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Abstract
Triaxial dynamic strength is of interest to various fields of engineering and science. The determination of rock strength is
a fundamental element of any design and analysis in geomechanics and geoengineering. Data-oriented machine learning
(ML) algorithms have been gaining more traction in this field due to their high performance and flexibility. However, an
understanding of the capabilities of these paradigms to provide fast, cheap, and accurate predictions of triaxial rock dynamic
strength is yet lacking. This study aims to contribute to the field of rock dynamics by employing two stacking and voting
ensemble methods and four ML algorithms, namely Gaussian process (GP), random forest (RF), decision table (DT), and K-
nearest neighbor (KNN) for modeling the dynamic triaxial strength of rock material. A database of 267 experiments compiled
from available published laboratory triaxial tests on seven rock materials was used for the development of the ensemble
models. The triaxial tests were carried out under different confining pressures and strain rates. Therefore, the input variables
in these models are rock type, confining pressure (up to 450 MPa), and strain rate (ranging from 10−8 to 600 s−1), with the
output being the major principal stress. Based on the results, RF, KNN, voting, and stacking models performed better than
GP-RBF, GP-PUK, and DT models in terms of accuracy and error metrics in the training and testing datasets. This indicates
that the approaches used are capable of capturing the dynamic triaxial strength of rock material. A parametric study using the
cosine amplitude method indicates that confining pressure, rock type, and strain rate are the most to least effective variables
on the responses of tests in all evolved surrogate data-driven models. This study also aims to address the gap in the literature
concerning prediction data-driven surrogate models in triaxial rock dynamic strength criteria and related subfields.

Keywords Triaxial rock dynamic strength · Strain rate · Confining pressure · Data-driven ensemble model · Machine
learning · Sensitivity analysis

1 Introduction

Dynamic evaluation of the deep rock materials, subject to
various types of loading from vehicles, earthquakes, under-
ground excavation and construction, drilling, blasting and
detonation, or hydraulic fracturing, is of high interest in
geomechanics and geoengineering projects. Subsequently,
rock materials experienced different ranges of strain rates
and confining pressure. Therefore, accurately determining
the triaxial failure strength of rock under different loading
strain rates is a significant issue in geomechanics applica-
tions.

To evaluate major principal stress at failure, σ1, of rock,
several laboratory research studies and modified empirical
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formula have been presented in the past (e.g., Handin et al.
1967; Sangha and Dhir 1975; Zhao 2000; Si et al. 2019; Liu
et al. 2019, 2020; Xie et al. 2020). Donath and Fruth (1971)
performed triaxial compression tests on lithographic lime-
stone, marble, siltstone, and very fine-grained sandstone at
five different strain rates ranging from 10−7 to 10−3 s−1.
Their findings showed that there is no considerable effect
on the siltstone or sandstone strength under the mentioned
strain rates range and under confining pressures of 1000 and
2000 bars. Blanton (1981) conducted compression tests on
Charcoal Granodiorite (confining pressure up to 450 MPa),
Berea Sandstone, and Indiana Limestone (confining pres-
sure up to 250 MPa) at strain rates ranging from 10−2 to 10
s−1. He stated that the actual failure stresses of the rocks are
relatively independent of strain rate. Masuda et al. (1987)
indicated that the compressive strength of granite increases
linearly as the logarithm of the strain rate increases from
10−8 to 10−4 s−1 and that the strain rate dependency on
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the strength is increased ed at high confining pressures. Li
et al. (1999) performed dynamic triaxial compression tests
on the Bukit Timah granite under six confining pressures up
to 170 MPa and four strain rates (10−4, 10−3, 10−1, and
100 s−1). They found that the deviator strength generally
increases with the confining pressure and strain rate. Hokka
et al. (2016) carried out dynamic triaxial compression tests
on the Kuru Gray granite under eleven confining pressures
up to 225 MPa and at strain rates of 10−6 and 600 s−1. Their
study showed that the strength of Kuru granite increases
with strain rate and confining pressure. They evaluated the
effect of confining pressure and strain rate sensitivity on rock
strength. Hoek–Brown and power-law models’ parameters
are also calibrated based on their experimental data. Gong
et al. (2019) conducted dynamic triaxial compression tests
on the sandstone at five confining pressures (5, 7.5, 10, 12.5,
and 15 MPa) and various strain rates from approximately
40–160 s−1. They stated that the dynamic triaxial compres-
sive strengths would linearly increase with the logarithm of
the strain rate. Moreover, the dynamic triaxial compressive
strength would linearly increase with the confining pressure
under the same strain rate.

As illustrated above, a considerable amount of triaxial
experimental data on rock samples has been recorded under
various strain rates in the previous laboratory experiments.
These valuable data provide the feasibility for develop-
ing a predictive model for the estimation of dynamic rock
behavior, i.e., major principal stress at failure, σ1, of rocks.
Despite extensive practical applications of σ1, a review of
the available studies shows a lack of a generalized model
for this key parameter. Moreover, the advent of technol-
ogy with the increasing use of data mining and artificial
intelligence techniques has led to the proposal and use of
data-driven approaches. These techniques extract unknown
structure relationships among parameters in databases. How-
ever, in the past, despite the vast literature on this domain,
no effort was made to implement and develop data-oriented
machine learning (ML) methods for estimating the strength
of the rock under different confining pressure and strain rate.

The present study aims to construct ensembleML-derived
triaxial strength criteria for predicting the major principal
stress at failure, σ1 of seven rocks in terms of confining
pressure (up to 450 MPa) and strain rate (from 10−8 to 600
s−1) based on a considerable database of triaxial laboratory
tests performed in previous studies. This study provides the
first quantification of this potential. In this regard, Gaussian
process (GP) with two kernels (Radial basis kernel function
(RBF) and Pearson VII kernel function (PUK)), random for-
est (RF), decision table (DT), andK-nearest neighbor (KNN)
algorithms were constructed. Then, individual ML methods
are considered as the base model in the ensemble methods.
Finally, results from the developed strength models were
compared against the original experimental values and the

potentiality of proposed computational ML models for the
effective prediction of dynamic strength of rocks was evalu-
ated and demonstrated. A reliable model is evidently easier
to use in typical geomechanical projects than the expensive,
time-consuming, and complicated field-based evaluation or
laboratory techniques. Moreover, a sensitivity analysis was
also performed and discussed to evaluate the effects of the
input parameters on the rock dynamic strengthmodeling pro-
cess. To the best of our knowledge, this study is the first to
use and compare different individual and meta ensembleML
paradigms for this purpose.

This paper is organized as follows: First, the theoretical
basis of the ML methods is presented in Sect. 2. Second, the
performance evaluation indicators are presented in Sect. 3.
Third, the statistical properties of the considered dataset are
analyzed in Sect. 4. The compiled datasets from the litera-
ture will be considered to test the ML models. The use and
results of the ML methods on the experimental triaxial rock
dynamic strength dataset are presented in Sect. 5. A sen-
sitivity analysis is detailed in Sect. 6. Discussions on the
results, algorithms, importance of each feature are presented
in Sect. 7. The concluding remarks are listed in Sect. 8.

2 Surrogatemodels

2.1 Gaussian process (GP)

A Gaussian process (GP) model is a nonparametric prob-
abilistic model that directly expresses a prior probability
distribution over a latent function (Rasmussen and Williams
2006; Fathipour-Azar 2021, 2022a, b, d). GP is a collection
of random variables { f (x) : x ∈ X} characterized by its
mean and covariance functions in the following form:
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(1)

The preceding expression can be restated as follows:

f (x) GP
(
m(x), k(x , x ′)

)
, (2)

where GP presents the GP model, m(x) is mean function of
GP, k(x , x ′) is kernel function of GP, x and x ′ indicate an
arbitrary random variable.

Given a training set D � { (xi , yi )|i � 1, 2, . . . , n} of
data samples with unknown distribution, where xi ∈ Rd and
yi ∈ R. The assumption of GP regression method is that the
relationship between input and output variables is calculated
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as follows:

yi � f (xi ) + εi , (3)

where εi are additive noise variables (Gaussian noise);
therefore, ε N

(
0, σ 2

n

)
. ε has zero mean and variance σ 2

n .
Consequently, the GP is stated as follows:

f (x) GP
(
m(x), k

(
x , x ′) + σ 2

n I
)
, (4)

where I is the identity matrix. Generally, mean value of zero
is preprocessed for the dataset. Consider u � { (xui , yui )

∣∣i �
1, . . . , n

}
be a set of testing data samples drawn form the

same unknowndistribution asD.Considering the assumption
that the training and the test data samples have a multivariate
Gaussian distribution, the predictive distribution is presented
as follows:

p
(
yu
∣∣y, X , Xu) N(mu , σ u), (5)

wheremu is the predictive mean value representing the most
appropriate outputs for the inputs andσ u indicates the predic-
tive variance. The posterior mean and variance are expressed
as follows:

mu � K
(
Xu , X

) ·
[
K (X , X) + σ 2

n · I
]−1 · y,

σ u � K
(
Xu , Xu)− K

(
Xu , X

) ·
[
K (X , X) + σ 2

n · I
]−1 · K (X , Xu).

(6)

K (Xu , X) ∈ Rn×n is described as K (Xu , X)i j � k
(
xui ,

x j
)
, i , j � 1, 2, . . . , n. The same is for the K (X , X), K

(Xu , Xu), and K (X , Xu) cases. In addition:

y � [y1, y2, . . . , yn]
T,

yu � [yu1 , yu2 , . . . , yun
]T,

X �

⎡
⎢⎢⎢⎢⎣

x11 x12
x21 x22

· · · x1m
· · · x2m

...
...

xn1 xn2

. . .
...

· · · xnm

⎤
⎥⎥⎥⎥⎦
, X ∈ Rn×m . (7)

Xu is described similarly. Therefore, any new value as the
mean of a posterior predictive distribution can be estimated.
In this study, two covariance functions (kernels), namely
radial basis function kernel (RBF, Eq. 8) and Pearson VII
function-based kernel (PUK, Eq. 9) were used:

k(x , xi ) � e−γ x−x2i , (8)

k(x , xi ) �
(
1/

[
1 +
(
2
√
x − xi

2
√
2(1/ω) − 1/l

)2]ω)
, (9)

where γ , l, ω, and d are kernel constant parameters and
have to be optimized for curve-fitting purposes. x − xi is
the Euclidean distance between x and xi . Besides, the data
standardization was calculated through the following equa-
tion:

zi � xi − μ

σ
, (10)

where xi , μ, and σ are original data, mean, and standard
deviation of the data, respectively.

2.2 Random forest (RF)

Random forest is an ensemble learning technique that creates
a number of trees that correspond to random bootstrapped
training samples. On the bootstrapping method, RF gener-
ates training samples using random binary decision trees.
Moreover, a random selection of the training information is
used to build the model from the initial database; however,
the data that are not used are described out of a bag (OOB).
In the RFmethodology, two variables should be adjusted: the
number of trees (k trees) and the number of features in the
random subset at each node (m features). The average of the
outputs of individual regression tree regressors constitutes
the final output of RF (Breiman 2001). The structure of the
RF algorithm is demonstrated in Fig. 1. The RF procedures
for regression can be summarized as follows:

Step 1: The k tree bootstrap samples Xk (k � bootstrap iter-
ation) are picked at random from the original dataset with
replacement, each comprising about two-thirds of the ele-
ments. The OOB data for that bootstrap sample refer to the
samples that were not included in Xk .
Step 2: An unpruned regression tree is built with each boot-
strap sample Xk . Rather than picking the best split among
all predictors, as in classic regression trees, the m predictor
variables are picked at random and the best split among them
is selected at each node.
Step 3: The OOB data is estimated by averaging the k tree
estimations, as described below. The OOB components are
used to calculate an error rate, which is referred to as the
OOB estimate of the error rate (ERROOB):

Step 3.1: The OOB elements are estimated by the tree con-
structed using the bootstrap samples Xk at each bootstrap
iteration.
Step 3.2: All trees in which the i th sample is OOB are
examined for the i th sample (yi ) of the training dataset
X . In one-third of the k tree iterations, each sample of
X is OOB on average. An aggregated prediction gOOB

is created based on the random trees. The error rate is

123



3712 Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:3709–3721

Fig. 1 Structure of RF algorithm

Bootstrap Sample 1 Bootstrap Sample 2 Bootstrap Sample K

InBag 1
(2/3)

OOB 1
(1/3)

InBag 2
(2/3)

OOB 2
(1/3)

InBag K
(2/3)

OOB K
(1/3)

Training set

⋯

⋯

Predictor 1 Predictor 2 Predictor K

Average aggregation 
of all predictors

⋯

Test set

calculated using the following formula:

ERROOB � (1/ktree)
k tree∑
k�1

[yi − gOOB(Xk)]
2. (11)

ERROOB is employed to avoid overfitting and to find the
best k tree and m features values by minimizing ERROOB .
As a result, we first determined the optimal k tree and m
features values to minimize ERROOB , and then continued
to create the RF model (Breiman 2001).

2.3 Decision table (DT)

A decision table (DT) is a model of a scheme-specific learn-
ing algorithm that displays complicated logics (Witten et al.
2011). This method uses a best-first search method to iden-
tify a suitable subset of features for inclusion in the table. DT
creates a decision rule using a simple decision table majority
classifier (Kohavi 1995) and sorts the rules and classes in
several rows and columns. In general, a DT consists of four
parts namely condition stubs, condition entries, action stubs,
and action entries that each of which is located in a quarter
of the table (upper left quarter, upper right quarter, lower left
quarter, and lower right quarter). Finally, DT attempts to find
an excellent match in the table for a given new instance.

2.4 K-nearest neighbors (KNN)

K -nearest neighbors (KNN) is a nonparametric algorithm
that stores all training data samples and predicts the output
value of test data samples based on a similaritymeasure (Aha

et al. 1991). In this study, the brute force search algorithm
is used to find the nearest neighbors and Euclidean distance
is used to measure the distance between the data instances.
The Euclidean distance di between x and each sample is
sorted. If di is ranked in the i th place, the corresponding
sample is referred to as the i th nearest neighbor with output
yi . Ultimately, the prediction output ŷ would be the mean
of the outputs of its K nearest neighbors, described by the
following equation:

ŷ � 1

k

k∑
i�1

yi . (12)

2.5 Ensemble learning

Ensemble methods as expert systems are meta-algorithms
that combine multiple ML approaches into one predictive
model. Stacking, also known as stacked generalization, is
an ensemble ML approach that uses a meta model to com-
bine several heterogeneous base artificial intelligence and
ML models. The base model is trained on the training data
throughk-fold cross-validation, and themetamodel is trained
on the base models’ predictions of each fold. On the other
hand, voting entails creating a number of submodels and
incorporating each of them in a voting procedure to deter-
mine what should be the prediction’s outcome. The concept
of stacking model is illustrated in Fig. 2.
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Fig. 2 Schematic representation of the stacking model

3 Performance evaluation criteria

The outputs of each ML and ensemble models are major
principal stress. Then, these predictions are compared against
the observations. In the present research, the followingmodel
performance evaluation metrics (Eqs. 11–14) were applied
which are: correlation coefficient (R), rootmeans square error
(RMSE), mean absolute error (MAE), and Nash–Sutcliffe
Efficiency (NSE).

R �
∑n

i�1
(
σ1,measured − σ 1,measured

)
.
(
σ1, predicted − σ 1, predicted

)
√∑n

i�1
(
σ1,measured − σ 1,measured

)2∑n
i�1
(
σ1, predicted − σ 1, predicted

)2 , (13)

RMSE �
√√√√1

n

n∑
i�1

(σ1,measured − σ1, predicted )2, (14)

MAE � 1

n

n∑
i�1

∣∣σ1,measured − σ1, predicted
∣∣, (15)

NSE � 1 −
∑n

i�1

(
σ1,measured − σ1, predicted

)2
∑n

i�1

(
σ1,measured − σ 1,measured

)2 , (16)

where σ1,measured , σ 1,measured , σ1, predicted , and
σ 1, predicted denote the measured, mean of measured,
predicted, and mean of predicted values of major principal
stress, σ1, respectively, and n is the total number of obser-
vations. The correlation coefficient (R) index describes the

weight of the relationship between measurements and pre-
dictions σ1 values. RMSE shows the residual value between
the predictions and the measurements σ1 values. MAE
shows the closeness of the prediction to the measurement
σ1 values. NSE is for assessing the capability of proposed
methods. R � 1, RMSE � 0, MAE � 0, and NSE � 1
represents a perfect prediction.

4 Statistical analysis of the used dataset

In this study, the dataset comprised the triaxial compres-
sion test results under different confining pressure and strain
rates on seven rocks including Charcoal Granodiorite, Berea
Sandstone, and Indiana Limestone (Blanton 1981), Granite
(Masuda et al. 1987), Bukit Timah granite (Li et al. 1999),
Kuru granite (Hokka et al. 2016), and Sandstone (Gong et al.
2019). The total database contained 267 datasets. Figure 3
presents the scatterplot matrix of the variables with the his-
togram in diagonal and correlation coefficient in the upper
part. In Fig. 4, the histogram, density, and violin plot (com-
bination of box plot and density) describe the distribution
pattern of data. 213 sets of data were randomly allocated for
training and the remaining 54 data sets (20% of all data) were
used to test the developed models. The statistical parameters
of the training and testing databases are presented in Table 1.
After training the proposedMLmodels, the testing data were
fed into the developedmodels to predict the target parameter.
The evolvedmodelswere evaluated and compared as stated in
Sect. 3 using statistical indicators, includingR,MAE,RMSE,
and NSE in the training and testing periods. The results are
presented in the next section.

5 Results

The objective of this research is to propose and investigate
the ability and performance of two ensemble learning mod-
els namely stacking and voting with five developed ML
algorithms, namely the GP, RF, DT, and KNN models, to
predict major principal stress, σ1. Trial-and-error and grid
search methods were performed with different initial values
of parameters for each model to achieve the optimal mod-
els’ architectures and thereafter performance of developed
ML-based strength models was evaluated and compared in
accordance with error indices and real data. The developed
model was constituted by three input parameters (i.e., rock
type, confining pressure, and strain rate) and one output (i.e.,
major principal stress).
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Fig. 3 Scatterplot matrix of the variables with histogram in diagonal and correlation coefficient

Fig. 4 Histogram, density, and violin plot of the dataset

An ensemble of GP, RF, DT, and KNN algorithms using
stacking and voting methods is constructed. These MLmod-
els are base models and linear regression is considered as
the meta model to combine results of these base ML models
for the stacking methods, and the average of probabilities is
used as a combination rule of voting methods. 10-fold cross-
validation is used in the ensemble stacking ML method.

Figure 5 presents the values of R, MAE, RMSE, and NSE
of the developed ML-based models for training and test-
ing datasets. Based on the statistical measured presented in
Fig. 5, RF and KNN, in particular, had the best performance
in terms of R, MAE, RMSE, and NSE values in the training
and testing dataset. GP-RBF and GP-PUK are in the next
place. According to Fig. 5, PUK and RBF functions per-
formed approximately the same in terms of accuracy and
error. DT showed poor performance among evolved mod-
els with R, MAE, RMSE, and NSE values equal to 0.984,

52.025 MPa, 72.069 MPa, and 0.968 for the training stage
and 0.982, 64.831 MPa, 81.099 MPa, and 0.962 for the
testing stage. Ensemble stacking and voting learning meth-
ods demonstrated high performances in terms of R, MAE,
RMSE, and NSE values similarly to RF and KNN models.

The accuracy of the developed models is examined and
compared by plotting the predicted versus measured values
of the σ1 for the testing sets as shown in Fig. 6. The compar-
isons show that there is good agreement between the results of
RF, KNN, stacking, voting, then GP-RBF and GP-PUK, and
finally the DTmodels andmeasured stress values. The devel-
oped models’ results lie around a 45° straight line implying
a good fit. From the plots presented in Figs. 5 and 6, it could
be concluded that the evolved individual and ensemble ML-
based models demonstrate good performance and capability
and therefore can predict the σ1 of rock with appropriate
accuracy for the testing dataset.

123



Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:3709–3721 3715

Table 1 Statistics analysis of the
training and testing datasets Rock type Confining pressure

(MPa)
Strain rate
(s−1)

Major principal
stress (MPa)

Training data (n � 213)

Min 1.000 0.000 0.000 47.000

Max 7.000 450.000 600.000 1820.000

Median 3.000 50.000 0.457 386.000

Mean 3.366 76.846 36.707 540.517

Std.dev. 1.995 98.530 110.117 404.688

Coef.var. 0.593 1.282 3.000 0.749

Testing data (n � 54)

Min 1.000 0.000 0.000 53.000

Max 7.000 450.000 600.000 1800.000

Median 3.000 50.000 0.086 609.550

Mean 3.259 70.559 38.233 583.878

Std.dev. 1.983 85.056 118.675 420.319

Coef.var. 0.608 1.205 3.104 0.720

Figure 7 presents cumulative distribution functions
(CDFs) of the observed and predicted major principal stress,
σ1 (MPa) using the models developed for (a) training and
(b) testing datasets, respectively. In Fig. 7, the CDFs of esti-
mated σ1 from RF, KNN, stacking, and voting are close to
that of measured σ1. This agreement suggests that the infor-
mation contained in the estimated σ1 using these developed
models is consistent with that obtained from the measured
σ1. Although the CDFs of the estimated σ1 obtained from
GP-RBF, GP-PUK, and DT models are also close to that of
measured σ1 and follows the pattern and trend of the CDF
of measured σ1, small errors and deviations could be seen
between these models and measured σ1, particularly for DT
model. This further confirms the statistical results of the esti-
mated σ1 (Figs. 5, 6), indicating that RF, KNN, stacking, and
voting provide better estimates than other models.

Overall error prediction distribution of developed models
in the training and testing phases is shown in the violin plot
in Fig. 8. The negative and positive prediction error values
indicate the developed models’ over-and under-estimation
behavior, respectively. In this figure, the prediction error of
RF, KNN, stacking, and voting models is lower than that of
the DT model. A similar prediction error could be seen for
GP-RBF and GP-PUK in the training and testing phases.

Finally, Taylor diagrams are presented in Fig. 9 for train-
ing and testing datasets. Taylor diagram (Taylor 2001) is a
concise description of statistical analysis that demonstrates
how well the constructed models reproduce the measured
σ1 values. It is a mathematical visualization approach that is
meant to display the correctness of variousmodels in terms of
the correlation coefficient, the root-mean-square-difference,
and the ratio of the two variables’ standard deviations. The

distance between each algorithm and themeasured point rep-
resents how accurately each model matches the measured σ1
values. The stacking and ensemble voting, as well as RF and
KNN models, predicted all output parameters more accu-
rately in the training (Fig. 9a) and testing (Fig. 9b) phases
and, therefore, lies nearest the measured point.

6 Sensitivity analysis

Aparametric study is a useful tool for determining the impor-
tance and effectiveness of the relevant input variables on the
objective (output) variable. The cosine amplitude method
(CAM) (Yang and Zhang 1997) was employed in this study
to identify the most sensitive factors influencing the major
principal stress, σ1. The degree of sensitivity of each input
factor (rock type, confining pressure, and strain rate) was
assigned by establishing the strength of the relationship (Ri j )
between the σ1 and the input factors under consideration. A
higher CAM value indicates a greater impact on the σ1.

Consider n data samples are gathered from a common data
array X ; then the datasets employed to construct a data array
X are defined as follows:

X � {x1, x2, x3, . . . , xm}. (17)

Each of the elements xi in the data array X is a vector of
length m, that is

xi � {xi1, xi2, xi3, . . . , xim}. (18)

Therefore, each of the data pairs can be thought of as a
point in anm-dimensional space, wherein each point requires
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Fig. 5 Radar plot of the models’ performances in predicting major principal stress, σ1 (MPa) using the developed models for training (solid blue)
and testing (dashed orange) datasets (color figure online)

m coordinates for a complete description. The strength of the
relationship between the data pairs xi and x j is estimated and
demonstrated using the following equation:

Ri j �
∑m

k�1 xik x jk√∑m
k�1 x

2
ik

∑m
k�1 x

2
jk

, 0 ≤ Ri j ≤ 1, (19)

where i , j � 1, 2, . . . , n.

According to Eq. (19), the parametric study results, that is,
the influence of the input variables on the σ1 are illustrated in
Fig. 10.As can be seen from the figure, the confining pressure
is the most influential variable; however, strain rate has the
lowest influence on the target variable.

7 Discussion

Triaxial dynamic strength is of interest in various fields of
engineering and science. Estimating triaxial rock dynamic
strength is an important task and has gained utmost research
relevance in recent times due to its complexities and
persistent applications in geomechanics and geoengineer-
ing. However, conducting experiments to determine rock
dynamic strength is time-consuming and requires costly lab-
oratory equipment. Thus, the prediction of dynamic strength
using soft computing techniques is an effective solution for
quick estimation and avoids costly numerically, laboratory,
or on-field experiments (Fathipour Azar and Torabi 2014;
Fathipour-Azar et al. 2017, 2020; Fathipour-Azar 2021,
2022a, b, c, d, e, f, g, 2023a, b, c). In this study, various
individual and ensemble ML techniques including GP, RF,
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Fig. 6 Plots of the observed and predicted major principal stress, σ1 (MPa) using the models developed for the testing dataset

DT, KNN, stacking, and voting models were introduced to
assess major principal stress subject to confining pressure
and loading strain rate. This research is the first to quantify
this potential.

Results demonstrate that the developed individual and
ensemble surrogate models possess significant capability in
mimicking the unknown, nonlinear, and complex relation-
ships between triaxial dynamic strength and its influential
variables (Figs. 4, 5, 6, 7, 8). In this paper, generalized
efficiency and performance of the proposed developed mod-
els are demonstrated by considering various input variables,
including different rock types, confining pressure up to 450

MPa, and strain rates ranging from 10−8 to 600 s−1 (Table 1,
Figs. 3, 4). Future investigations could benefit from including
additional geological factors to create a more comprehensive
predictive model for rock strength.

The potential application of a wide range of data-oriented
ML algorithms is explored. In general, GP is a probabilistic-
based regression approach; RF and DT are decision tree and
table-based approaches; KNN as a lazy learner is based on
the nearest search algorithm. Therefore, while combining
the advantages of different approaches using meta ensemble
learning techniques is valuable, individual algorithms likeRF
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Fig. 6 continued
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Fig. 7 Cumulative distribution function of the observed and predicted major principal stress, σ1 (MPa) using the models developed for a training
and b testing datasets

Fig. 8 Violin plot for error prediction using the developed models in a training and b testing datasets

Fig. 9 Taylor diagram representing model performance
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Fig. 10 The parametric study
results for major principal stress,
σ1

have also demonstrated high performance in terms of accu-
racy and low error (Fig. 5), agreement between observed and
predicted values (Fig. 6), and CDFs (Fig. 7). The Taylor dia-
grams further validate the accuracy of these models in both
training and testing phases (Fig. 9). The utilization of differ-
ent algorithms can strengthen the statement of the analysis.
The ensemble learning methods, including stacking and vot-
ing, contribute to the overall success of the predictivemodels.
Although stacking may be viewed as a generalization of vot-
ing, the capacity to explore the solution space with multiple
models in the same issue is a benefit of ensemble learning
methods. The strength of these ML algorithms lies in their
simplicity, ease of implementation, and they are inexpen-
sive to build and run-in comparison to theoretical, numerical,
and experimental models. The proposed models in this study
can be practically used to estimate rock dynamic strength in
geomechanics and geoengineering applications.

A parametric study using CAM indicates that confining
pressure is the most influential variable, while and strain rate
is the least influential variable on the major principal stress
variable. Moreover, all evolved ML models show approxi-
mately the same importance for each feature (Fig. 10). In
fact, the parametric analysis results are derived from the infer-
ences drawn from the input–output relations in the measured
dataset. Therefore, they can be convincing and practical.

8 Conclusions

The prediction of rock failure strength under various con-
fining pressures and strain rate is a significant issue in
geomechanics engineering. In the present research, a triaxial
experimental databasewith confining pressure up to 450MPa
and under different loading strain rates ranging from 10−8

to 600 s−1 was used. The aim of this research is to introduce
ensemble ML methods to predict the major principal stress
depending on confining pressure and loading strain rate. The

developed models namely GPs, RF, DT, KNN, stacking, and
voting methods are compared with the measured principal
stress values. The findings of this study demonstrate the good
performance and capability of the proposed individual and
ensemble ML-derived dynamic strength models. Therefore,
the used ML techniques can be considered as a reliable sur-
rogate technique to model triaxial rock strength and they
would be more economical than other available approaches.
Finally, the comparisons show that there is a better agreement
between the results of the RF, KNN, stacking, and voting
models and principal stress values than the GP-TBF, GP-
PUK, andDTmodels. Furthermore, PUK and RBF functions
performed approximately the same in terms of accuracy and
error. At the end of modeling process, sensitivity analysis
was conducted and revealed that confining pressure is the
most influential variable, while strain rate is the least influ-
ential variable on the major principal stress variable, σ1 in
this study.
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