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Abstract
This study investigates three models to predict the torsional strength of FRP-strengthened reinforced concrete (RC) structural
beams: artificial neural network (ANN), nonlinear regressionmodel (NLR), and linear regressionmodel (LR). The researchers
examined data from over 96 tested FRP-strengthened beams to develop these prediction models. The models account for 10
distinct variables (input parameters), such as the RC beam’s width and height, the FRP sheet’s thickness and elastic modulus,
the yield stress of the longitudinal and transverse steels, the compressive strength of the concrete, the effective width of the
FRP strips along the beam’s length, the center-to-center spacing of the FRP strips, the angle of wrapping, and the number
of FRP layers. The beam’s torsional strength is an appropriate parameter. Several statistical measures, including correlation
coefficient (R2), root mean squared error (RMSE), mean absolute error (MAE), Scatter Index (SI), and objective (OBJ) values,
were employed to assess the efficiency of the presented models. With R2, RMSE, MAE, OBJ, and SI values of 0.99, 3.07
kN m, 2.41, 2.63, and 0.17 kN m, respectively, the results demonstrated that the ANN model outperformed the other models
in predicting the ultimate torsional strength of strengthened RC beams. This study provides an important database that may be
used as a benchmark for future predicts of the torsional strength of strengthened RC beams. The influence of each parameter
on the torsional strength of these beams was further studied using sensitivity analysis. The results showed a highly accurate
prediction of the torsional strength of FRP-strengthened RC beams.

Keywords RC · Torsional strengthening · ANN · FRP

1 Introduction

It is a challenging and vital task to determine the torsional
behavior of reinforced concrete beams, especially when they
are strengthened with FRP. However, there has been little
investigation on the torsional behavior of these beams, even
though there have been many studies and experiments on
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their bending behavior within specific environmental condi-
tions.

A difficult characteristic of structural behavior is twist-
ing. Torsional stresses develop when shear stresses are not
applied through the shear center. The performance of beams
reinforced with FRP under torsional loading has been the
subject of numerous investigations, with some remarkable
laboratory findings.

Standard techniques for calculating Tu may not be com-
patible with strengthened RC beams. This parameter may be
changing, according to ongoing study. To predict the results
of experiments, engineers need to use less complicated tech-
niques andmathematical formulas. This demand results from
Tu’s depending on several variables. Soft computing tech-
niques might be regarded as an acceptable response. These
methods may be used to generate alternatives and solutions
for both linear and nonlinear problems when mathematical
models are unable to sufficiently explain how the main fea-
tures of the problem are connected.

Artificial intelligence systems for evaluating and predict-
ing the torsional strength of strengthened RC beams are
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becoming increasingly popular in the field of RC strength-
ening research to provide the construction sector with new
ideas and strategies for application.

Machine learning has become a powerful technique
for assessing the performance of materials and structures.
Machine learning has been a potent tool for analyzing struc-
tural and material performance over the past decade (Ghafor
et al. 2022). Machine learning models are extremely appli-
cable and adaptable because they depend on enormous
quantities of measured or accumulated real-world data with
characteristics having awide range of values.ANNandM5P-
tree models were two famous soft computing models used
in civil and material engineering. Identifying the network
parameters, such as the number of hidden layers and neurons,
using theANN algorithm is a time-consuming trial-and-error
approach. The M5P algorithm, however, is a reliable method
that offers comprehensible linear regression for the inputs
and outputs in a nonlinear modeling approach to the splitting
process (Almasabha et al. 2022; Alshboul et al. 2022; Kooh
et al. 2022; Amlashi et al. 2019).

The main goal of this research is to determine how input
parameters, such as the reinforced concrete beam’s width,
its height, the FRP sheet’s thickness, its modulus of elas-
ticity, the longitudinal bars’ yielding stress, the transverse
bars’ yielding stress, the concrete’s compressive strength,
the width of the FRP strips along the length of the beam per
center-to-center distance between the FRP strips, the angle
at which the FRP is aligned, and the number of layers of the
FRP, affect the ultimate torsional strength of RC beam. The
following goals were attained through the use of numerous
modeling approaches with a significant quantity of experi-
mental data, including 96 tested results: (i) using statistics for
assessing how things, such as the reinforced concrete beam’s
width, its height, the FRP sheet’s thickness, its modulus of
elasticity, the longitudinal bars’ yielding stress, the transverse
bars’ yielding stress, the concrete’s compressive strength, the
width of the FRP strips along the length of the beam per
center-to-center distance between the FRP strips, the angle
at which the FRP is aligned, and the number of layers of the
FRP, affect the ultimate torsional strength of RC beam; (ii) to
ensure that themodelsmay be used by the construction sector
without requiring any testing or laboratory evaluation; and
(iii) identify the model that accurately predicts the ultimate
torsional strength of the RC beam, and utilize that model as
a base for further investigation and assessment. The devel-
opment of soft computing models for predicting the ultimate
torsional strength of RC beams for effective application in
the construction field is another significant contribution of
this work.

2 Literature review

Research on the torsional strength of reinforced concrete
beams strengthened with FRP sheets was done by Gho-
barah et al. (2002). Different configurations of glass fiber-
reinforced polymer (GFRP) and carbon fiber-reinforced
polymer (CFRP) were used to strengthen the beams. Accord-
ing to the findings, the full wrap arrangement offered the
reinforced concrete beams a performance enhancement that
was superior to other configurations. The 45° reinforced
beam was also shown to be more effective in pure torsion
than the 90° one, as the vertical fibers were kept in tension
until failure (Askandar and Mahmood 2019; Askandar et al.
2022).

The effects of glass fiber-reinforced polymer (GFRP)
sheets on pure torsion were investigated by Panchacharam
and Belarbi (2002). Their study concentrated on several FRP
configurations, including end restraint effects, fully wrapped
strengthened beams, and U-shaped wrapping. According to
the findings, 0° fibers were more ductile and had higher
strength than 90° fibers. It was discovered that the continu-
ous wrapping arrangement gave better confinement and was,
therefore, more efficient than the strip wrapping option. Due
to the poorly regulated shear flow, the U-shaped wrapping
configuration was shown to have less resistance. On the other
hand, the end restraint strengthened the beam.

To compare the effectiveness of carbon fiber-reinforced
polymer (CFRP) and glass-fiber-reinforced polymer (GFRP)
sheets for torsional strengthening, Ameli et al. (2005) carried
out a laboratory investigation in 2005. Two patterns were put
to the test: full-length and strip-form full-wrapped U shapes,
aswell as full-length and strip-form full-wrapped. The results
showed that GFRP-reinforced beams achieved 110% in con-
trast to the control beam and that the greatest torsional
strength improvement with CFRP was 143%. Compared to
the U-shaped configuration, the full-wrapped configuration
had the highest strength. The study also identified FRP rup-
ture and FRP debonding as two popular failure modes when
using FRP sheets. Hii and Al-Mahaidi (2006) studied the tor-
sional behavior of beams with various cross-sections in 2006
(hollow and solid). The cracking and deformation patterns
in the beams were seen using photogrammetry. According
to the results, the solid cross-section beam had a higher load
capacity for cracking, although the total load capacity was
nearly equal.
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Mohammadizadeh et al. (2009) conducted an experiment
in 2009 to investigate the torsional behavior of 16 reinforced
concrete beams. One or two thicknesses of CFRP sheets
were used to strengthen the beams. The usage of FRP sheets
greatly improved the beams’ torsional strength, according to
the findings. In contrast to the full wrapping arrangement,
the U-shaped wrapping configuration had less of an impact
on enhancing the torsional capacity. The application of an
artificial neural network for predicting the torsional strength
of reinforced concrete beams was investigated by Arslan
(2010). To assess the torsional and shear capability of T-
beams reinforced with CFRP sheets, Deifalla and Ghobarah
(2010) carried out an experiment in 2010.

The effects of applying CFRP on reinforced beams with
and without conventional reinforcement were examined by
Mahmood and Mahmood (2011). The experiment involved
strengthening the beams with a full strip with spacing (d/2)
or two U-shaped strips and applying a pure torsional load.
According to the findings, reinforced beams had a better tor-
sional performance than unreinforced ones. In addition, the
final torsional strength of the beams was raised by 79, 74,
and 68%, respectively, by the complete strip, U-shaped strip,
and strip torsion configurations.

In order to improve the torsional and bending behav-
ior of RC beams, Tudu (2012) carried out an experimental
investigation in 2012. According to the outcomes, the entire
wrapping pattern outscored the other models. In 2013, exper-
iments on beams strengthened with GFRP under torsion and
bending stresses were conducted by Jariwala et al. (2013).
The results exhibited that the full wrapping arrangement was
superior to other configurations in terms of enhancing tor-
sional resistance. The addition of corner strips increased the
ductility of the beams, and it was discovered that utilizing
diagonal FRP strips was more efficient than using vertical
strips. Three researchers, Rafeeq (2016), Behera et al. (2016),
and Elwan (2017), carried out lab tests in 2016 and 2017 to
investigate the effects of increasing the torsional strength of
CFRP-reinforced beams.

The application of fiber-reinforced polymers (FRP) has
become an innovative method of strengthening RC elements.
The load-bearing capacity and durability of concrete struc-
tures can be significantly enhanced usingFRPmaterials, such
as CFRP. FRP is a great choice for strengthening RC ele-
ments in buildings, bridges, and other infrastructure due to
its high tensile strength and resistance to corrosion. There
will be minimal disruption to the existing structure during
installation due to its lightweight design and flexibility (Al-
Rousan 2015, 2022; Alhassan et al. 2021; Al-Rousan and
Issa 2017; Al-Rousan and Abo-Msamh 2019, 2020). The
artificial neural network (ANN) is a computation approach
to solving a problem that can generate definitive findings
with little effort and expense by simulating the capacity of

the human brain to learn from the past and make predic-
tions. In the field of structural and earthquake engineering,
ANN has grown significantly in recent years, particularly in
discovering correlations between data (Ghafor et al. 2022;
Ahmadi et al. 2014; Naderpour et al. 2010, 2011, 2016a,
2011; b; Kheyroddin et al. 2014; Rezazadeh Eidgahee et al.
2015; Shafabakhsh et al. 2010; Naderpour and Alavi 2017;
Hosseini Vaez et al. 2017).

The theory of torsion in reinforced concrete beams
strengthenedwith FRP is explored in this study, followed by a
discussion of the current regulations in this area. The relation-
ship between input and output data to calculate the ultimate
torsional strength is then developed utilizing information
from relevant experiments in the field of FRP-reinforced RC
beams and by developing prediction models.

In addition, there are limitations to the soft computing
methods used to predict Tu for strengthened RC beam char-
acteristics. An ANN model was utilized by Naderpour and
Fakharian to calculate the Tu of strengthened RC beams. To
create the ANN models, they combined 9 input parameters
from the literature with 56 experimental results. They con-
cluded that it is an effective strategy to estimate the Tu of
strengthened RC beams employing FRP fiber using an ANN
model (Naderpour and Fakharian 2017).

This study was carried out to predict the torsional strength
of a strengthened RC beam using three separate models and
ten input parameters due to the lack of investigations on the
development of various models.

3 Torsion of RC beams strengthened
with FRP sheet

Arepresentation of a typical reinforced concrete beamunder-
going torsion evaluation is shown in Fig. 1. The hollow
cross-section of the beam is subjected to pure torsion. The
figure demonstrates how the torsion is supported by concrete,
reinforcement, and FRP sheets operating simultaneously.

The full torsional capacity of RC beams strengthenedwith
FRP may be evaluated according to a variety of design codes
that consider the superposition principle from both the CFRP
and steel reinforcement. The ultimate torsional strength, Tu,
of the investigated FRP reinforced beams is obtained by
adding the contributions from the fibers and the reinforced
concrete beam per Eq. (1):

Tu � Tu, RC + Tu, FRP, (1)

The design Eq. (2) proposed byACI 318-19 can be used to
determine the ultimate torsional strength of a reinforced con-
crete beam, Tu,RC (Askandar and Mahmood 2020; Habeeb
Askandar and Darweesh Mahmood 2020; ACI440.2R-17

123



2538 Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:2535–2553

Fig. 1 Space truss for the
torsional analysis of RC beam
strengthened with FRP materials

Table 1 Torsional strength effective parameters for FRP-strengthened
RC beams

Parameters

Width of reinforced concrete beam b (mm)

Height of reinforced concrete beam h (mm)

FRP thickness tfrp (mm)

Modulus of elasticity of the FRP sheet Efrp (MPa)

Yielding stress of longitudinal bars f yl (MPa)

Yielding stress of transversal bars f yt (MPa)

Compressive strength of concrete f ′
c (MPa)

Width of FRP strips per c/c spacing of FRP
strips

wf/Sf (mm/mm)

Angle of FRP alignment θFRP

FRP number of layers n layer

2017; ACI318M-19 2019):

Tu, RC � 2(0.85) · A◦ · At · fyv
S

, (2)

Based on the design model in the 2001 FIB Bulletin-14
(FIB 2001), an externally applied FRP laminate will only
improve the torsional strength if it completely encircles the
beam’s cross-section, allowing the FRP’s tensile forces of
the beam, allowing the tensile forces carried by the FRP on

each side of the cross-section to form a continuous loop:

Tu, FRP � 2εfk, eEfu
tfbf
Sf

bh · cotθ , (3)

εfk, e � 0.8εfe, (4)

εfe � 0.17

(
f ′
c
2
3

Efuρf

)0.3

εfu, (5)

Equations (6) and (7) are used to calculate the contribution
of the FRP to the strength Tu,FRP for beams reinforced with
U-shaped FRP (FIB 2001):

Tu, FRP � εfk, eEfu
tfbf
Sf

bh · cotθ , (6)

εfe � min.

⎡
⎣0.17

(
fc′

2
3

Efuρf

)0.3

εfu, 0.65

(
f ′
c
2
3

Efuρf

)0.56

× 10−3

⎤
⎦,

(7)

Ghobarah et al. (2002) calculated the contribution of the
FRP to the ultimate torsional strength, Tu,FRP, using Eqs. (8)
and (9):

Tu, FRP � 0.006wftfEf
bh

Sf
(8)
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Fig. 2 FRP strengthening configurations

Tu, FRP � 0.003wftfEf
bh

Sf
(9)

All the variables used in the equations stated above are
included in Table 1. The features of the FRP sheets, such
as the modulus of elasticity, which can vary depending on
the kind of GFRP or CFRP, sheet thickness, effective width,
and number of layers, have significant effects on torsional
strength. FRP strengthening configurations are shown in
Fig. 2.

4 Methodology andmodels

4.1 Data collection

96datasetswere gathered for this study fromnumerous litera-
ture sources and placed into an excel sheet. The information
was then divided into three groups, statistically examined,
and sorted at random. 70% of the data were included in the
largest group, which was referred to as the training dataset
and utilized to create models. The models were tested and
validated using the remaining two groups, each of which
contained 15% of the datasets (Yu et al. 2018; Qadir et al.
2019). The variables database and the measured torsional
strength for each sample are summarized in Table 2. Based
on the authors’ searches, the vast majority of earlier research
investigating the impact of FRP Sheets, which are used to
strengthen RC beams, on torsional strength was gathered.

The input dataset is shown in Table 2 and includes (a)
the reinforced concrete beam’s width (mm), (b) its height
(mm), (c) the FRP sheet’s thickness (mm), (d) its modulus
of elasticity (MPa), (e) the longitudinal bars’ yielding stress
(MPa), (f) the transverse bars’ yielding stress (MPa), (g) the
concrete’s compressive strength (MPa), (h) the width of the
FRP strips along the length of the beam (mm) per center-to-
center distance between the FRP strips (mm), (i) the angle at
which the FRP is aligned (deg.), and (j) the number of layers
of the FRP (no.).

The enhanced RC beam’s torsional strength was predicted
using the presented dataset, which included the 10 indepen-
dent components described above. This prediction was made
in comparison to the observed reported Tu (kN m). Utiliz-
ing all of the mentioned input characteristics is intended to
decrease the quantity of laboratory test batches required to
quickly optimize the number of components for a specific
Tu. Figure 3 illustrates the method used in this experiment.

4.2 Modeling

It is impossible to draw a direct connection between actualTu

and predicted Tu. Several additional elements and input vari-
ables are examined in the data analysis in the following part.
These involve the dimensions (width, height, and thickness)
of the RC beam; elastic modulus; the yielding stresses of the
longitudinal and transverse bars; the compressive strength of
the concrete; and factors about the FRP sheet. These param-
eters are the number of layers, the alignment angle, the width
of the strips along the length of the beam, and the distance
between the centers of the strips. In order to measure the
impact of each parameter on Tu, three distinct soft comput-
ing approaches are offered, as shown below.

4.2.1 Linear relationship model (LR)

As previously stated, the goal of this work is to develop
a model that assesses the impact of the greatest possible
number of parameters on the Tu of strengthened RC beam.
Equation (10) illustrates the use of linear regression as a gen-
eral technique for evaluating Tu:

Tu � α1 + α2(tFRP) (10)

where α1 and α2 represent the model’s inputs, ultimate
torsional strength (Tu), and FRP thickness (tFRP), respec-
tively.After taking all the perimeters influencing the torsional
strength, the equation becomes as shown in Eq. (11):

(11)

Tu � α1 + α2 (b) + α3 (h) + α4 (tFRP)

+ α5 (EFRP) + α6
(
fyl

)
+ α7

(
fyt

)
+ α8

(
f ′
c

)
+ α9

(
wf

Sf

)
+ α10 (θFRP) + α11

(
nlayer

)
Here, b stands for a reinforced concrete beam’s width in

millimeters, h for its height in millimeters, and tfrp for the
thickness of FRP inmillimeters.wfrp stands for width of FRP
strips along the length of the beam (mm); Sf stands for center
to center spacing of FRP strips (mm); θFRP stands for angle of
FRP alignment (degree); and nlayer stands for FRP number
of layers. Efrp stands for modulus of elasticity of the FRP
sheet (MPa); f yl stands for yielding stress of longitudinal
bars (MPa); f yt stands for yielding stress of transverse bars.
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Fig. 3 The flowchart diagram process followed in this study

Themodel’s parameters areα1, α2, α3, α4, α5, α6, α7.α8,
α9, α10, andα11. Equation (11) canbeused to expandEq. (10)
since all factors can be altered linearly. Tu may be influenced
by a variety of elements that interact with one another, but
this is not always the case. To accurately predict the torsional
strength, the model must be updated frequently.

4.2.2 Nonlinear model (NLR)

Part of basic, Eq. (12) can be used to create an NLR model
(Ghafor et al. 2022). Equation (3) can be used to predict the
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Tu by stating the relationship between the various compo-
nents in Eqs. (10) and (11):

Tu � α1 × (b)α2 × (h)α3 × (tFRP)
α4 × (EFRP)

α5 × (
fyl

)α6

× (
fyt

)α7 × (
f ′
c

)α8 ×
(

wf

Sf

)α9

× (θFRP)
α10 × (nlayer)

α11

+α12×(b)α13 ×(h)α14 ×(tFRP)
α15 ×(EFRP)

α16 ×(
fyl

)α17

×(
fyt

)α18 ×(
f ′
c

)α19 ×
(

wf

Sf

)α20

×(θFRP)
α21 ×(nlayer)

α22

(12)

TheLRmodel’s parameters are the same as those thatwere
previously established. In addition, in a similar way to the LR
model, the sum of error squares and the least square method
was employed to calculate the values of each parameter using
the EXCEL program and a solver.

4.2.3 ANNmodel

The opposite of feed-forward neural networks is an artificial
neural network (ANN) (Ghafor et al. 2022). Input, output,
and hidden layersmake up the three different layers that com-
prise these networks. The input layer is in charge of receiving
input data; the output layer is in charge of creating predic-
tions and categorizations; and the hidden layer (or layers)
stands in between the input and output levels, allowing data
to transfer from one layer to the next.

Trial cycles show that the number of hidden layers is not
constant and can be altered to enhance the model’s perfor-
mance. In order to identify the ideal system configuration,
the study’s authors analyzed a number of factors, including
the number of hidden layers, neurons, momentum, learning
rate, and iterations.

They discovered that when the ANN had one hidden lay-
ers, each with 5 neurons (as shown in Fig. 4), 2000 iterations,
a learning rate of 0.2, and a momentum of 0.1, the maximum
efficiency was attained. The lowest MAE and RMSE val-
ues, as well as the highest R2 value, were obtained by these
settings. Equations (13)–(15) (Ghafor et al. 2022; Quinlan
1992;Malerba et al. 2004) provide the equations for theANN
model.

Identify the best-hidden layer and neurons for an ANN
model based on the model’s R2, MAE, and RMSE perfor-
mances, as stated in Tables 2 and 3.

From linear node 0:

Tu � Threshold +

(
Node1

1 + e−B1

)
+

(
Node2

1 + e−B2

)
+ . . . (13)

From sigmoid node 1:

B1 � Threshold +
∑

(Attribute × Variable) (14)

From sigmoid node 2:

B2 � Threshold +
∑

(Attribute × Variable) (15)

4.3 Assessment criteria for the developedmodels

A variety of indicators were used to evaluate the proposed
models’ efficacy, and the outcomes were computed using the
equations provided. To ensure a thorough and comprehen-
sive examination of a model’s performance, it is crucial to
apply multiple evaluation methodologies. A more thorough
evaluation of themodel’s capabilities and constraints is made
possible by the use of a variety of metrics:

R2 �

⎛
⎜⎜⎝

∑N
i�1

(
Tp − p′)(Ta − a′)√[∑N

i�1

(
Tp − p′)2][∑N

i�1(Ta − a′)2
]
⎞
⎟⎟⎠

2

(16)

RMSE �
√∑N

i�1

(
Ta − Tp

)2
N

(17)

MAE �
∑N

i�1

∣∣Tp − Ta
∣∣

N
(18)

SI � RMSE

p′ (19)

(20)

OBJ �
(
ntr
nall

× RMSEtr + MAEtr

R2
tr + 1

)

+

(
ntst
nall

× RMSEtst + MAEtst

R2
tst + 1

)

According to the earlier formulations, Tp and T a stand for
the predicted and actual values of the route pattern, respec-
tively.a′ andp′, respectively, represent themeans of the actual
and predicted values. The letters tr, tst, andN stand for trained
datasets, tested datasets, and the number of patterns (col-
lected data) in the connected dataset, respectively. In terms
of the SI parameter, a model performs (poorly) when it is
larger than 0.3, (fairly) when it is between 0.2 and 0.3, (well)
when it is between 0.1 and 0.2, and (excellently) when it is
less than 0.1 (Ghafor et al. 2022; Li et al. 2013).

5 Results and analysis

5.1 The LRmodel

The relation between measured and predicted Tu for both
training and assessment is shown in Fig. 5a, b. The values of
each parameter in the currentmodelwere calculated using the
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Fig. 4 ANN model optimal
network architecture

Table 3 The tested ANN
architectures No. of hidden layers (HL) No. of neurons R2 MAE (MPa) RMSE (MPa)

1 1 0.9687 3.9315 5.6697

1 2 0.9841 2.3902 3.5861

1 3 0.9896 2.7274 3.4759

1 4 0.9912 2.5635 3.2509

1 5 0.9932 2.4082 3.0732

1 6 0.9931 2.4165 3.0738

2 2 0.9868 3.199 3.9758

2 3 0.9888 2.8917 3.6538

2 4 0.99 2.8489 3.5262

2 5 0.9897 2.9053 3.5975

2 6 0.9921 2.844 3.4606

2 7 0.992 2.6984 3.332

3 3 0.9888 2.979 3.7084

3 4 0.9888 2.9577 3.6973

3 5 0.989 3.0485 3.7577

3 6 0.9915 2.9588 3.582

3 7 0.9902 2.8215 3.5145

3 8 0.9916 2.8982 3.555

3 9 0.9907 2.7859 3.4412

3 10 0.9917 2.9843 3.6306

3 11 0.9924 2.748 3.4139

3 12 0.992 2.882 3.5152

3 13 0.9921 2.7085 3.3289

3 14 0.9929 2.5558 3.211

3 15 0.9929 2.6987 3.332

3 16 0.9923 2.8039 3.4209

4 4 0.3704 12.8393 19.7982

4 5 0.2571 12.8393 19.7982

4 6 0.6684 12.8393 19.7981

4 7 0.7999 12.8393 19.7981
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Fig. 5 Comparison of the Tu that were tested and the Tu that the LR model predicted; a training datasets; b testing datasets

sumof error squares and the least squaresmethod.Thismodel
suggests that the Tu of strengthened RC beams is greatly
influenced by the FRP sheet thickness and the number of
layers. Equation (21) illustrates the LR model equation with
different weight parameters:

Tu � −45.512 + 0.123 (b) + 0.093 (h) + 26.681 (tFRP)

+0.033 (EFRP)−0.031
(
fyl

)−0.008
(
fyt

)
+0.228

(
f ′
c

)
+ 3.364

(
wf

Sf

)
+ 0.008 (θFRP) + 7.898

(
nlayer

)
(21)

The tFRP has the most influence on the Tu, as shown in the
equation above. This might be in line with the experimental
results that have been published in the literature. The assess-
ment parameters for this model’s R2, RMSE, and MAE are
0.844, 7.51, and 5.48 MPa, respectively.

Furthermore, as shown in Sect. 5, the current model’s
OBJ and SI values for the training dataset are 7.09 and 0.37,
respectively.

5.2 NLRmodel

As a training and testing dataset, Fig. 6a, b illustrates the
relation between predicted and real Tu. The most significant
factors affecting the Tu, according to the current model, are
the angle of FRP alignment (θFRP), FRP thickness (tFRP),
FRP number of layers (nlayer) and width of FRP strips
throughout the length of the beam per Center to center spac-
ing of FRP strips (W f/Sf). This was supported by numerous
experimental programs from earlier studies, as shown in
Table 2. Equation (22), which offers a formula for the NLR

model with various variable parameters, states as follows:

Tu � 0.0000911 × (b)24.008 × (h)15.388 × (tFRP)
−10.933

× (EFRP)
−125.98 × (

fyl
)3.190 × ( fyt)

−15.322

× ( f ′
c)
110.771 × (

Wf

Sf
)
0.569

× (θFRP)
−0.191

× (nlayer)
−0.191 + 0.004× (b)1.379 × (h)−0.079

× (tFRP)
1.812 × (EFRP)

1.422 × (
fyl

)−0.780 × ( fyt)
−0.041

× ( f ′
c)
0.634 × (

Wf

Sf
)
0.080

× (θFRP)
0.003 × (nlayer)

0.376

(22)

A measurement of this model’s R2, RMSE, and MAE is
0.9645, 3.61, and 2.75 MPa. The OBJ and SI values for the
training dataset are 3.44 and 0.18, respectively.

5.3 ANNmodel

Comparison of predicted and actual Tu for training and test-
ing datasets is shown in Fig. 7a, b. The training datasets have
an error line of + 5 and− 18%, whereas the testing data have
an error line of + 12 and − 15%, which is better than the
other suggested models. The assessment parameters for R2,
RMSE, and MAE are 0.9864, 3.07, and 2.40, respectively.
The current model’s OBJ and SI values for the training set
are 2.63 and 0.17, respectively.

6 Model comparisons

To assess how well each model predicted the torsional
strength of the strengthened RC beam, statistical indicators
from Sect. 5 were employed. Figures 8, 9 and 10 for R2 val-
ues, RMSE, and MAE, respectively, reveal that the ANN
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Fig. 6 Comparison of the Tu that were tested and the Tu that the NLR model predicted; a training datasets; b testing datasets

Fig. 7 a Comparison of the Tu that were tested and the Tu that the ANN model predicted; b testing datasets

Fig. 8 R2 results for training and testing datasets for various proposed
models

Fig. 9 RMSE results for training and testing datasets for various pro-
posed models
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Fig. 10 MAE results for training and testing datasets for various pro-
posed models

model has a higher R2 and lower RMSE and MAE val-
ues when compared to the LR and NLR. Based on testing
datasets, Fig. 11 displays model Tu estimates for strength-
ened RC beams. Figure 12 also displays the residual error
for all models that utilize the training and testing datasets.
The estimated and predicted Tu evaluations in Figs. 13 and
14 for the ANN model are comparable, indicating that the
ANN model outperforms other models.

The OBJ values for all developed models are displayed
in Fig. 13. The pressures for the LR, NLR, and ANN mod-
els are 7.09, 3.40, and 2.63 kN m, respectively. The OBJ
value of the ANN model was 29 and 170% less than that of
the NLR model, and NLR model, respectively. This further

Fig. 12 Tu residual error diagram utilizing entire datasets for all models

illustrates that for beams strengthened with FRP sheets, the
ANN approach is more reliable in predicting the Tu.

The SI values for the supplied models during the train-
ing and testing processes are shown in Fig. 14. The figure
shows that, based on their performance as determined by the
Scatter Index (SI) values, the three machine learning mod-
els linear regression (LR), non-linear regression (NLR), and
artificial neural networks (ANN) are compared in this study.
The observed SI values for the data-trained set were 0.37 for
LR, 0.18 for NLR, and 0.17 for ANN. On the other hand, it
was discovered that the SI values for the data-tested set were
0.18 for ANN, 0.30 for NLR, and 0.44 for LR. Noteworthy
SI values include 0 and 0.1, which denote excellent perfor-
mance, 0.1–0.2, which denotes good performance, 0.2–0.3,
which denotes fair performance, and 0.3–0.4, which denotes
poor performance. In the data-tested set, the ANN model
exhibited good performance based on these classifications,
while the NLR and LR models performed fair and poorly,

Fig. 11 Comparison of model
predictions from the test datasets
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Fig. 13 All of the models’ OBJ
values

Fig. 14 SI performance
parameter results of all models

respectively. In the training phase, the SI value of the ANN
model is 118% lower than that of the LR model, and in the
testing phase, it is 144% lower.

In addition, the ANN model revealed lower SI values in
the NLRmodel, including decreases of 6 and 67% in training
and testing, respectively. This demonstrated that the ANN
model can predict the Tu of FRP-strengthened RC beams

more accurately and competently than NLR, and LRmodels.
Hoang et al. concluded the same result. In 2023, the flexural
moment of FRP-strengthened RC beamswas predicted using
ANN (Le Hoang et al. 2023).

In conclusion, it is important to note that any models
with allowable errors can be utilized to predict the Tu of
FRP-enhanced RC beams without the need for experimental
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Fig. 15 Contribution of the model parameters in predicting the Tu of
strengthened RC beams

programs. In addition, compared to other models, the ANN
model can produce more accurate findings.

7 Sensitivity analysis

The models that were developed show an outstanding ability
to accurately predict the ultimate torsional strength (Tu) of
RC-strengthened beams.However, it is also crucial to explain
how the model’s output varies depending on the parameters
that were selected. This feature significantly contributes to
the development of user confidence in the predictive model.

Establishing a mechanistic understanding of the link
between input and output variables requires conducting
sensitivity analysis. This study enables the removal of unim-
portant factors by assessing the effects of various input
parameters on the result. As a result, this lessens model com-
plexity and minimizes training time.

Various unique training datasetswere used for the sensitiv-
ity analysis, each of which only contained one input variable
that was retrieved at a time. Specific evaluation criteria, such
as R2, RMSE, andMAE, were uniquely constructed for each
training dataset. The calculation of the relative contribution
of each model parameter was then done. Figure 15 shows the
results of the sensitivity analysis.

The results of this investigation overwhelmingly support
the concept that the θFRP is the most important factor influ-
encing Tu prediction.

8 Conclusion

Significant time and cost savings can be achieved by increas-
ing the prediction models’ accuracy and reliability for the

torsional strength of RC beams. This study investigated
96 different strengthening configurations by analyzing data
from earlier studies. Important conclusions established by
this investigation are as follows:

1. The models developed in this study generally provide
an efficient method to predict the torsional strength of
FRP-strengthened reinforced concrete (RC) beams, par-
ticularly the ANN model. As a result, fewer substantial
experimental experiments and trial batches in the labmay
be performed.

2. Based on the statistical evaluation and sensitivity analy-
sis, the ANN model outperforms the other two models.
For training and testing datasets, the model’s R2 val-
ues are 0.99, and 0.93 respectively. Furthermore, the
ANN model’s training dataset has additional sensitiv-
ity indicators for the RMSE, MAE, OBJ, and SI, which
are 3.07 MPa, 2.41 MPa, 2.63, and 0.17, respectively.
Thus, the ANN model is appropriate to be utilized in
the preliminary design of the torsional strength of FPR-
strengthened RC beams and possesses a higher degree of
generality and predictive capacity.

3. The predicted torsional strengths of the FRP-
strengthened RC beam with the ANN model were
within + 5 and − 18% of the measured torsional strength
of the FRP-strengthened RC beam for the training
datasets. However, this value was increased to + 20 and
− 45% for the other remaining models.

4. The obtained results show that the angle of FRP align-
ment (θFRP), and the width of FRP strips per c/c
spacing of FRP strips (wf/Sf) are the most significant
parameters for predicting the torsional strength of the
FRP-strengthened RC beams.
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