conclusion system.
The ANF I S utilizes the least squares and gradient descent
algorithms to facilitate the learning process of the method.
It is being discovered that ANF I S is a useful technique for
use in solving forecast issues. This is an explanation of a
five-tiered ANF I S (Shahnazar et al. 2017).

In the first layer, known as the fuzzification layer, every
node is considered an adaptable input.

O1
i � μAi (x1)fori � 1, 2, . . . , n (12)

O1
i � μBi−2(x2)fori � 3, 4, . . . , n (13)

The symbols μAi (x1) and μBi−2(x2) represent Gaussian
membership activities, whereas the quantity n represents the
number of fuzzy sets for other input variables (Shahnazar
et al. 2017). Using Eq. 14, each node in the second layer
(the product layer) determines the efficacy of a given rule by

means of its ability to trigger an event.

O2
i � ωi � μAi (x1)μBi (x2)withi � 1, 2 (14)

The normalizing procedure takes place inside the third
layer, or the normalized layer, using Eq. 15 and the summing

of the firing strength ratio of the i th condition to the firing
strength of all the other rules (Shahnazar et al. 2017).

O3
i � wi � wi

w1 + w2
i � 1, 2 (15)

Thedefuzzification procedure is executed inside the fourth
layer. Within this particular layer, every individual node has
the ability to change in accordance with Eq. 16.

O4
i � wi fi � wi (k

i
1x + ki2y + ki0) (16)

The symbolwi shows the result of the third layer, whereas{
ki1, k

i
2, k

i
0

}
indicates the variable ranges associated with the

wi node. The result of the fifth layer, namely the output layer,
is generated by summing the result of the preceding layer
according to Eq. (17).

O5
i � overalloutput �

∑
i

wi fi ��
∑

i wi fi∑
i wi

; i � 1, 2

(17)

ANF I S involves the use of three distinct simulations,
namely fuzzyC−means clustering (FCM), subtractive clus-
tering (SCM), and grid partitioning (GP). Since FCM
has been shown to be the strongest simulation in the lit-
erature, it was selected for use in the ANF I S algorithm’s
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predictive capabilities. Nikafshan Rad et al. provide a thor-
ough explanation of FCM (Rad et al. 2015). In relation to
ANF I S concepts, a primary ANF I S design was gener-
ated employing the initial variables. The EO , BWOA, and
PSO methodologies were then used to improve the ANF I S
framework that had been built. The membership function
parameters for the suggested network were improved by
applying the EO , BWOA, and PSO methods in this study.
The RMSE metric was used as a fitness indicator to evaluate
the accuracy of the optimization framework. In conclusion,
a hybridized and optimized network consisting of ANFE ,
ANFB, and ANFP components were established, with the
network parameters, including the quantity of fuzzy words
and the maximum iteration count, being specified.

Here is a detailed explanation of the coupling process:

• The initializing of the ANF I S model begins with ran-
dom or predefined initial parameters. These parameters
include membership function parameters, rule weights,
and input/output scaling factors.

• EO , BWOA, and PSO are integrated into the parameter
learning process of the ANF I S model.

• During optimization, EO , BWOA, and PSO interact
with the ANF I S architecture to update the parameters,
such asmembership function parameters and rule weights,
based on the fitness evaluations.

• The optimization algorithms modify the parameters of the
ANF I Smodel iteratively, gradually improving its perfor-
mance on the training data.

• The optimization process continues until a termination cri-
terion ismet, such as convergence of the objective function
or reaching a maximum number of iterations.

• Once optimization is complete, the performance of the
coupled ANF I S model with EO , BWOA, and PSO is
evaluated using testing data.

2.5 Metrics

Seven efficiency indicators were used to compare and evalu-
ate the performance of the hybrid ANFE, ANFB, and ANFP
models. The indices are:

Coefficient of determination (R2)
Root mean square error (RMSE)
Normalized root mean square error (N RMSE
Root relative squared error (RRSE)
Relative absolute error (RAE)
Mean absolute error (MAE)

Lesser values of RMSE, NRMSE, RRSE, MAE, and RAE
show more accuracy. Furthermore, a higher R2 number is a
sign of better performance.

In addition, the OBJ metric was taken into account as a
complete indication that RMSE, MAE, and R2 values were
concurrently calculated for the training and testing phases.

R2 �

⎛
⎜⎜⎝

∑D
d�1(md − m)(zd − z)√[∑D

d�1(mP − m)2
][∑D

d�1(zd − z)2
]
⎞
⎟⎟⎠

2

(18)

RMSE �
√

1

D

∑D

d�1
(zd − md)

2 (19)

N RMSE � RMSE/z (20)

RRSE �
√√√√∑D

d�1 (md − zd )2∑D
d�1 (md − m)2

(21)

RAE �
∑D

d�1|md − zd |∑D
d�1|md − m| (22)

MAE � 1

D

D∑
d�1

|zd − md | (23)

(24)

OBJ �
[
d

D
× RMSE + MAE

R2 + 1

]
train

+

[
d

D
× RMSE + MAE

R2 + 1

]
test

The variablesmd ,m, zd , and z represent the observed val-
ues, the mean of the observed values, the simulated values,
and the mean of the simulated values, respectively, in the
given equations. Moreover, the variable D denotes the total
number of datasets. Uncertainty analysis at 95% confidence
level (U95) provided further information on scenario efficacy
[63,64]. This inquiry compares the real and simulated out-
comes, as shown by Eq. 25.

U95 � 1.96
√
(SD2 + RMSE2) (25)

3 Findings and justifications

This research paper shows the findings of the ANFE ,
ANFB, and ANFP investigations. These analyses were
performed to ascertain the SP of deep foundations when
they are buried in rock. Figure 5 displays the measured and
estimated quantities of the SP throughout the training and
evaluation stages of the established ANFE and ANFB
methodologies. Moreover, the chart presented exhibits an
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Fig. 5 The performance of
systems (correlation, time series,
and error histogram)

error percentage distribution along with a time series. Fur-
thermore, the present study compared the results of the
generated models with the most relevant literature sources
to assess the reliability and effectiveness of these models
considering order three MARS (MO3) (Zuo 2022), ant lion
optimizerwithmulti-layered perceptron (ALO−MLP) (Hu
2022), ant lion optimizer with ANF I S (ALO − ANF I S)
(Yu 2022), ant lion optimizer with RBF (ALO−RBFNN )
(neuro−swarmsystemArmaghani et al. 2020;Gao and Jun-
Wei 2022), and (GEPArmaghani et al. 2018).

Thefindings suggest that all ANFE , ANFB, and ANFP
have significant promise in properly forecasting the SP . The
ANFE system demonstrated high levels of accuracy, with
R2 values of 0.9977 and 0.996 attained during the phases
of training and testing. Similarly, the ANFB system exhib-
ited strong performance, with R2 values of 0.9946 and 0.993
in its training and evaluating stages, respectively. Moreover,
the third rank belonged to ANFP , getting the R2 values of
0.9805 and 0.989 attained during the phases of training and
testing. To achieve this purpose, it is crucial to do a thorough
assessment of the behavior shown by different error-based
metrics. By analyzing the divergent values of ANFE and
ANFB in relation to these parameters, it becomes apparent
that ANFE demonstrates an approximate 50% reduction
when compared to ANFE . The aforementioned decrease
highlights the dependability of ANFE in predicting the stock

price.Uncertainty analysis values by calculatingU95 as a pre-
cious index (the lower values, the more accuracy) depict a
better performance of the ANFE compared to ANFB by
gaining 0.4916 lower than 0.7485 in the train part and at
0.7099 smaller than 0.94 in the test. In addition, a compre-
hensive index was computed, referred to as the OBJ , which
encompasses the values of RMSE , MAE , and R2 for both
the training and test phases. In this context, lower values of
these metrics indicate greater precision of the systems. The
results show that the ANFE model received the lowest OBJ
at 0.1649 compared to ANFB at 0.2444, and compared to
ANFP at 0.2968, approving the applicability and reliability
of the models.

A comprehensive comparison is performed to validate
the reliability of the models with the literature MO3
(ALO − MLPALO − ANF I SALO − RBFNNneuro−
swarmsystemArmaghani et al. 2020; Zuo 2022; Hu 2022;
Yu 2022; Gao and Jun-Wei 2022), and (GEPArmaghani
et al. 2018). After conducting a thorough analysis of Table 2,
it becomes apparent that the ANFE proposed in this study
exhibited a superior level of efficacy in comparison to previ-
ous investigations reported in the existing scholarly literature.
This assessment considered comparable evaluation mea-
sures, including R2, MAE , and RMSE . The findings of this
research exhibit more robustness and precision compared to
existing literature, as shown by the attainment of higher R2

values and lower RMSE and MAE values. Regarding the
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R2, a significant improvement can be observed when attain-
ing values beyond 0.99, starting with beginning values below
0.844 (Armaghani et al. 2020). The ALO–RBFNN [53] has
the lowest RMSE when compared to other developed mod-
els (Gao and Jun-Wei 2022). However, it is worth noting
that the RMSE values for the ALO–RBFNN model are very
high when compared to the ANFE model, with values of
0.1767 mm and 0.2535 mm seen in the train and test stages,
respectively.

3.1 Sensitivity analysis

How inputs affect the simulation’s performance may be
understood via the use of sensitivity analyses in mathemati-
cal models. To find the impact of removing each parameter,
severalmodelswere created in the present investigation, each
employing unique input elements. The generated models
were compared with the results of the outperformed mod-
els, i.e., ANFE . ANFE was used to calculate and compare
the R2, RRSE , MAE , and U95 metrics evaluate the impact
of various inputs (Table 3). The impact of variables that
have been removed from the conclusion becomes increas-
ingly obvious as measurement discrepancies widen. Based
on the findings, it can be concluded that almost every input
has a marginally detrimental effect on output as compared
to ANFE . It is important to note that deleting the UCS
variable from the input category leads R2 to decrease and
RRSE , MAE , and U95 to increase. In the training phase,
the value of the R2 showed a reduction from 0.9977 to 0.971.
In this phase, RRSE , MAE , and U95 depict the remarkable
increment from 0.0491 to 0.173, 0.1269 to 0.4231, and from
0.4916 to 1.7326, respectively. This trend is valid for the
testing phase. Removing Ls/Lr has the lowest impact on
the output by resulting in lower differences of the metrics
with respect to the model with no removal. It is important to
point out that the models were made using a set of data that
came from tests. So, leaving out any number could make the
programs less complete and reliable.

3.2 Limitations, suggestions, and practical usages

The accuracy of the predictive model heavily relies on the
quality and quantity of data available. Future research could
explore ways to obtainmore comprehensive and high-quality
data. The generalizability of the proposed approach to other
geological conditions and foundation types may be limited.
Future research could investigate the adaptability of this
model to different scenarios. The choice of optimization algo-
rithms and modeling techniques (ANF I S, EO , BWOA,
and PSO) can significantly affect the results. It is possible
that the performance of these algorithms may vary for dif-
ferent datasets or applications. Future work could explore a
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Table 3 Sensitivity analysis
Best model Metrics Portion Removed parameter

None L p/D Ls/Lr NSPT UCS Qu

AN FE R2 Train 0.9977 0.9913 0.9954 0.9822 0.971 0.9819

Test 0.996 0.994 0.993 0.984 0.961 0.9745

RRSE Train 0.0491 0.0935 0.0691 0.1352 0.173 0.1383

Test 0.065 0.0849 0.0849 0.1307 0.1978 0.1623

MAE Train 0.1269 0.2268 0.1884 0.3352 0.4231 0.3641

Test 0.1533 0.2564 0.2109 0.3677 0.4748 0.4402

U95 Train 0.4916 0.9363 0.6916 1.3535 1.7326 1.3826

Test 0.7099 0.925 0.927 1.4222 2.1584 1.7589

Bold values show the largest differences

wider range of optimization techniques to assess their robust-
ness.

By providing more reliable predictive models, the study’s
findings can directly contribute to enhancing the design
process. Engineers can use thesemodels to optimize pile con-
figurations, sizes, and placement strategies, leading to more
cost-effective and structurally sound foundations.

Unforeseen settlement can lead to delays, structural dam-
age, and costly remediation efforts. By leveraging accurate
predictive models, project stakeholders can anticipate poten-
tial settlement issues early in the design phase and implement
preventive measures to minimize risks.

Understanding the anticipated settlement behavior of piles
in rock formations allows construction planners to optimize
project schedules and sequencing. By incorporating pre-
dictive models into construction planning software, project
managers can better allocate resources, schedule activities,
and mitigate potential conflicts between construction activi-
ties and ground settlement constraints.

4 Conclusion

To operationalize hybrid ANF I S designs, the study
employed the results of PDA tests, together with the prop-
erties of both piles and soil. In relation to this matter, five
elements, namely Ls/Lr , L p/D, UCS, N , and Qu , were
selected as independent variables for the purpose of forecast-
ing the pile settlement (SP) in rock formations. To improve
the precision of the models, the primary essential parameters
of the ANF I S were calculated by integrating the EO , the
BWOA, and PSO .

• The findings suggest that all ANFE , ANFB, and ANFP
have significant promise in properly forecasting the SP .
The ANFE system demonstrated high levels of accu-
racy, with R2 values of 0.9977 and 0.996 attained during

the phases of training and testing. Similarly, the ANFB
system exhibited strong performance, with R2 values of
0.9946 and 0.993 in its training and evaluating stages,
respectively. Moreover, the third rank belonged to ANFP
getting the R2 values of 0.9805 and0.989during the phases
of training and testing, respectively.

• By analyzing the divergent values of ANFE and ANFB
in relation to error-based metrics, it becomes apparent that
ANFE demonstrates an approximate 50%reductionwhen
compared to ANFE .

• Uncertainty analysis depicts a better performance of the
ANFE compared to ANFB by gaining 0.4916 lower than
0.7485 in the train part and at 0.7099 smaller than 0.94 in
the test part.

• The results show that the ANFE model received the low-
est OBJ at 0.1649 compared to ANFB at 0.2444, and
compared to ANFP at 0.2968, approving the applicabil-
ity and reliability of the models.

• The findings of this research exhibit more robustness and
precision compared to existing literature, as shown by the
attainment of higher R2 values and lower RMSE and
MAE values.

• It Is important to note that deleting theUCS variable from
the input category leads R2 to decrease and RRSE ,MAE ,
and U95 to increase. In the training phase, the value of the
R2 showed a reduction from 0.9977 to 0.971. In this phase,
RRSE , MAE , and U95 depict the remarkable increment
from 0.0491 to 0.173, 0.1269 to 0.4231, and from 0.4916
to 1.7326, respectively. This trend is valid for the testing
phase.

• The generalizability of the proposed approach to other
geological conditions and foundation types may be lim-
ited. Future research could investigate the adaptability of
this model to different scenarios. The choice of optimiza-
tion algorithms and modeling techniques (ANF I S, EO ,
BWOA, and PSO) can significantly affect the results. It
is possible that the performance of these algorithms may
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vary for different datasets or applications. Future work
could explore a wider range of optimization techniques to
assess their robustness.

• By providing more reliable predictive models, the study’s
findings can directly contribute to enhancing the design
process. Engineers can use these models to optimize pile
configurations, sizes, and placement strategies, leading to
more cost-effective and structurally sound foundations.
Understanding the anticipated settlement behavior of piles
in rock formations allows construction planners to opti-
mize project schedules and sequencing. By incorporating
predictive models into construction planning software,
project managers can better allocate resources, schedule
activities, and mitigate potential conflicts between con-
struction activities and ground settlement constraints.

Author contributions All authors contributed to the study’s conception
and design. Data collection, simulation and analysis were performed
by “Xi CHEN, Liting ZHU and Lingfeng JI”. The first draft of the
manuscript was written by “Xi CHEN” and all authors commented on
previous versions of themanuscript. All authors have read and approved
the manuscript.

Data availability The authors do not have permissions to share data.

Declarations

Conflict of interest The authors declare no conflict of interests.

References

Aghayari Hir M, Zaheri M, Rahimzadeh N (2022) Prediction of rural
travel demand by spatial regression and artificial neural network
methods (Tabriz County). J Transp Res 20(4):367–386

Alemdag S, Gurocak Z, Cevik A, Cabalar AF, Gokceoglu C (2016)
Modeling deformation modulus of a stratified sedimentary rock
mass using neural network, fuzzy inference and genetic program-
ming. Eng Geol 203:70–82

Alkroosh I, Nikraz H (2011) Correlation of pile axial capacity and
CPT data using gene expression programming. Geotech Geol Eng
29:725–748

Armaghani DJ, Amin MFM, Yagiz S, Faradonbeh RS, Abdullah RA
(2016) Prediction of the uniaxial compressive strength of sand-
stone using various modeling techniques. Int J Rock Mech Min
Sci 85:174–186

Armaghani DJ, Faradonbeh RS, Rezaei H, Rashid ASA, Amnieh HB
(2018) Settlement prediction of the rock-socketed piles through
a new technique based on gene expression programming. Neural
Comput Appl 29:1115–1125

Armaghani DJ, Asteris PG, Fatemi SA, Hasanipanah M, Tarinejad R,
Rashid ASA, Van Huynh V (2020) On the use of neuro-swarm
system to forecast the pile settlement. Appl Sci 10:1904

Bardhan A, GuhaRay A, Gupta S, Pradhan B, Gokceoglu C (2022)
A novel integrated approach of ELM and modified equilibrium
optimizer for predicting soil compression index of subgrade layer
of Dedicated Freight Corridor. Transp Geotech 32:100678

Carrubba P (1997) Skin friction on large-diameter piles socketed into
rock. Can Geotech J 34:230–240

Dindarloo SR (2015) Prediction of blast-induced ground vibrations via
genetic programming. Int J Min Sci Technol 25:1011–1015

El-Fergany AA (2018) Electrical characterisation of proton exchange
membrane fuel cells stack using grasshopper optimiser. IETRenew
Power Gener 12:9–17

Esmaeili-Falak M, Sarkhani Benemaran R (2024) Application of
optimization-based regression analysis for evaluation of frost dura-
bility of recycled aggregate concrete. Struct Concr. https://doi.org/
10.1002/suco.202300566

Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equi-
librium optimizer: a novel optimization algorithm. Knowl-Based
Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

Gao H, Jun-Wei Z (2022) Estimation of pile settlement applying hybrid
radial basis function network with BBO ALO, and GWO Opti-
mization Algorithms.淡江理工學刊 25:1183–1196

Ge Q, Li C, Yang F (2023) Support vector machine to predict the pile
settlement using novel optimization algorithm. Geotech Geol Eng.
https://doi.org/10.1007/s10706-023-02487-5

Hayyolalam V, Kazem AAP (2020) Black widow optimization algo-
rithm: a novel meta-heuristic approach for solving engineering
optimization problems. Eng Appl Artif Intell 87:103249

Hu J (2022) Estimation of pile settlement applying hybrid ALO-MLP
and GOA-MLP approaches.淡江理工學刊 25:1239–1255

Jiang R (2022) Using the integrated neural network of radial basis func-
tion (RBF) via optimization algorithms to estimate pile settlement
range. J Intell Fuzzy Syst. https://doi.org/10.3233/JIFS-220741

Jiang W, Arslan CA, Soltani Tehrani M, Khorami M, Hasanipanah
M (2019) Simulating the peak particle velocity in rock blast-
ing projects using a neuro-fuzzy inference system. Eng Comput
35:1203–1211

Le T-T, Le MV (2021) Development of user-friendly kernel-based
Gaussian process regression model for prediction of load-bearing
capacity of square concrete-filled steel tubular members. Mater
Struct 54:1–24

Masoumi F, Najjar-Ghabel S, Safarzadeh A, Sadaghat B (2020) Auto-
matic calibration of the groundwater simulation model with
high parameter dimensionality using sequential uncertainty fitting
approach. Water Supply 20:3487–3501

Mollahasani A, Alavi AH, Gandomi AH (2011) Empirical modeling of
plate load test moduli of soil via gene expression programming.
Comput Geotech 38:281–286

Momeni E, Nazir R, Armaghani DJ, Maizir H (2015) Application of
artificial neural network for predicting shaft and tip resistances of
concrete piles. Earth Sci Res J 19:85–93

NajafzadehM,Azamathulla HM (2015) Neuro-fuzzyGMDH to predict
the scour pile groups due towaves. J Comput Civ Eng 29:4014068.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000376

Najafzadeh M, Barani G-A (2011) Comparison of group method of
data handling based genetic programming and back propaga-
tion systems to predict scour depth around bridge piers. Sci Iran
18:1207–1213. https://doi.org/10.1016/j.scient.2011.11.017

Najafzadeh M, Barani G-A, Azamathulla HM (2013) GMDH to pre-
dict scour depth around a pier in cohesive soils. Appl Ocean Res
40:35–41. https://doi.org/10.1016/j.apor.2012.12.004

Nejad FP, Jaksa MB, Kakhi M, McCabe BA (2009) Prediction of pile
settlement using artificial neural networks based on standard pen-
etration test data. Comput Geotech 36:1125–1133

Ng CWW, Yau TLY, Li JHM, Tang WH (2001) Side resistance of large
diameter bored piles socketed into decomposed rocks. J Geotech
Geoenviron Eng 127:642–657

Rad HN, Jalali Z, Jalalifar H (2015) Prediction of rock mass rating
systembased on continuous functions usingChaos–ANFISmodel.
Int J Rock Mech Min Sci 73:1–9

Raja MNA, Abdoun T, El-Sekelly W (2023a) Smart prediction of
liquefaction-induced lateral spreading. J RockMechGeotech Eng.
https://doi.org/10.1016/j.jrmge.2023.05.017

123

https://doi.org/10.1002/suco.202300566
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1007/s10706-023-02487-5
https://doi.org/10.3233/JIFS-220741
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000376
https://doi.org/10.1016/j.scient.2011.11.017
https://doi.org/10.1016/j.apor.2012.12.004
https://doi.org/10.1016/j.jrmge.2023.05.017


Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:3375–3389 3389

Raja MNA, Jaffar STA, Bardhan A, Shukla SK (2023b) Predict-
ing and validating the load-settlement behavior of large-scale
geosynthetic-reinforced soil abutments using hybrid intelligent
modeling. J Rock Mech Geotech Eng 15:773–788

Randolph MF, Wroth CP (1978) Analysis of deformation of vertically
loaded piles. J Geotech Eng Div 104:1465–1488

Samui P (2019) Determination of friction capacity of driven pile in clay
using Gaussian process regression (GPR), and minimax probabil-
itymachine regression (MPMR).GeotechGeolEng37:4643–4647

SarkhaniBenemaranR (2023)Application of extremegradient boosting
method for evaluating the properties of episodic failure of bore-
hole breakout. Geoenergy Sci Eng 226:211837. https://doi.org/10.
1016/j.geoen.2023.211837

Sarkhani Benemaran R, Esmaeili-Falak M (2023) Predicting the
Young’s modulus of frozen sand using machine learning
approaches: State-of-the-art review. Geomech Eng 34:507–527

Sarkhani Benemaran R, Esmaeili-Falak M, Katebi H (2022a) Physi-
cal and numerical modelling of pile-stabilised saturated layered
slopes. Proc Inst Civ Eng Eng 175:523–538

Sarkhani Benemaran R, Esmaeili-FalakM, Javadi A (2022b) Predicting
resilient modulus of flexible pavement foundation using extreme
gradient boosting based optimised models. Int J Pavement Eng.
https://doi.org/10.1080/10298436.2022.2095385

Sarkhani Benemaran R, Esmaeili-Falak M, Sadighi Kordlar M (2024)
Improvement of recycled aggregate concrete using glass fiber and
silica fume. Multiscale Multidiscip Model Exp Des. https://doi.
org/10.1007/s41939-023-00313-2

Shahin MA, Maier HR, Jaksa MB (2002) Predicting settlement of shal-
low foundations using neural networks. J GeotechGeoenviron Eng
128:785–793

Shahnazar A, Nikafshan Rad H, Hasanipanah M, Tahir MM, Jahed
Armaghani D, Ghoroqi M (2017) A new developed approach for
the prediction of ground vibration using a hybrid PSO-optimized
ANFIS-based model. Environ Earth Sci 76:1–17

Soleimanbeigi A, Hataf N (2006) Prediction of settlement of shallow
foundations on reinforced soils using neural networks. Geosynth
Int 13:161–170

Le Tirant P (1992) Design guides for offshore structures: Offshore pile
design

Wu J, Long J, Liu M (2015) Evolving RBF neural networks for rainfall
prediction using hybrid particle swarm optimization and genetic
algorithm. Neurocomputing 148:136–142

Xu L, Qian F, Li Y, Li Q, Yang Y, Xu J (2016) Resource allocation
based on quantum particle swarm optimization and RBF neural
network for overlay cognitive OFDM system. Neurocomputing
173:1250–1256

Yu D (2022) Estimation of pile settlement socketed to rock applying
hybrid ALO-ANFIS and GOA-ANFIS approaches. 淡江理工學
刊 25:1131–1144

Zhang M, Du Q, Yang J, Liu S (2022) Modeling the pile settlement
using the Integrated Radial Basis Function (RBF) neural network
by Novel Optimization algorithms: HRBF-AOA and HRBF-BBO.
J Intell Fuzzy Syst 43(6):7009–7022

Zhu X, Wang N (2017) Cuckoo search algorithm with membrane
communication mechanism for modeling overhead crane systems
using RBF neural networks. Appl Soft Comput 56:458–471

Zuo Q (2022) Settlement prediction of the piles socketed into rock
using multivariate adaptive regression splines. J Appl Sci Eng
26:111–119

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1016/j.geoen.2023.211837
https://doi.org/10.1080/10298436.2022.2095385
https://doi.org/10.1007/s41939-023-00313-2

	Settlement estimation of the piles socketed into rock employing hybrid ANFIS systems
	Abstract
	1 Introduction
	1.1 The objective of this study

	2 Methodology
	2.1 Dataset and pre-processing
	2.2 Equilibrium optimizer (EO)
	2.3 Black widow optimization algorithm (BWOA)
	2.3.1 A novel black widow optimization algorithm
	2.3.2 Initial population
	2.3.3 Generation
	2.3.4 Cannibalism
	2.3.5 Mutation
	2.3.6 Convergence
	2.3.7 Parameter setting

	2.4 Adaptive Neuro-Fuzzy Inference System (ANFIS)
	2.5 Metrics

	3 Findings and justifications
	3.1 Sensitivity analysis
	3.2 Limitations, suggestions, and practical usages

	4 Conclusion
	References




