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Abstract
As an extensively used experiment, the California Bearing Ratio (CBR) tests the resistance of soils in subgrade layers and
superstructure foundations often used to design flexible pavements. Practically, since CBR tests are time-consuming and
costly, only a limited number of them could be performed over a road construction project. In these cases, artificial-based
prediction methods will be helpful as they are quick and cheap. Artificial neural networks (ANNs), including Radial Basis
Function (RBF), are powerful tools in prediction procedures employing modeling philosophy. On the other hand, recently,
because meta-heuristics are very efficient, academics have focused more on optimization utilizing them, reasonable execution
time, and significant convergence acceleration rate in solving real-world problems. In this study, three different hybrid models
are introduced comprising the neural network approach along with three optimizers [including adaptive opposition slime
mold algorithm (AOSMA), gradient-based optimizer (GBO), and Sine cosine algorithm (SCA)]. Predicted values of CBR
in two categories of training and testing models have been compared with measured values of CBR tests. Finally, through
some evaluators, the efficiency of hybrid models was evaluated, and the best-proposed model was presented for practical
applications. In addition, RBAO obtained the most suitable prediction values compared to other developed models.

Keywords California Bearing Ratio · Radial basis function · Adaptive opposition slime mold algorithm · Gradient-based
optimizer · Sine cosine algorithm

1 Introduction

TheCaliforniaBearingRatio (CBR) is a critical index in earth
structures and geotechnical engineering, such as highway
embankments, earth dams, the fills behind retaining walls,
and bridge abutments. CBR tests can be conducted on com-
pacted soil in the lab or on the ground surface. In practice
(Ho and Tran 2022), since CBR tests are time-consuming
and expensive to do, only a limited number of them can
be conducted, for example, over a road construction project
(Karunaprema 2002; Yildirim and Gunaydin 2011; Ho and
Tran 2022). Therefore, artificial-based methods can be logi-
cal to be used in the CBR prediction procedures (Varol et al.
2021; Salehi et al. 2022; Xiao-xia 2022).

In predicting CBR value, validation of its correlation
with other soil properties similar to the study conducted by
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Roy et al. (2006) can be helpful. In another study, Shukla
and Kukalyekar (2004) developed a relationship between
the compaction properties and CBR for compacted fly ash.
Recently, Srinivasa Rao (2004) developed a relationship
between the Group index and CBR. He developed tests on
150 soil samples, including various soil types. Additionally,
Karunaprema and Edirisinghe (2002) and Nuwaiwu et al.
(2006) conducted investigations to estimate the California
Bearing Ratio from the Dynamic Cone Penetration (DCP)
value and plasticity modulus.

The artificial neural network (ANN) is an extensively
accepted simulation that can be used in various civil engi-
neering branches. Therefore, the ANN is a precise solution
for predicting in engineering fields (Masoumi et al. 2020;
Nurlan 2022; behnam Sedaghat et al. 2023). It can be applied
in various branches of geotechnical engineering (Cheng et al.
2022), such as the prediction of the bearing capacity of the
pile (Das and Basudhar 2006) and slope stability (Erzin and
Cetin 2013). Although ANNs are used widely in geotechni-
cal engineering, research with the aim of CBR prediction is
few, such as which estimated the California Bearing Ratio of
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Table 1 The variables contained
in the dataset and their statistical
properties

Variables Statistical properties

Max Min Avg St. dev

Lime (LI) 20 0 5.630 4.029

Lime sludge (LS) 15 0 4.931 5.803

Curing period (CP) 1.39 1.14 1.242 0.058

Optimummoisture content (OMC) 32.65 13.7 24.058 3.880

Maximum dry density (MDD) 45 4 24.109 15.872

California bearing capacity (CBR) 156 2.2 52.980 34.387

stabilized soil by Si Ho and Quan Tran (2022) or single and
multiple regression applications in CBR estimation of soil
using a dataset from highways of Turkey located in different
regions. The findings demonstrate that the neural network
outperforms the statistical models (Yildirim and Gunaydin
2011). In a separate investigation, ANN and multiple regres-
sion approaches were employed to predict the CBR of soil
mixed with lime and quarry (Sabat 2013).

Radial basis function (RBF) can be considered one of the
widely used artificial neural networks to estimate the uncon-
fined compressive strength of a soil–stabilizer mix (Bors and
Pitas 1996; Heshmati et al. 2009; Yin et al. 2021). Heshmati
et al. (2009) confirmed data from the results of previously
published stabilization tests with previous laboratory tests.
Also, they compared the RBF-based predictions with the
numerical and experimental results of other researchers and
found them more accurate. Sabour and Movahed (2017)
developed a radial basis function neural network model to
predict the soil sorption partition coefficient for about 800
organic varied and even unknown compounds. The obtained
results indicated that the performance of the model is excel-
lent.

Moreover, Shahani et al. (2021) developed four gradient-
based machine learning algorithms to estimate the uniaxial
compressive strength of soft sedimentary rocks at Thar Coal-
field, Pakistan. They allocated a 106-point dataset identically
for each algorithm into 30% for the testing and 70% for
the training models. Also, Shangguan et al. (2010) applied
the classical gradient-based optimization algorithm for esti-
mating model parameters of conditioned soils in an EBP
shield. They trained the neural network weights using a
fast convergent approximation, namely the Levenberg–Mar-
quardt. Comparing results from the model with simulated
observations illustrates that the proposed neural network
has better identification accuracy and higher computing effi-
ciency. Chen et al. (2023) studied various advanced versions
of this optimizer. Then, they sorted this algorithm’s appli-
cation domains and analyzed its shortcomings, development
status, and role in each research domain. This review not only
suggested possible future research directions in this field but

also provided a complete source of information about the
slime mold algorithm and its advanced versions.

In this current research investigation, three distinct hybrid
models have been developed, employing the radial basis
function (RBF) neural network approach and integrating
three different optimizers: the adaptive opposition slime
mold algorithm (AOSMA), the gradient-based optimizer
(GBO), and the sine cosine algorithm (SCA). The primary
aim of these models is to predict the CBR value with
precision. The efficacy of these newly devised models in
forecasting CBR values was rigorously assessed using a
comprehensive set of five input variables. These variables
encompassed essential parameters, such as optimum mois-
ture content, lime percentage, maximum dry density, curing
period, and lime sludge percentage. The combined power
of these variables facilitated robust predictions of the CBR
value. To validate the predictive prowess of the models, a
comparisonwasmadebetween the estimatedCBRvalues and
observed values. This comparison was performed in two dis-
tinct categories: training and testing models. Subsequently,
the model demonstrating the most remarkable performance
in CBR value estimation is presented as the optimal choice
for practical applications. This research venture not only
advances the understanding of CBR value prediction but also
offers a reliable and potent tool for real-world applications
in the field.

2 Materials andmethodology

2.1 Dataset description

Experimental records presented inTable 1were used to assess
lime sludge’s and lime’s impact on CBR in different curing
periods (Ikeagwuani 2021). Input parameters considered in
measuring CBR values included five effective variables: cur-
ing period (CP(day)), lime sludge percentage (LS(%)), lime
percentage (LI(%)), maximumdrydensity(MDD(g/cc))and,
optimummoisture content [OMC (%)]. Statistical properties
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Fig. 1 Histogram cumulative plot for the input and output variables
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of these variables in the dataset are reported in Table 1.More-
over, Fig. 1 shows the histogram and the cumulative plot of
inputs and output.

The division of data into training and testing setswas iden-
tified as a crucial step in ensuring robust model evaluation
in our study. To preserve statistical consistency and guaran-
tee the representativeness of both sets, a random stratified
sampling approach was employed. Consistency in the distri-
bution of key variables between the training and testing sets
is ensured by this method, thus, creating a reliable basis for
evaluating the model’s performance. This process has been
clarified in the manuscript for improved transparency and
understanding.

Stabilizing soil with lime enhances both physical and
chemical properties. Physically, it increases density, reduces
porosity, strengthens the soil, improvesworkability, andmin-
imizes shrinkage. Chemically, lime raises pH, influences
cation exchange capacity, stabilizes minerals, and reduces
swelling potential. These modifications result in improved
soil stability, reduced erosion, and enhanced nutrient avail-
ability. The effectiveness of lime stabilization depends on
factors like soil type, lime dosage, and curing time, with test-
ing required to determine optimal conditions for achieving
desired results.

In this study, Python programming language was
employed for data analysis and coding purposes. The choice
of Python was driven by its versatility, extensive libraries,
and robust capabilities in handling diverse data sets, ensur-
ing the accuracy and efficiency of the analyses. In addition,
the codes of model and optimizers mentioned in Appendix.

2.2 Radial basis function (RBF)

Artificial neural networks (ANNs), such as radial basis
function (RBF) networks, are powerful tools for estimating
nonlinearities by employing amodeling philosophy that does
not rely on mathematical equations to define the relation-
ship between model inputs and corresponding outputs, use
the data alone to determine the structure of the model and
unknown parameters. These methods can learn and upgrade
as more data becomes accessible without repeating from the
beginning. Thus, they outweigh the conventional methods
(Alavi et al. 2009).

RBF consists of an input layer, a linear output layer, and a
hidden layer. The hidden layer AGaussian distribution based
on a function that is utilized as an activation function is used
to transform input vectors into RBF . Width and center are
two important parameters that are associated with the Gaus-
sian basis function (ψ j ) (Heshmati et al. 2009). This function
is given in the following form:

Fig. 2 Flowchart of RBF

ψ j (x) � exp

(∣∣x − λ j
∣∣2

2σ 2
j

)
(1)

where x is the input pattern, and σ j and λ j are the spread
and center of the Gaussian basis function, respectively. The
output neuron is written as:

y(x) �
n∑
j�1

υ jψ j (x) + a (2)

Here, n is the number of hidden neurons, υ j is the weight
between j th hidden and the output neuron, and a is the bias
term. Figure 2 shows the flowchart of RBF.

2.3 Adaptive opposition slimemold algorithm
(AOSMA)

The SMA is inspired by the plasmodial SM’s oscillation
mode, which employs positive-negative feedback to find the
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best path and oscillation to reach its nutrition source (Naik
et al. 2021). In Li et al. (2020), the AOSMA is proposed,
which enhances the SM’s foraging behavior by incorporat-
ing adaptive decision-making based on the opposition.

To create a mathematical representation of AOSMA, it is
postulated that a certain search area is inhabited by N slime
molds bounded by a lower limit (LB) and an upper limit
(UB). Then Xi � (x1i , x

2
i , . . . , xdi ), ∀i ∈ [1, N ] is the

position of i th slime mold in d-dimensions and F(Xi ), ∀i �
[1, N ] represents the fitness of the i th slime. Therefore, the
fitness and the position of N slime molds at the iteration t are
presented in Eqs. (3) and (4):

X(x) �

⎡
⎢⎢⎢⎢⎣

x11 x
2
1 · · · xd1

x12 x
2
2 · · · xd2
...
...
...
...

x1N x
2
N · · · xdN

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎣

X1

X2
...

XN

⎤
⎥⎥⎥⎥⎦ (3)

F(X) � [F(X1), F(X2), . . . , F(XN )] (4)

The upgraded position of the slime mold in the (t + 1)
iteration is as follows:

Xi (t + 1) �

⎧⎪⎨
⎪⎩

XLB(t) + Vd (W .XA(t) − XB(t))p1 ≥ δ and p2 < mi

Ve.Xi (t)p1 ≥ δandp2 ≥ mi , ∀i ∈ [1, N ]
rand.(UB − LB) + LBp1 < z

(5)

XLB is the best local slime mold, XA and XB are pooled
individuals by random, W is the weight factor, and Vd and
Ve are the random velocities. p1 and p2 are randomly chosen
numbers in [0,1]. The chance of the slime mold, which is
fixed at δ � 0.03, refers to the initial search location that is
selected randomly.

mi is the threshold value of i th member in the population
that helps opt for the position of slime mold using itself or
the best alternative for the next iteration, which is evaluated
in Eqs. (6–8):

mi � tanh|F(Xi ) − FG |, ∀i ∈ [1, N ] (6)

FG � F(XG) (7)

(8)

W (Sort I ndF (i))

�

⎧⎪⎨
⎪⎩

1 + rand.log
(
FLB−F(Xi )
FLB−FLw

+ 1
)
1 ≤ i ≤ N

2

1 − rand.log
(
FLB−F(Xi )
FLB−FLw

+ 1
)

N
2 < i ≤ N

Here, FG and XG are the value of global best fitness and
global best position, respectively. The variable rand repre-
sents a randomly generated number within the interval [0,1].

FLB and FLw are local best andworst fitness values. In amin-
imization problem in Eq. (9), an ascending order as follows
can be used for sorting fitness values:

[Sort F , Sort I ndF ] � sort(F) (9)

Now, the local best and worst fitness also the local best
slime mold XLB can be extracted in Eqs. (10) to (12):

FLB � F(Sort F (1)) (10)

FLW � F(Sort F (N )) (11)

XLB � X(Sort I ndF (1)) (12)

Vd and Ve as random velocities are defined as follows:

Vd ∈ [−d, d] (13)

Ve ∈ [−e, e] (14)

d � arctanh

(
−

(
t

T

)
+ 1

)
(15)

e � 1 − t

T
(16)

In Eq. (16), T is the maximum iteration, and the algo-
rithm converges to a solution. In the context of engineering
design problems and optimizations, the Slime Mold Algo-
rithm (SMA) has shown potential for both exploration and
exploitation. Several key factors determine the improvement
of the slime mold rules in SMA:

Case 1:When p1 ≥ z and p2 <mi , the search guided by the
slime mould’s local best, denoted as XLB and two random
individuals XA and XB with velocity Vd . This stage aids in
maintaining a balance between exploitation and exploration.

Case 2: When p1 ≥ z and p2 ≥ mi , the search is guided
by the position of slime mold with a velocity Ve. This case
assists in the exploiting process.

Case 3: where p1 < z, the individual undergoes reinitial-
ization within a defined search space. This step contributes
to the exploration process.

In Case 1, it is demonstrated that when XA and XB rep-
resent two random slime molds, the probability of achieving
optimal solutions through exploration and exploitation is not
effectively controlled. To overcome this shortcoming, local
best individual XLB can be replaced byXA. Therefore, the
i th(i � 1, 2, . . . , N ) member’s position upgrading rule of
Eq. (5) is remodeled as Eq. (17).
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Xni (t) �

⎧⎪⎨
⎪⎩

XLB(t) + Vd (W .XLB(t) − XB(t))p1 ≥ δ and p2 < mi

Ve.Xi (t)p1 ≥ δ and p2 ≥ mi

rand.(UB − LB) + LBp1 < δ

(17)

Case 2 illustrates that slime mold exploits a place in the
neighborhood. Thus, a path of lower fitness may be followed
by that. To address this issue, opting for an adaptive decision
mechanism proves to be a more effective alternative.

Case 3 demonstrates that although SMA provides crite-
ria for exploration, the limited value of δ � 0.03 restricts
the level of exploration. To address this issue, an additional
exploration supplement for SMA is required. A combined
solution to Case 2’s and Case 3’s limitations involves using
an adaptive decision strategy for determining if further explo-
ration is necessary through opposition-based learning (OBL)
[28]. OBL utilizes a defined Xopi in the search space that
is precisely opposite of the Xni for each member (i � 1, 2,
· · · , N ) and compares it to improve the position of the fol-
lowing iterations. This approach helps improve convergence
and prevent the likelihood of getting trapped in local minima.
Therefore, the Xopi for the ith individual in the jth ( j � 1, 2,
· · · , s) dimension is defined in Eq. (18):

Xop j
i � min(Xni (t)) + max(Xni (t)) − Xn j

i (t) (18)

In Eq. (19), Xri represents the ith member’s position in
the minimization problem and is formulated as:

Xri �
{
Xopi (t)F(Xopi (t)) < F(Xni (t))
Xni (t)F(Xopi (t)) ≥ F(Xni (t))

(19)

When a descendant nutrient path is detected, an adaptive
decision is made based on the old fitness value f (Xi(t)) and
the current fitness value f (Xni(t)). This decision helps pro-
vide additional exploration when necessary. Subsequently,
the next iteration’s position undergoes an update as follows:

Xi (t + 1) �
{
Xni (t)F(Xni (t)) ≤ F(Xi (t))
Xri (t)F(Xni (t)) > F(Xi (t))

, ∀i ∈ [1, N ]

(20)

Related pseudocode is presented as follows and code of
hybrid RBF-AOSMA is mentioned in Appendix.

2.4 Gradient-based optimizer (GBO)

GBO merges the population and GB approaches and the
search direction to explore the search area using a pair
of primary operators, namely the local escaping operators
and gradient search rule specified by Newton’s technique
(Ahmadianfar et al. 2020), alongside a vector collection. In
optimization problems, the aim is to minimize the objective
function.
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2.4.1 Gradient search rule (GSR)

Generally, the GBO originates a speculated initial strategy
andmoves toward the following situation through a gradient-
specified direction. The Taylor series related to f (x + �x)
and f (x − �x) are definable in Eqs. (21) and (22):

(21)

f (x + �x) � f (x) + f ′ (x0)�x +
f ′′ (x0)�x2

2!

+
f (3) (x0)�x3

3!
+ · · ·

(22)

f (x − �x) � f (x) + f
′
(x0)�x +

f ′′ (x0)�x2

2!

− f (3) (x0)�x3

3!
+ · · ·

Then, the following central differencing equation defines
the first-order derivative as follows:

f ′′(x) � f (x + �x) − f (x − �x)

2�x
(23)

So, the new position is as follows:

xn+1 � xn − 2�x × f (xn)

f (xn + �x) − f (xn − �x)
(24)

As justified in (Ahmadianfar et al. 2020), Eq. (25) must
be rewritten as follows:

GSR � randn × 2�x × xn
(xworst − xbest + δ)

(25)

Here randn is a randomly chosen number, and δ deter-
mines a small value ranging between [0, 0.1].

To keep a balance between the local and global explo-
rations for exploring promising regions within the search
space and consequently to meet the optimal solution at the
global level, in Eqs. (26–28), the GSR could be altered by
utilizing an adaptive coefficient such as σ1.

σ1 � 2 × rand × β − β (26)

β �
∣∣∣∣α × sin

(
3π

2
+ sin

(
α × 3π

2

))∣∣∣∣ (27)

α � αmin + (αmax − αmin) ×
(
1 −

( m

M

)3)2

(28)

Here αmin � 0.2 and αmax � 1.2. m represent the iter-
ations’ number, and M represents the total amount. The
maximum value for m is 1000.

In Eqs. (29) and (30), the motion’s direction (M) is pre-
sented for exploiting the neighborhood area properly xn :

M � rand × λ × (xbest − xn) (29)

λ � 2 × rand × β − β (30)

Finally, based on the GSR and M, the following equation
can be used to obtain an updated position (x ′m

n ) of the current
vector (xmn ):

x ′m
n � xmn − GSR + M (31)

2.4.2 Local escaping operator (LEO)

The LEO enhances the efficiency of the offered method in
handling complicated issues as it assists in the rising diversity
of the population in search space and goes far from local
optimal solutions. For more details, see (Ahmadianfar et al.
2020).

In addition, the code of hybrid RBF-GBO is mentioned in
the Appendix.

2.5 Sine cosine algorithm (SCA)

TheSine cosine algorithm (SCA) utilizes the rules of trigono-
metric sine and cosine to update the individuals’ position
toward the ideal solution. Updating equations in SC A are
presented in Eq. (32) (Mirjalili 2016):

xt+1i j �

⎧⎪⎨
⎪⎩
xti j + p1 ∗ cos(p2) ∗

∣∣∣p3bti j − xti j

∣∣∣, p4 ≥ 0.5

xti j + p1 ∗ sin(p2) ∗
∣∣∣p3bti j − xti j

∣∣∣, p4 < 0.5

(32)

where bti j represents the best individual’s position and p1,
p2, p3, p4 are random to avoid trapping into local optima.
These parameters can be described in Eq. (33) (Gabis et al.
2021):

• p1 decides whether an updated position is the best solution
(p1 < 1) or outwards it (p1 > 1).

p1 � b − t
b

Tmax
(33)

where t is the present iteration,b is a constant, and Tmax

represents the maximum iterations.
• p2 is set in [0, 2π ], which dictates if the movement of a
solution is toward the destination or outward it.
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• p3 assigns aweight to the terminus randomly. This permits
de− emphasizing (p3 < 1) or emphasizing (p3 > 1) the
influence of the terminus of the position updating of other
answers. This parameter is in the range of [0, 2].

• p4 is in the range of [0, 1]. It acts as a switch to opt between
the trigonometric functions of sine or cosine.

Related pseudocode is presented as follows, and the code
of hybrid RBF-SCA is mentioned in the Appendix.

2.6 Performance evaluationmethods

The metrics for evaluation of model performance are:

• The coefficient of determination (R2) indicates the extent
to which the estimated values match the observed values,
and it can be calculated using Eq. (34).

R2 �
⎛
⎝ ∑n

i�1(ti − t)(ei − e)√[∑n
i�1(ei − t)2

][∑n
i�1(ei − e)2

]
⎞
⎠

2

(34)

• The RMSE is explained in Eq. (35):

RMSE �
√√√√1

n

n∑
i�1

(ei − ti )2 (35)

• Normalized Root Mean Square Error (NRMSE) is as fol-
lows in Eq. (36):

NRMSE �
√

1
n

∑n
i�1 (ei − ti )2

1
n

∑n
i�1(ti )

(36)

• The Mean Absolute Error (MAE) represents the mean
of the absolute differences between the predicted and
observed values, as shown in Eq. (37):

MAE � 1

n

n∑
i�1

|ei − ti | (37)

• The scatter index (SI) is defined as a function of RMSE in
Eq. (38):

SI � RMSE

t
(38)

In all the five equations, n is the number of samples, ei
represents the estimated value and e is the average of the
estimated value. ti and t represent the experimental value
and the average of the practical value, respectively. In the
introducedmetrics, except forR2,which is the highest desired
value, the rest of the metrics should have the lowest value.

2.7 Hybridization

In this study, a novel hybrid architecture is proposed, wherein
the Radial Basis Function (RBF) is combined with three dis-
tinct optimization algorithms: the adaptive opposition slime
mold algorithm (AOSMA), gradient-based optimizer (GBO),
and sine cosine algorithm (SCA). The unique strengths of
each component are aimed to be leveraged for the enhance-
ment of overall performance and robustness. The steps of
integration are as follows:

• Identificationof components: Identify the radial basis func-
tion (RBF) as the primary modeling component and the
three chosen optimizers: Adaptive opposition slime mold
algorithm (AOSMA), gradient-based optimizer (GBO),
and sine cosine algorithm (SCA).
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Table 2 Evaluation of introduced
models Models Evaluators

R2 RMSE NRMSE MAE SI

Training stage

RBAO 0.994 2.658 0.052 2.100 0.048

RBGB 0.973 6.212 0.121 3.463 0.114

RBSC 0.991 3.389 0.066 2.687 0.062

Testing stage

RBAO 0.977 4.195 0.190 2.863 0.084

RBGB 0.969 5.115 0.232 3.666 0.103

RBSC 0.963 5.337 0.242 3.645 0.107

• Understanding characteristics of components: Attain
a comprehensive understanding of the characteristics,
strengths, and weaknesses inherent in each optimizer
(AOSMA, GBO, and SCA) and the RBF within the spe-
cific problem domain.

• Definition of integration strategy: Ascertain the manner
in which the RBF will be coupled with each optimizer.
Consider whether the integration will follow a sequential,
parallel, or hierarchical approach. Define how the opti-
mization process will influence the parameters of the RBF.

• Adjustment of parameters: Modify the parameters of each
optimizer and theRBF to ensure compatibility and optimal
performance within the hybrid system. Fine-tune parame-
ters based on the characteristics of the data and the specific
requirements of the problem.

• Implementation of integration: Execute the defined inte-
gration strategy by combining the RBF with each opti-
mizer. Develop interfaces or connectors to facilitate com-
munication and ensure seamless interaction between the
RBF and the optimizers.

• Evaluation of performance: Evaluate the performance
of each hybrid model (RBF-AOSMA, RBF-GBO, RBF-
SCA) using appropriate evaluation metrics. Assess how
well the integrated components operate together and deter-
mine whether the hybridization achieves improvements
over the standalone RBF.

• Refinement through iteration: Based on the performance
evaluation, iteratively refine the hybrid models. Adjust
integration parameters, revisit the selection of optimizers,
and fine-tune the hybridization strategy to enhance overall
performance and convergence.

• Documentation process: Thoroughly document the
hybridization process. Include details about the RBF and
each optimizer, the integration strategy, parameter settings,
and any insights gained during the iterative refinement.
This documentation is crucial for transparency and repli-
cability.

• Testing procedures: Conduct thorough testing of each
hybrid model to ensure robustness and generalizability.
Verify the performance on both training and unseen data,
ensuring that the hybrid models effectively leverage the
optimizers for improved results.

• Guidelines for application: Provide clear guidelines on
how each hybrid model (RBF-AOSMA, RBF-GBO, RBF-
SCA) can be applied in practical scenarios. Specify input
requirements, steps for obtaining predictions, and any con-
siderations for real-world applications, taking into account
the integration with the respective optimizers.

3 Results and discussion

Thiswork presents three kinds of hybridmodels that compare
the observed experimental findingswith anticipated values of
CBR using RBF in conjunction with AOSMA, GBO , and
SC A. The coupled models were created in the framework of
RBF + AOSMA (RBAO), RBF + GBO (RBGB), and RBF
+ SCA (RBSC). In these hybrid models, data are split into
training and test sets, which make up 70% and 30% of the
final models, respectively. In order to ascertain if one ver-
sion works better than another, this part compares statistical
identifiers created for the produced research.

Table 2’sR2 valuesmay be compared to seewhichmethod
produces the greatest results. RBAO, for example, has the
highest R2 values (0.994 and 0.977, respectively) in both the
training and testing phases. All three models’ test portion R2

values are greater than the train portion, indicating inadequate
training. It is clear by comparing values of the scatter Index
(SI), where lower SI denotes the maximum model accuracy,
that RBAO again yields the best results in both the training
and testing stages. Comparing three types of errors, including
RMSE, MAE, and NRMSE, in all three criteria, testing and
training RBAO with smaller values of errors show the best
results.
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Fig. 3 Scatter plot depicting measured and predicted values

Figure 3 depicts the scatter plot of the relationship between
CBR’s measured and predicted values regarding RMSE and
R2 evaluators reported for each data point. TheRMSE is used
as ameasure of dispersal, with lower values indicating higher
density and less variation in the results. However, the valida-
tion and learning points are brought closer to the centerline
by the R2. A linear fit, two lines above and below the center-
line at Y � 0.9X and Y � 1.1X , and the centerline at Y � X
are among the other variables shown in the picture. The inter-
section of the upper and lower lines indicates overestimation

and underestimation. Figure 3 depicts three models gener-
ated by combining three optimizers during the testing and
training frameworks. The R2 of RBAO and RBSC models
are satisfactory, particularly in the training phase, where the
points are clustered close to the centerline and aligned in the
same direction.

The excellent match between the observed and projected
CBR values in each of the three models is clearly seen in
Fig. 4, indicating the viability of the established algorithms
that have been suggested for CBR value estimation. The
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Fig. 4 Line-symbol plot for
contrasting the measured values
with the predicted ones

RBAO model’s training section is where this agreement is
most noticeable, while the RBGB training models are linked
to the largest discrepancy between anticipated and observed
values. Overall, it can be inferred that the suggested mod-
els demonstrate accurate performance with minimal error in
predicting CBR, thereby demonstrating their potential effec-
tiveness for practical applications.

Discrete training and testing stages of three generated
models are shown in Fig. 5‘s histogram-distribution plot as
the normal distribution of errors. Less precision in the out-
come is associated with a wider tendency of spreading error.
After training and testing, the narrow bell-shaped normal dis-
tribution diagram is the result of the improved performance
of the RBAO hybrid model. Errors are in the 0 percent range
in all three models, with RBAO being the most accurate.
Through diagram comparison, it is evident that, with the
exception of RBGB, where the training phase diagram has a
spreading error trend that has covered a broader range than
the testing diagram, the training has a spreading error trend
that is as wide as the testing phase diagram’s covered range.

Across all three models that were developed, it is notable
that the highest prediction errors seen in the testing pro-
cess are either equivalent to or less than the maximum errors
encountered in the training phase. This consistency between
the training and testing phases is a positive indicator ofmodel
robustness. When comparing the prediction errors of these
models, as depicted in Fig. 6, it becomes evident that in the
case of the RBAO model, the errors exhibit a relatively nar-
row range, staying consistently below the 20% threshold.
In contrast, the RBGB and RBSC models display predic-
tion errors that fluctuate at significantly higher levels, with
RBGB around 60% and RBSC around 40%. This analysis
leads to the conclusion that the RBAO model outperforms
the other two models in accurately estimating the CBR value
in practical applications. Itsmore stable and lower error range
suggests that RBAO is the most suitable choice for accurate
CBR value predictions, which can be crucial in various engi-
neering and construction scenarios.
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Fig. 5 Histogram-distribution plot for the error percentage of presented models

4 Conclusion

In the present research, three different hybrid models using
the radial basis function (RBF) neural network are developed
along with three optimizers containing adaptive opposition
slime mold algorithm (AOSMA), gradient-based optimizer
(GBO), and sine cosine algorithm (SCA). The performance
of the models was assessed based on five input variables:
maximum dry density, optimum moisture content, lime per-
centage, curing period, and lime sludge percentage. Finally,
through some evaluators, the predicted values of CBR in two
categories of training and testing models have been com-
pared between the developed models, and the best-proposed
model is presented for practical applications. Generally,
RBAO had the best performance, with lower errors in train-
ing (RMSE � 2.658, MAE � 2.10, and NRMSE � 0.052),
and testing models (RMSE � 4.195, MAE � 2.863, and
NRMSE � 0.242). Furthermore, this model prepares accu-
rate results with high density as it has lower values of SI
in both the training and testing phases. The predicted CBR
values by all of the developed models agree well with the
predicted values, which demonstrates the offered hybrid
algorithms’ workability in the CBR estimation procedure.

Therefore, all models, especially RBAO, conclude the exact
anticipation having the smallest error in the CBR forecasting
procedure, making them efficient for practical applications.
The combination of the RBF with Adaptive AOSMA, GBO,
and SCA offers a range of advantages for predicting CBR.
This synergy holds the potential to significantly improve the
accuracy, adaptability, and robustness of predictive mod-
els. Firstly, it enhances prediction accuracy by efficiently
optimizing model parameters, leading to highly accurate
forecasts. The versatility of this approach allows for the
selection of different optimizers based on specific dataset
characteristics, adapting to various scenarios. Moreover, it
expedites model training and convergence, saving computa-
tional resources and time. The risk of overfitting is reduced
through fine-tuning, ensuring the model performs well on
unseen data. Optimal parameter selection and adaptability to
diverse data contribute to improved robustness, making the
model resilient to data variations and outliers. Lastly, this
approach efficiently utilizes available data, even with noise
or limited datasets, resulting inmoremeaningful predictions.
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Fig. 6 Line-symbol plot for error
percentage of developed hybrid
models
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