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Abstract
The present study focuses on producing high-performance eco-efficient alternatives to conventional cement-based composites.
The study is divided into two parts. The first part comprises of production of high-strength self-compacting alkali-activated
slag concrete (SC-AASC) with GGBFS as a primary binder. The second part deals with the development of a prediction
model to estimate the mechanical strength of developed concrete. In this study, to achieve high-performance SC-AASC,
the alkali activator solution content varied from 220 to 190 kg/m3, and the AAS/binder ratio varied between 0.47 and 0.36.
The SP percentage fluctuated between 6 and 7%, while the additional water percentage was maintained between 21 and
24%. The approach used to obtain the high-performance SC-AASC was found to be competent as all the mix resulted in
satisfactory performance for both fresh and hardened properties. For M45 graded SC-AASC, using 200 kg/m3 of AAS with
an AAS/binder ratio of 0.39 resulted in higher strength, while for M60 grade, 190 kg/m3 of AAS with an AAS/binder ratio of
0.36 yielded stronger concrete. Additionally, a 6% SP and 24% extra water content enhanced workability for both M45 and
M60 grade SC-AASC. A database of 135 observations was developed from the experimental study. The compressive strength
and split tensile strength of SC-AASC were predicted using six machine-learning algorithms. The hyperparameters of all
the models were optimized using the metaheuristic spotted hyena optimization technique. Optimized XGBoost outperformed
other models scoring a higher R2 of 0.97 and lower value of error parameters on both datasets. A comparison was drawn with
previously published models to check the efficacy of the developed model. The Sobol and FAST global sensitivity analysis
resulted in the AAS/binder ratio, AAS content, GGBFS content, and Curing days being most influential regarding the strength
of SC-AASC.

Keywords High-strength · Self-compacting · Alkali-activated concrete · GGBFS · Machine learning · SHO · XGBoost ·
Sensitivity analysis
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GGBFS Ground granulated blast furnace slag
HS High strength
HP High performance
ML Machine learning
AI Artificial intelligence
AAS Alkaline activator solution
SH Sodium hydroxide
SS Sodium silicate
SP Superplasticizer
EW Extra water
SF Slump flow
VF V-funnel
JR J-Ring
T5 V-funnel at T5 minutes
CS Compressive strength
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STS Split-tensile strength
EDA Exploratory data analysis
SVR Support vector regressor
RFR Random forest regressor
BR Bagging regressor
AB AdaBoost
XGB XGBoost
SHO Spotted Hyena optimization

1 Introduction

Portland cement-based concrete is the second most-used
material after water to accomplish rapid construction
throughout the world (Feng et al. 2020). Portland cement
manufacture produces large emissions in addition to requir-
ing a lot of energy. In other words, the production of one
tonne of cement produces roughly one tonne of carbon emis-
sions (Alsalman et al. 2021). These vast carbon and other
hazardous substances emission into the atmosphere creates
various environmental concerns (Oliveira et al. 2019, 2020).
To check on these environmental issues created by Port-
land cement production, various remedial measures have
been explored by several researchers (Ahmed et al. 2022b,
d, 2023b; Qaidi et al. 2022b, c; Smirnova et al. 2021;
Unis Ahmed et al. 2022; Pradhan et al. 2022d, 2023a,
b) and among those use of supplementary materials, use
of alkali-activated materials, and geopolymer concrete are
notable. Geopolymers are inorganic polymericmaterials pro-
duced using some alumino-silicate materials as precursors
and some reagents, which were discovered in the 1970s
(Davidovits 1976). The world has seen enormous research
since the 1990s on the development of geopolymer concrete
(GPC) using various sources of precursors such as natu-
ral (clays, kaolin, metakaolin), industrial wastes (fly ash,
ground granulated blast furnace slag or GGBFS, red mud),
and agricultural wastes (sugarcane ash, rice husk ash, etc.)
and various alkaline as well as acid solutions as chemical
regents (Ahmed et al. 2023a, c; Das et al. 2023; Dwibedy
and Panigrahi 2023; Pradhan et al. 2023a, b, 2024, Qaidi
et al. 2022a, c; Unis Ahmed et al. 2023). To overcome the
difficulty in the workmanship of GPC and alkali-activated
concrete, a new form of GPC has also been explored which
has a self-compacting nature and is termed Self-compacting
geopolymer concrete and SC-AASC (Pradhan et al. 2022c).
The SC-AASC can fill the dense reinforced formwork with-
out segregation (EFNARC 2002). SC-AASC usage ensures
a reduction in construction cost, labor, and energy consump-
tion so it is highly beneficiary for modern-day infrastructural
development. The GPC and alkali-activated concrete have

been established as a substitute for Portland cement con-
crete because of their mechanical and durability behaviors
(Pradhan et al. 2022a). However, it is not in use in practical
construction fields yet. The primary reason is the varia-
tions in the properties of starting materials as it creates
difficulty in controlling the GPC properties. Prediction of
strength characteristics from its constituting material has
been practiced so that wastage of time, materials, energy,
and repetition of tests can be avoided (Ahmed et al. 2021,
2022a, b, c, d, e, f; Faraj et al. 2022a). The factors govern-
ing the properties are vast (Pradhan et al. 2022b) and simple
linear regressions can’t provide an acceptable relation for
the prediction of compressive strength. Machine Learning
and Deep Learning techniques are extensively employed for
tasks such as database classification and regression analy-
sis. This is primarily due to their capacity to grasp intricate
patterns within data (Ongsulee 2017). Various researchers
have applied machine learning to predict concrete proper-
ties (Ahmed et al. 2022c, d, 2023b; Faraj et al. 2022a, b).
Nhat-Duc (2023) used a deep learning approach to pre-
dict the compressive strength of GGBFS-based concrete.
Zhang et al. (2023) used hybrid algorithms for compres-
sive strength prediction of ultra-great workability concrete.
Hu (2023) used a novel hybrid SVR model for compressive
strength evaluation. Recently, various metaheuristic tech-
niques have been used for hyperparameter optimization of
machine learning models for concrete properties prediction
(Dash et al. 2023; Parhi and Panigrahi 2023; Parhi and Patro
2023a, b; Singh et al. 2023). Compressive strength is the
most important criterion in any type of concrete (Parhi et al.
2023). Compressive strength prediction of ecofriendly plas-
tic sand paver blocks using gene expression programming
(GEP) and multi-expression programming (MEP) has been
done by various researchers (Iftikhar et al. 2023a, b). Chen
et al. (2023a) employed GEP, decision tree (DT), multilayer
perceptron neural network (MLPNN), and support vector
machine (SVM) for predicting the reduction of compres-
sive strength due to acid attack in egg-shell and glass waste
incorporated cement-based composite. Zou et al. (2023) used
GEP and MEP for slump and strength prediction of alkali-
derived concrete. Utilization of GEPwas further found in the
strength prediction of waste-derived self-compacting con-
crete by Chen et al. (2023b). Alsharari et al. (2023) used a
decision tree (DT), Adaboost (ADB), and bagging regressor
(BR) approach for strength estimation of concrete at elevated
temperatures. Random forest (RF) and GEP were used by
Qureshi et al. (2023) for compressive strength prediction of
preplaced aggregate concrete.

This research aims to meet stringent performance require-
ments in modern construction infrastructure by producing
sustainable, green, and noise-free concrete. To facilitate
these unique characteristics for a wide range of applica-
tions a method was proposed to develop HS-self-compacting
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Table 1 Oxide composition of
GGBFS (% wt) CaO SiO2 Al2O3 MgO TiO2 MnO Others

36.8 34.05 17.8 9.1 0.8 0.07 1–2

alkali activated slag concrete in this manuscript. Criti-
cal sustainable factors contributing to the workability and
strength of concrete have been identified and varied to obtain
high-performance concrete. Further different machine learn-
ing techniques were used to optimize the mix proportion
for developed high-performance concrete by predicting the
strength properties of its constituent materials.

1.1 Research significance and essence
of themanuscript

The manuscript presents a pioneering study in the field
of concrete technology and machine learning, focusing
on the development of High-Performance Self-Compacting
alkali-activated slag concrete. This research holds signifi-
cant importance and contributes to both the concrete industry
and the domain of predictive modeling. The development
of High-Performance SC-AASC represents an innovative
approach to sustainable construction materials. This has
the potential to reduce carbon emissions and environmen-
tal impact, addressing critical concerns in the construction
industry. From a base, M25 SC-AASCmix design, M45, and
M60 high strength SC-AASCwere prepared by exploring the
variation of critical strength and workability factors. Under-
standinghow these factors impact the concrete’s performance
is essential for optimizing its use in real-world construc-
tion applications. Metaheuristic Spotted Hyena-optimized
Machine Learning models were used for predicting the
strength properties of SC-AASC. The manuscript adopts
advanced computational techniques to enhance the accuracy
of strength predictions, potentially revolutionizing quality
control and design processes in the construction industry.
The research also employs global sensitivity analysis meth-
ods, such as Sobol and FAST, to identify the parameters that
influence the strength of SC-AASC. This analysis provides
invaluable insights into the underlying mechanisms govern-
ing the material’s performance. The research aligns with
global efforts to promote sustainability in construction. The
development of a more environmentally friendly concrete
mix and the use of advanced modeling techniques contribute
to reducing the ecological footprint of construction projects.
The manuscript bridges the gap between materials science,
construction engineering, and data science, showcasing the
potential of interdisciplinary research to address complex
challenges in the construction sector.

2 Materials andmethodology

2.1 Material collection

For the preparation of high-strength workable concrete,
Ground Granulated Blast furnace slag (GGBFS) was used as
the sole binder. GGBFS of specific gravity 2.8 was supplied
by TATA Steel, Jajpur, Odisha. Table 1 represents the oxide
composition of GGBFS. For the preparation of an alkaline
activator solution (AAS), a combination of sodium hydrox-
ide (SH) and sodium silicate (SS) of specific gravity 2.13 and
1.4 was used. Locally available natural coarse aggregate and
fine aggregate were collected. SIKA VISCOFLOW 4005NS
of specific gravity 1.11 was used as a superplasticizer (SP)
for the production of higher-strength workable concrete. To
maintain workability clean tap water was used as extra water
(EW).

2.2 Mix proportion

In this study, the mix design procedure for self-compacting
concrete as per IS 10262:2019 has been adopted. From
the previous studies to prepare higher strength workable
concrete, some parametric values have been identified like
molarity of SH as 12 M, AAS ratio (SS/SH) as 2.5 (Nurud-
din et al. 2011; Pradhan et al. 2022a, b, c) with a variation of
percentage of superplasticizer as 6% and 7%, (Jithendra and
Elavenil 2019; Memon et al. 2012) and extra water as 21%
and 24% (Muraleedharan and Nadir 2021; Patel and Shah
2018). During the progress of high strength, mix designs
were prepared from standard base SC-AASC i.e., M25 to
M45 to M60 with the variation of two principal strength
contributing parameters like AAS content and AAS/Binder
ratio. Nine M25 mix designs were prepared with succes-
sive reductions of AAS content i.e., 220–210 kg/m3, and
AAS/Binder ratio i.e., 0.47–0.43. After getting workable
M25 concrete, similarly, nine numbers of M45 andM60 mix
designs were prepared with regular reduction of AAS con-
tent i.e., 210–200 kg/m3 and 200–190 kg/m3 along with a
decrement ofAAS/Binder ratio i.e., 0.41–0.39 and 0.37–0.36
respectively. Figure 1 represents the mix-design progress
from M25 to M60. The detailed mix proportions of M25,
M45, and M60 are shown in Tables 2, 3, and 4.
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Fig. 1 Mix design progression from M25 to M60

2.3 Preparation, casting, and curing

For the preparation of fresh SC-AASC, materials like
GGBFS, and aggregates wereweighted properly. Aggregates
were collected in a saturated surface dry condition. A dry
mix of Ground Granulated Blast Furnace Slag (GGBFS) and
these aggregates was prepared by mixing them for 2–3 min.
A SodiumHydroxide (SH) solutionwas prepared 24 h before
casting. Two hours before casting, the Sodium Silicate (SS)
solution was added to the SH solution to create an Alkali-
Activated Slag (AAS) solution. The AAS solution was then
added to the dry mix of GGBFS and aggregates. Extra water
and a superplasticizer were added to the mixture concerning
the mix’s workability. The materials were thoroughly mixed
for 3–5 min to ensure uniformity and homogeneity. Freshly
prepared SC-AASC was tested for workability. SC-AASC
was cast into cubes with sides measuring 150 mm and cylin-
ders with a diameter of 150 mm and a height of 300 mm.
The specimens were cured at 14-, 28-, and 56-day ambi-
ent temperature for mechanical property study. The detailed
procedure for the production of SC-AASC is represented in
Fig. 2.

2.4 Test methodology

The freshly prepared concrete was tested using four fresh
property tests. The Slump Flow Test was used to evaluate
the workability and flow characteristics of self-compacting
AASC by measuring the spread of the concrete when it
flows freely. The V-Funnel Test assesses the filling ability
of SC-AASC by measuring the time it takes to flow through
a V-shaped funnel, indicating its flow properties. The J-
Ring Test measures the ability of SC-AASC to pass through
obstructions, assessing its flowability in the presence of rein-
forcement. The V-Funnel at T5 Minutes Test accesses the

resistance to segregation during pouring. The compressive
Strength Test was used to determine the maximum load SC-
AASC can withstand under axial compression, indicating its
overall strength, and split-tensile strength was used to evalu-
ate its resistance to cracking. Figure 3 represents all the fresh
and hardened tests conducted along with casted specimens.

2.5 Experimental test results

The freshly prepared concretewas tested for filling ability test
(slump flow, V funnel test), Passing ability test (J ring), and
resistance to segregation test (V-funnel at T5minute) of work-
ability as per EFNARC guidelines. After 14, 28, and 56 days
of ambient curing, the specimens were tested for mechani-
cal properties of compressive and split tensile tests. To avoid
any misleading results, for each mix, three specimens were
tested. The results of fresh and mechanical properties are
shown in Table 5.

It is well observable that as the mix grade changes from
M25 to M60, the slump flow generally decreases, indicating
that higher-strength mixes are less flowable but still within
an acceptable range for self-compacting concrete. The v-
funnel test evaluates filling ability, Similar to slump flow
results higher mix grades show slightly longer times (in
seconds), indicating reduced filling ability with increasing
strength. The J-ring test measures the ability of freshly pre-
pared concrete to pass through the tight obstruction. It is a
field test so can be performed onsite. The results show a slight
increase in J-Ring values with higher mix grades, suggesting
better resistance to segregation in stronger mixes. V-funnel
test at T5 minutes provides insights into segregation resis-
tance, stability, and viscosity. Similar to otherworkability test
results this test also indicates reduced flowability over time
for higher mix grades but within acceptable ranges. All the
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mix grades successfully pass the flowability and filling abil-
ity criteria for self-compacting concrete. The compressive
strength and split-tensile strength results exhibited increas-
ing mechanical strength with an increase in curing period
and mix grades. The strong chemical bond formed due to the
chemical activation of slag contributes to higher compres-
sive strength compared to normal Portland-based concrete.
Alkali-activated slag sometimes contains unreacted slag par-
ticles which makes the microstructure porous and prone to
cracking (Sakulich et al. 2010). Due to this reason, a low
valueof split-tensile strength canbevisualized in somemixed
proportions. Also, self-compacting alkali-activated slag may
require longer curing periods to achieve its optimal strength.
In comparison, Portland cement concrete often gains strength
more rapidly in the early stages. The results indicate satisfac-
tory performance of SC-AASC for all the mix grades, hence
the approach used to obtain the high-performance SC-AASC
was found to be competent.

3 Database and exploratory data analysis

3.1 Database for model development

An adequate and dependable database holds equal signifi-
cance alongside effective computational techniques. When
simulating a model, the database must encompass a diverse
array of input data. Variability in the experimental database
arises from both epistemic and aleatoric errors, contributing
to high variance. To serve the goals of research endeavors,
a coherent database with 135 observations was generated
through the Python interface of Google Colab. Refer to
Table 6 for a summary of the descriptive statistics about the
SC-AASC database, which was employed to construct mod-
els.

Machine learning (ML) approaches are used to extract
data information, unknown patterns, and the relationship
between the dataset. ML has two kinds of techniques for
prediction and modeling; one is a single separate model and
another is known as an ensemble (Chou and Pham 2013).
For the prediction of strength characteristics of M25, M45,
and M60 SC-AASC; 12 inputs were given i.e., along with
all the constituent parameters that produce SC-AASC and
the important fresh property results which defy the essen-
tial characteristic of SC-AASC i.e., flowability was also
taken as input data while compressive strength and split ten-
sile strength were taken as output data. Using both single
and ensemble ML algorithms compressive and split tensile
strength were predicted.
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Fig. 2 Production procedure of self-compacting alkali-activated slag concrete

Fig. 3 Fresh and hardened tests conducted on specimens
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Table 5 Fresh and mechanical results of all the mixes

MIX ID Fresh property Mechanical property

Slump flow (SF)
in mm

V-funnel (VF) in
sec

J-ring (JR) in
mm

V-funnel at
T5minutes (T5) in
s

Compressive strength
(CS) in MPa

Split tensile
strength (STS)
in MPa

Days 14 28 56 14 28 56

M25SC1 752 8.16 1.75 10.21 26.65 32.70 39.1 1.52 1.68 1.82

M25SC2 740 8.34 1.78 10.25 27.23 33.82 40.24 1.6 1.75 1.9

M25SC3 746 8.32 1.83 10.28 25.44 31.8 38.13 1.5 1.67 1.82

M25SC4 742 8.46 1.85 10.51 29.54 36.23 43.53 1.72 1.89 2.07

M25SC5 733 8.61 1.96 10.58 30.98 38.16 45.79 1.78 1.97 2.19

M25SC6 735 8.67 2.01 10.64 28.76 35.87 42.96 1.75 1.92 2.06

M25SC7 729 8.83 2.06 10.89 32.28 40.28 48.18 1.9 2.12 2.31

M25SC8 718 8.96 2.2 10.92 33.29 41.00 49.23 2.06 2.28 2.48

M25SC9 723 9.02 2.16 10.97 32.97 40.09 48.03 1.91 2.08 2.26

M45SC1 730 8.87 2.09 10.98 38.84 48.59 57.4 2.65 2.92 3.17

M45SC2 721 9.04 2.18 11.07 40.93 50.78 60.75 2.8 3.07 3.33

M45SC3 724 9.01 2.22 11.12 42.71 52.16 63 2.92 3.21 3.49

M45SC4 710 9.17 2.26 11.25 43.94 54.08 64.74 3.01 3.32 3.6

M45SC5 702 9.31 2.35 11.3 45.96 56.72 67.93 2.93 3.24 3.52

M45SC6 700 9.29 2.33 11.36 45.72 56.02 67.09 2.98 3.28 3.56

M45SC7 691 9.45 2.42 11.47 46.23 56.94 68.16 3.12 3.43 3.72

M45SC8 685 9.52 2.47 11.45 46.55 57.12 68.54 3.05 3.35 3.64

M45SC9 682 9.51 2.5 11.58 47.63 58.32 69.87 3.07 3.38 3.67

M60SC1 695 9.56 2.52 11.54 51.91 63.71 72.69 3.19 3.51 3.81

M60SC2 688 9.64 2.57 11.55 52.43 64.58 73.59 3.32 3.66 3.95

M60SC3 683 9.57 2.64 11.60 53.47 65.56 73.4 3.16 3.59 3.91

M60SC4 673 9.68 2.66 11.79 54.07 66.29 74.08 3.23 3.65 3.96

M60SC5 664 9.76 2.59 11.87 54.56 66.95 74.16 3.46 3.79 4.12

M60SC6 667 9.81 2.74 12.02 55.18 68.47 74.95 3.55 3.91 4.25

M60SC7 661 9.94 2.85 12.18 55.38 67.78 73.21 3.59 3.95 4.28

M60SC8 654 10.02 2.98 11.97 56.04 68.89 75.68 3.56 3.92 4.26

M60SC9 656 9.97 2.92 11.89 56.35 69.14 75.93 3.62 3.98 4.32

3.2 Exploratory data analysis

Data analysis is an important step before proceeding with the
creation of a model. Exploratory data analysis (EDA) helps
in the initial investigation of data i.e., to identify patterns, get
meaningful insights, check inconsistency and irregularity of
data, and to check thehypothesis andparametric featureswith
the assistance of statistics and graphs (Morgenthaler 2009).
EDA was done before proceeding into ML model creation.
Data analysis is an important step before proceeding with the
creation of a model. Exploratory data analysis (EDA) helps
in the initial investigation of data i.e., to identify patterns, get
meaningful insights, check inconsistency and irregularity of
data, and to check thehypothesis andparametric featureswith

the assistance of statistics and graphs (Morgenthaler 2009).
EDA was done before proceeding into ML model creation.
The dataset containing missing values and outliers signifi-
cantly decreases the accuracy of the models. Outlier mining
is a data analysis process associated with the detection and
removal of outliers in a dataset (Angiulli and Pizzuti 2005).
In a dataset outliers are data points situated at an uncommon
distance or having significant deviation from well-structured
data (Wang et al. 2019). Commutation of system,mechanical
and software faults, and human and instrumental errors give
emergence to outliers (Hodge and Austin 2004). Outliers can
be viewed by plotting the attributes in a box plot which shows
the distribution and range of data for each attribute (Petro-
vskiy 2003). If an outlier is present for any attribute that can
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Table 6 Summary of
experimental database used for
modeling

Parameters Mean Std Min 25% 50% 75% Max

GGBFS (binder) 510.543333 25.475696 468.09 488.37 512.82 527.78 541.67

AAS 205.000000 9.185587 190.00 200.00 205.00 210.00 220.00

AAS/binder 0.403333 0.037650 0.36 0.37 0.39 0.43 0.47

CA 817.615926 106.844761 673.26 725.69 817.71 909.00 991.56

FA 905.367778 118.306723 724.44 829.63 895.73 1008.37 1065.53

SP 34.036296 2.959617 28.09 31.67 34.19 36.79 37.92

Water 117.598148 9.109216 98.30 112.34 117.21 126.15 130.00

SF 703.962963 29.999352 654.00 682.00 702.00 730.00 752.00

VF 9.201111 0.539266 8.16 8.83 9.29 9.64 10.02

T5 11.230617 0.561835 10.21 10.89 11.30 11.60 12.18

JR 2.328889 0.347387 1.75 2.06 2.33 2.59 2.98

Age 32.666667 17.569861 14.00 14.00 28.00 56.00 56.00

CS 52.183457 14.353802 25.44 40.28 52.43 65.56 75.93

STS 2.973580 0.829535 1.50 2.08 3.19 3.60 4.32

Fig. 4 Box plot of the compressive model dataset

Fig. 5 Box plot of the split-tensile model dataset

be viewed with a dot mark in a box plot. Figures 4 and 5
show both datasets of compressive and split-tensile having
no outliers.

A density plot gives a fair assessment of the outlook of the
data and if it is normally distributed or not so that the applied
algorithm will not require any assumption about the organi-
zation of data which may cause consumption of time while

running themodel (Chen 2017). KDE is a probability density
function that assists in the evaluation of the density plot (Kim
and Park 2014). A steady curve was drawn at every data point
and all the curves were summated to make a single smooth
curve (Terrell and Scott 1992). The distribution of the data
in the density plot should be like a Gaussian bell-shaped. If
the data contains irregularity, then shape and distribution will
vary. Figure 6 shows the perfect Gaussian distribution of all
the input attributes of the dataset. The plot having the region
with a higher peak resembles the density of maximum data
points. Figure 7 shows the correlation matrix of all the fea-
tures in the dataset. The Pearson correlation matrix indicates
the relationship between all the attributes is linear or non-
linear. As it can be visualized from the figure the strength of
SC-AASC shows a non-linear to moderately linear relation-
ship with other parameters.

4 Machine learningmodels andmodel
evaluation parameters

Most of the studies as documented in Sect. 1 employ ANN,
GEP, Tree-based algorithms, boosting, and bagging regres-
sors for strength prediction. In this study, for a comprehensive
comparison between different types of AI-based models,
six ML algorithms were employed. The hyperparameters of
thesemodels were optimized using ametaheuristic optimiza-
tion algorithm. The ML algorithms include modified linear
regression (LASSO), support vector regressor, bagging, and
boosting regressors. These are very efficient ML algorithms
that were used for strength prediction in this study.
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Fig. 6 Density-based distribution plot of the input dataset

4.1 LASSO regressor

The Least Absolute Shrinkage and Selection Operator
(LASSO) is a modified linear regression method used as an
ML algorithm for modeling purposes. It uses the shrinkage
method to penalize the model. The values are shrunk towards
a central point as the mean and the model is penalized for
the sum of absolute values of the weights (Kang et al. 2021).
LASSO uses regularisation and selection of variables or fea-
tures of the dataset for enhancement of model accuracy i.e.,
introducing penalty factor to constraint the co-efficient and
when the co-efficient is shrunk towards the mean of zero less
important features are eliminated before the model proceeds
to train (Mangalathu and Jeon2018). Themathematical equa-
tion of the LASSO regressor is given below.

L(β) �
n∑

i�1

⎛

⎝yi −
∑

j

xi jβ j

⎞

⎠
2

+ λ

p∑

j�1

∣∣β j
∣∣. (1)

Penalization factor i.e., the amount of shrinkage denoted
by λ. An increase of λ has a direct proportion effect on

the bias but is indirectly proportioned toward variance. The
LASSO regression method reduces the multi-collinearity of
the dataset and simplifies the model. It also prevents overfit-
ting.

4.2 Support vector regressor (SVR)

A support vector machine (SVM) is one of the popular ML
algorithms used for classification and regression problems
proposed by Cortes and Vapnik (1995). The fundamental
thought behind SVM is that it takes a set of input data and
using a non-linear mapping function transforms the data into
high-dimensional feature space (Boser et al. 1992). SVM
Regression referred to as SVR designated using the sparse
solution, kernels, decision boundaries, and several support
vectors; can predict the value for a non-linear database. SVR
gives mobility to interpret the amount of acceptance of error
in the model and find a suitable line i.e., a hyperplane in a
higher dimension to fit the data. SVR trains utilize a symmet-
rical loss function which similar to SVM penalizes high and
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Fig. 7 Co-relation matrix

low misestimates (Awad and Khanna 2015). SVR’s regres-
sion equation in the feature space can be approximated as

Z(a, w) � (w.φ(a) + c). (2)

The weight vector defined by w and φ(a) is the fea-
ture function. By the incorporation of Lagrangian multiplier
β and β*, using kernel function K(xi, xj), and applying
Karush–Kuhn–Tucker conditions (Parveen et al. 2016); the
SVR function can be obtained as:

Z
(
a, βi , β∗

i

) �
Nsv∑

i�1

(
βi − β∗

i

)
K (a, ai ) + c. (3)

4.3 Random Forest Regressor (RFR)

The Random Forest (RF) algorithm stands out as a versa-
tile and user-friendly machine-learning technique. It excels

in accuracy, often eliminating the need for intricate hyperpa-
rameter tuning. RF operates by constructing an ensemble of
decision trees (DTs) referred to as a "Forest." These trees are
generated from diverse dataset samples and trained using the
bagging technique. The final output is obtained by amalga-
mating the outputs of these trees through averaging, yielding
a dependable and precise prediction (Dou et al. 2019). Each
tree within the RF is constructed independently, utilizing dis-
tinct subsets of attributes. This approach leads to a reduction
in the dimensionality of the feature space. While develop-
ing these decision trees, RF doesn’t prioritize the search for
critical factors in node splitting; instead, it seeks the optimal
feature among a subset of features. Consequently, it gener-
ates smaller DTs, thereby mitigating the risk of overfitting
(Géron 2019).

ŷ � 1

B

B∑

d�1

fd(x). (4)
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4.4 Bagging regressor (BR)

A bagging regressor or bootstrap aggregating regressor is a
bagging ensembleMLmeta-estimator used formodeling that
fits or resamples the original training dataset with replace-
ment (Sutton 2005). Some data may be occurring multiple
times while others left out in the resampled dataset. It is
based on a powerful statistical method known as a bootstrap
for estimating quantity from a data sample. As previously
discussed in Sect. 5.2 this method decreases the variance of
the black-box estimator by initiating randomization and then
creating an ensemble. If for a given training set B � {(x1,
y1) …. (xn, yn)} the bagging regressor converts it to quasi-
replica training set T by replacement and the final regression
equation can be given as

f (x) �
T∑

i�1

fi (x). (5)

4.5 AdaBoost regressor (AB)

Adaptive Boosting, also referred to as AdaBoost, represents
a meta-learning approach within the realm of machine learn-
ing (Wu et al. 2008). This pioneering boosting algorithm
marked a significant advancement in enhancing the effec-
tiveness of binary classification tasks, originally denoted as
AdaBoost.M1. The fundamental principle behind AdaBoost
involves its capacity to transform the errors made by weaker
classifiers into strengths (Schapire 2013), thereby mitigat-
ing bias in supervised learning contexts. While contrasting
with the Random Forest (RF)model, wherein Decision Trees
(DTs) lack a predetermined depth and encompass an initial
node connected to numerous leaf nodes, AdaBoost employs
concise DTs featuring only one level or a solitary split. Such
DTs with a solitary split are commonly referred to as ’Deci-
sion stumps’ or simply ’stumps’. The algorithm’s workflow
entails constructing a model that initially attributes equal
weights to all data points within a dataset. Subsequently,
these weights are reassigned to favor weaker learners in each
iteration, thus granting them higher importance in the sub-
sequent rounds. This iterative training process persists until
errors are minimized, leading to heightened accuracy.

H(x) � sign

(
T∑

t�1

αt ht (x)

)
. (6)

4.6 XGBoost regressor (XGB)

XGBoost, short for Extreme Gradient Boosting, represents
the pinnacle of ensemblemachine learning algorithms, boast-
ing both remarkable speed and formidable power. This
algorithm provides a structured approach to harnessing the
combined predictive prowess of multiple individual learn-
ers. Its unparalleled capacity for cache optimization renders
it the swiftest performer in program execution. At its core,
XGBoost embodies a distributed gradient-boosted decision
tree (GBDT) framework for machine learning. Widely rec-
ognized as the vanguard of meta-learning algorithms, it
commands the field of regression, classification, and ranking
quandaries (Dong et al. 2020). Drawing upon the founda-
tions of supervisedmachine learning, XGBoost leverages the
principles of the classification and regression tree (CART),
seamlessly integrating gradient boosting, stochastic gradi-
ent boosting, and regularized gradient boosting algorithms.
These techniques orchestrate the execution of decision trees
at each data point sequentially, while simultaneously training
them in parallel. This strategy impartsmoreweight toweaker
learners,which are subsequently fed into other decision trees.
The cumulative output of these trees harmonizes to yield the
ultimate result (Duan et al. 2021). XGBooster introduces a
pivotal augmentation by integrating the predicted residuals
and errors from preceding models via the gradient descent
algorithm, thereby minimizing loss. The mathematical for-
mulation encapsulating the essence ofXGBoost is as follows:

ŷ �
k∑

k�1

fk(xi ), fkεF . (7)

4.7 Spotted Hyena optimization (SHO)

Dhiman and Kumar (2017) introduced a novel bio-inspired
metaheuristic optimization technique known as the Spotted
Hyena Optimizer (SHO). This approach draws its inspira-
tion from the social behaviors observed in spotted hyenas,
particularly in their hunting activities. The SHO algorithm is
designed to replicate these natural interactions and utilize
them for optimization tasks. To validate its effectiveness,
the SHO algorithm was put to the test using practical
engineering design problems that involve more than four
variables (Dhiman and Kumar 2019). The results obtained
from these experiments showcase the superior performance
of SHO compared to other competing algorithms, partic-
ularly when dealing with real-world problems. The SHO
algorithm revolves around four core components: searching,
encircling, hunting, and attacking. These components corre-
spond to the steps spotted hyenas take during their hunting
process. The primary objective is to emulate the behavior
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of the hyenas when they work together to catch their prey.
In the algorithm, the targeted prey is akin to the ideal route
for encircling the prey, and other search agents or hyenas
adjust their positions based on this optimal solution. This
optimal solution serves as a guide for the rest of the group,
enabling efficientmovement towards achieving the optimiza-
tion goals. The initial focus of the SHO algorithm lies in
executing the hunting strategy. This strategy involves gener-
ating an ideal response cluster for the most proficient search
agent and adjusting the positions of the other search agents.
This process is elucidated through a set of subsequent equa-
tions. Similar to a pack of spotted hyenas compelled to charge
towards their prey, the algorithm orchestrates this move-
ment. The efficacy of an algorithm’s exploration capability
is intricately linked to its search mechanism. This capabil-
ity is harnessed by utilizing variables denoted as "E" and
random numbers falling either above or below 1. Within the
scope of this study, our efforts were directed at optimizing
the hyperparameters inherent to all the proposed machine
learning methodologies. These optimizations were geared
towards enhancing the predictive accuracy for both compres-
sive strength and split-tensile strength.

4.8 Model evaluation parameters

Cross-validation (CV) stands as a crucial technique to
enhance the reliability of model outcomes (Xiong et al.
2020). The core concept behind CV involves partitioning
the training set into two distinct subsets: one serves as the
training dataset, facilitating model training, while the other
functions as the validation or testing dataset, employed to
assess the model’s performance. The model’s performance
on the validation dataset acts as an estimate of its general-
ization error, becoming a pivotal metric in the process of
model selection. In this specific study, a preference is given
to k-fold cross-validation. This methodology involves split-
ting the dataset into k non-overlapping subsets of equal size.
In each iteration, one of these subsets is utilized for val-
idation, while the remaining k − 1 subsets are combined
for training. This sequence is reiterated k times, each time
utilizing a different subset for validation, allowing for exten-
sive utilization of the dataset for training. The choice of
k typically resides in the range of 3–10, with this study
adopting a k value of 10. For the creation and assessment
of prediction models utilizing machine learning algorithms,
the k-fold cross-validation technique is applied in conjunc-
tion with the curated SC-AASC database. The evaluation of
model accuracy is executed through efficiency metrics like
the coefficient of determination (R2) and adjusted R2. More-
over, error metrics such as Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE) are
employed. R2 gauges the variance proportion, adjusted R2

offers insights into reliability and correlation, MAE com-
putes the average deviation,MAPEaddresses size-dependent
errors not captured by MAE, while MSE and RMSE func-
tion as riskmeasures that quantify the deviation between data
points and the fitted model. Additionally, two other methods
namely SI (Scatter index) and StI (Structural index) were
also used to access the machine learning models. An excel-
lent model would typically have a StI value close to 0 or
a very low StI value, indicating that the model’s structural
complexity is well-suited to the data and that it generalizes
well. When considering the SI parameter, it’s evident that a
model’s performance is classified as poor when SI exceeds
0.3. In cases where the SI falls within the range of 0.2–0.3,
the performance is considered fair. Furthermore, a model can
be deemed to exhibit good performance when its SI ranges
from 0.1 to 0.2. Lastly, an exceptional level of performance
is achieved when the SI is less than 0.1.

R2 � 1 −
∑

i

(
yi − ŷi

)2
∑

i (yi − y′)2
(8)

Adjusted R2 � 1 −
(
1 − R2

)
(n − 1)

n − p − 1
(9)

MAE � 1

n

n∑

i�1

∣∣y − y′∣∣ (10)

MAPE � 1

n

n∑

i�1

∣∣∣∣
y′ − y

y

∣∣∣∣ × 100 (11)

RMSE �
√√√√1

n

n∑

i�1

(y′ − y)2 (12)

SI � RMSE

t ′
(13)

StI � 1 − R2. (14)

5 Sensitivity analysis

Sensitivity assessments include changing a system’s inputs
to determine exactly how each input parameter affects the
output. In this study, two global sensitivity methods were uti-
lized. The method of allocating the uncertainty in outputs to
the uncertainty in each input element over their whole range
of interest is known as global sensitivity analysis. When all
the input factors are changed at once and the sensitivity is
assessed across thewhole range of each input factor, the anal-
ysis is said to be global. Sobol and FAST global sensitivity
analysis were used in this study.
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5.1 Sobol sensitivity analysis

The goal of a Sobol sensitivity analysis is to identify the
proportion of each input parameter’s variability in the model
output that is dependent on that parameter alone or on its
interaction with other factors (Saltelli et al. 1999). The clas-
sical analysis of variance in a factorial design is used as the
basis for the dissection of the output variance in a Sobol sen-
sitivity analysis. It should be understood that the goal of a
Sobol sensitivity study is not to determine what causes input
variability. It merely indicates the effect and magnitude it
will have on the model’s output. This method is thought to
decompose any given integrable function f (x) into the sum
of 2n orthogonal terms.

f (x) � f0 +
n∑

s�1

n∑

i1<···<is

fi1...is
(
xi1 , . . . , xis

)
. (15)

5.2 Fourier amplitude sensitivity testing (FAST)

One of the most well-liked tools for uncertainty and sensitiv-
ity analysis is the Fourier Amplitude Sensitivity Test (FAST).
It breaks down a model output’s variance into partial vari-
ances supplied by various model parameters using a periodic
sampling strategy and a Fourier transformation. Cukier et al.
(1973) developed FAST in 1973. The FAST technique,which
provides ameasure of the impact of each of the input qualities
on the model’s output, was used in this work to numerically
illustrate each feature’s contribution. The effect on strength
increases as the parameter’s relevance value rises.

6 Result and discussion

6.1 Hyperparameter optimization

After a given number of iterations, the objective function’s
inputs are examined to locate the global optimum point using
themetaheuristic SHOmethod.When there is a lot of domain
knowledge that could sway or bias the optimization process,
spotted hyena optimization enables the identification of novel
solutions. The appropriate hyperparameter values for each
machine-learning method that makes use of the SHO algo-
rithm are listed in Table 7.

6.2 LASSO regressor

The prediction of strength properties through this model was
done appropriatelywith training and testing of data. The opti-
mum hyperparameter value of the lasso regressor is depicted
in Table 7. The training regression plot for compressive data

Table 7 Optimal hyperparameters for machine learning algorithms
determined by SHO

Machine learning
algorithms

Hyperparameters Optimal
results

Lasso No. of hyenas 10

Maximum iteration 50

alpha 0.01

SVR No. of hyenas 10

c 100

epsilon 1

Kernel function rbf

RFR No. of hyenas 10

max_depth 5

n_estimator 100

BR No. of hyenas 10

No. of trees 0.001

Noise 0.1

AB No. of hyenas 10

n_estimator 110

Learning_rate 0.8

XGB No. of hyenas 10

max_depth 7

n_estimator 100

Learning_rate 0.1

is shown in Fig. 8 and that for split-tensile strength is shown
in Fig. 10. Likewise, Figs. 9 and 11 represent the regres-
sion plots in testing for both datasets. The testing accuracy
of the compressive model is achieved at a somewhat 63%
confidence level with a mean absolute error of 6.77 KN and
that of the split-tensile model is at an 83% confidence level
with and mean absolute error of 0.22 KN. As SC-AASC pos-
sesses a non-linear relationship between constituent material
and strength it doesn’t show a great level of accuracy in this
modified linear regression model. Additional details of all
the statistical parameters are listed in Tables 9 and 10.

6.3 Support vector regressor (SVR)

Support vector regression is a supervised learning algorithm
that is used to predict discrete values. Support Vector Regres-
sion uses the same principle as the SVMs. The basic idea
behind SVR is to find the best-fit line. Figures 8 and 10
demonstrate the training regression plot for compressive and
split-tensile strength data, respectively. Similarly, Figs. 9 and
11 show the regression plots tested on both datasets. The test-
ing accuracy of the compressive strength model is at 85%,
and that for split-tensile is at 87% confidence level. In SVR
the use of a non-linear kernel resulted in better performance
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Fig. 8 Regression analysis in the training phase of CS models: a Lasso; b SVR; c RFR; d BR; e AB; and f XGB

Fig. 9 Regression analysis in the testing phase of CS models: a Lasso; b SVR; c RFR; d BR; e AB; and f XGB

than the linear regression model. More information about
each statistical parameter is listed in Tables 9 and 10.

6.4 Random forest (RF)

This is an advanced version of the bagging ensemble regres-
sor and creates DTs at every data point which decreases
variance and when ensembled gives better accuracy. For
this reason, the model predicts compressive strength at an
88% confidence level and split-tensile strength at a 91%

confidence level in the testing phase. The ideal RFR hyper-
parameter value is shown in Table 6. The fitting curve shown
in Figs. 8, 9, 10, and 11. Tables 9 and 10 represent details of
all the additional model performance parameters.

6.5 Bagging regressor (BR)

This bagging ensemble model predicts compressive strength
at an 80% confidence level and predicts split-tensile strength
at a 91.5% confidence level in the testing phase. The hyperpa-
rameters optimized by SHO are listed in Table 6. The fitting
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Fig. 10 Regression analysis in the training phase of STS models: a Lasso; b SVR; c RFR; d BR; e AB; and f XGB

Fig. 11 Regression analysis in the testing phase of CS models: a Lasso; b SVR; c RFR; d BR; e AB; and f XGB

curve is shown in Figs. 8, 9, 10, and 11 which includes the
training and testing phase for both datasets. It shows greater
performance than prior models as it decreases the variance
of the data. Details of all the additional model performance
parameters are shown in Tables 9 and 10.

6.6 AdaBooster (AB)

This boosting ensemble model uses fix-shaped decision
stumps at every data point which reduces bias and simpli-
fies the model ultimately increasing accuracy. This model

forecasts compressive strength at an 84.5% confidence level
and split-tensile strength at a 90.4% confidence level in the
testing phase achieving a generalizedMAE value. The fitting
curve, which includes the training and testing phases for both
datasets, is depicted in Figs. 8, 9, 10, and 11.

6.7 XGBooster (XGB)

Spotted hyena-optimized hyperparameters of XGB are
shown inTable 6.XGB is themost advanced boosting ensem-
ble model and using CART and gradient boosting methods
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Table 8 Training and testing
scores of all the CS models Model Phase R2 Adj. R2 SI StI MAE MAPE RMSE

Lasso Train 0.85 0.842 0.18 0.15 4.22 8.88 15.41

Test 0.63 0.618 0.32 0.37 6.77 12.7 19.21

SVR Train 0.93 0.91 0.085 0.07 3.14 5.12 8.81

Test 0.85 0.83 0.162 0.15 4.05 7.4 15.62

RFR Train 0.98 0.97 0.064 0.02 1.12 2.21 1.81

Test 0.88 0.87 0.148 0.12 3.6 6.5 13.41

BR Train 0.975 0.96 0.068 0.025 1.34 2.91 1.78

Test 0.80 0.78 0.21 0.20 4.63 8.5 9.88

AB Train 0.979 0.962 0.067 0.021 1.71 3.95 2.05

Test 0.845 0.836 0.186 0.155 4.17 7.9 8.62

XGB Train 0.99 0.98 0.051 0.01 0.0015 0.35 1.14

Test 0.97 0.964 0.068 0.03 1.78 2.5 2.26

Table 9 Training and testing
scores of all the STS models Model Phase R2 Adj. R2 SI StI MAE MAPE RMSE

Lasso Train 0.95 0.93 0.09 0.05 0.13 4.78 0.035

Test 0.83 0.81 0.19 0.17 0.22 6.8 0.082

SVR Train 0.96 0.95 0.08 0.04 0.12 4.49 0.025

Test 0.87 0.86 0.15 0.13 0.18 5.4 0.060

RFR Train 0.99 0.98 0.05 0.01 0.052 1.94 0.004

Test 0.91 0.90 0.11 0.09 0.17 5 0.0414

BR Train 0.99 0.982 0.052 0.01 0.06 2.31 0.084

Test 0.915 0.904 0.108 0.085 0.16 5.11 0.19

AB Train 0.99 0.98 0.053 0.01 0.067 2.7 0.085

Test 0.904 0.892 0.12 0.096 0.18 5.8 0.21

XGB Train 0.99 0.985 0.049 0.01 0.0006 0.2 0.0009

Test 0.968 0.96 0.071 0.032 0.1 3 0.12

increases the predictive power of the model. The model esti-
mates compressive strength at a 97% confidence level and
split-tensile strength at a 96% confidence level; performing
with less MAE, MAPE, and RMSE. For both datasets, the
training and testing phases of the fitting curve are depicted in
Figs. 8, 9, 10, and 11. It uses self-compatible regulatory func-
tions i.e., under-sampling and column shrinkage that makes
it more reliable and outperforms other ML models. Tables 8
and 9 include all the statistical indices of the XGB model.

6.8 Comparison between themachine learning
models

This section presents a thorough evaluation of the model’s
robustness and generalizability by contrasting each model
with the others. A comparison of the models was made by
plotting the errors of each data point, analyzing themaximum
errors, and performance metrics scores for each model. A 3D

plot is used to visualize the errors of each data point in corre-
spondence to the experiment and predicted values. Figure 12
represents the 3D error plot for the compressive dataset while
Fig. 13 represents the split-tensile dataset. From the plot, it
can be seen that XGB shows the least error per data point
indicating superior prediction performance. Ensemble ML
models also perform better in comparison to singleMLmod-
els. The maximum error for each model is listed in Table 10.
Lasso performs least accurately with the highest maximum
error while XGB outperforms all. Likewise, for both datasets
among all the model’s Lasso regressor model shows the least
R2 and adjusted R2 value while the XGBoost model shows
the highest R2 and adjusted R2 score. Ensemble ML mod-
els show good generalizability in comparison to single ML
models and compared to bagging ensemble models boosting
ensemble models showed good reliability.

Accuracy and error statistics of all the models in training
and testing are shown in Tables 8 and 9. Figures 14 and
15 represent the line plot for actual and predicted values in
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Fig. 12 3D plot for error in prediction for CS models: a Lasso; b SVR; c RFR; d BR; e AB; and f XGB

Fig. 13 3D plot for error in prediction for STS models: a Lasso; b SVR; c RFR; d BR; e AB; and f XGB

the testing phase. For both CS and STS models, the Lasso
model with a higher value of error metrics indicates lower
generalization. SVR shows the least error among the single
ML models as it shows effectiveness in modeling. Overall
boosting ensemble models show fewer errors in comparison
to the bagging model as ensemble ML models perform at
higher accuracy than single MLmodels as it prioritizes weak
learners but as previously discussed RF model shows the
best error statistically than AdaBooster for the split-tensile
dataset. XGB model which can be labeled as the best ML

model shows excellent generalizability and robust predictive
capability.

Figure 16 represents a Taylor diagram of all the models
tested on both the CS and STS datasets. The radial distance
in the Taylor diagram represents the standard deviation and
the angular axis represents the co-relation. The performance
of all the models was visualized with a reference. It can be
seen that the SHO-XGB performs well compared to all the
models for both datasets.

123



Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:2901–2928 2919

Table 10 Maximum error of each model

Algorithms Max. error in CS
prediction (MPa)

Max. error in STS
prediction (MPa)

Lasso 9.8 0.42

SVR 8.7 0.40

RFR 2.8 0.14

BR 3.6 0.21

AB 4.8 0.16

XGB 0.004 0.015

6.9 Comparison among previously published results

The spotted hyena-optimized XGBoost was found to be
performing exceptionally well in both the CS and STS
datasets. In this section, a comparison is drawn between
previously published research articles that have worked on
self-compacting geopolymer concrete and alkali-activated
slag concrete. Awoyera et al. (2020) used ANN and GEP for
the prediction of compressive strength of SCGC.ANNmodel
was found to be more accurate. Shahmansouri et al. (2020)
used GEP for CS prediction of GGBS-based alkali-activated
slag concrete. Faridmehr et al. (2021) used Bat-optimized
ANN for SCGC CS estimation, and Basilio and Goliatt
(2022) utilized gradient-boosting hybridization for CS pre-
diction. Figure 17 represents a comparison of SHO-XGB
with all the models. It can be ascertained that the developed
model gives satisfactory results.

6.10 Sensitivity analysis

Two global sensitivity approaches were used to evaluate
the relative influence of each input parameter on output.
Figure 18 represents the total order of Sobol indices of all the
input parameters. The total sampling size of the Sobol sensi-
tivity method was determined to be 77,784. From Fig. 18, it
can be seen that AAS/binder ratio, AAS content, binder con-
tent, and curing days greatly affect the compressive strength
of alkali-activated slag concrete. Similar observations have
been made earlier using slag as binder material (Kumar Dash
et al. 2023; Saini and Vattipalli 2020; Shahmansouri et al.
2020). So, the alignment of the current study with earlier
published results establishes the importance of these factors
in controlling the strength development of alkali-activated
concrete. The AAS content and AAS-binder ratio which
resembles the water content and water-cement ratio are the
two most sensitive factors governing strength development
(Fig. 18). So, we can adopt the approach of controlling
these two factors to have the desired strength properties of
alkali-activated slag concrete. The FAST sensitivity analysis
(Fig. 19) was used to overcome the cost-effectiveness and
time factor associated with the Sobol method. The FAST
method takes less timewhile giving almost equal results. The
sampling size in the FAST method was 77,848. AAS/binder
ratio, binder content, and AAS content are also presented
with maximum index. The fresh property results which were
taken as input scored minimum sensitivity value as they pos-
sess’ a linear relationship with strength.

Figures 20 and 21 represent the effect of various parame-
ters on the compressive strength and split-tensile strength of

Fig. 14 Line plot between actual and predicted CS models in testing: a Lasso; b SVR; c RFR; d BR; e AB; and f XGB
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Fig. 15 Line plot between actual and predicted STS models in testing: a Lasso; b SVR; c RFR; d BR; e AB; and f XGB

Fig. 16 Taylor diagram of all the models: a CS dataset, b STS dataset

SC-AASC. It’s noted that as the content ofGGBFS increases,
the compressive and split-tensile strengths of SC-AASC also
increase. This suggests thatGGBFS is contributing positively
to the strength properties of the concrete mix. GGBFS is
known for its pozzolanic properties, which can enhance the
strength and durability of concrete. Conversely, reducing the
content ofAAS also results in higher strength. AAS is used as
an activator in alkali-activated concretes, and a lower content
implies that the mixture might be more optimized in terms
of activator dosage. It can also be observed that an increase

in GGBFS content and a decrease in AAS content led to SC-
AASC with higher strength. GGBFS content in the range
of 500–540 kg/m3 and AAS in the range of 190–200 kg/m3

resulted in higher strength.A lowerAAS/binder ratio resulted
in higher strength while a higher content of coarse aggregate
also increased the strength. This implies that reducing the
amount of activator relative to the total binder content is ben-
eficial for higher strength development, however, the increase
in coarse aggregate has a negative effect on the flow prop-
erty of SC-AASC. Lower fine aggregate content seems to
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Fig. 17 Comparison of
SHO-XGB with published
models

Fig. 18 Sobol total order index of
input parameters

Fig. 19 FAST First order index
of input parameters
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Fig. 20 Effect of various parameters on compressive strength
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Fig. 21 Effect of various parameters on split-tensile strength
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have a positive impact on both compressive and split-tensile
strength while 7% of superplasticizer dosage increased the
strength of SC-AASC. 21% of extra water dosage and longer
curing period observed to be giving maximum strength.

7 Practical application of the research

The research on predicting mechanical strength properties in
high-performance SC-AASC using metaheuristic optimized
machine learning models has multiple practical applications
that can offer advantages to various stakeholders in the
construction industry. This research has explored the devel-
opment of High-Performance SC-AASC formulated with
GGBFS can be utilized as an eco-friendly alternative to tra-
ditional concrete in various construction projects. Its reduced
carbon footprint and efficient use of industrial byprod-
ucts make it an ideal choice for environmentally conscious
builders. Its self-compacting properties can simplify the con-
struction of complex structures, such as bridges, tunnels, and
high-rise buildings, where ensuring proper compaction is
traditionally challenging. This can lead to faster infrastruc-
ture development. The optimization of High-Performance
SC-AASC mixtures enhances their durability and longevity,
reducing the need for frequentmaintenance and repair of con-
crete structures. This can result in significant long-term cost
savings for infrastructure owners and operators. The major
drawback is the cost associated with the production of this
type of concrete as there are no specific codes and regulations
available to optimize its performance. A prediction model
can help decrease the cost of the concrete by optimizing var-
ious aspects of the manufacturing process like mix design
optimization, process efficiency, quality control, and mate-
rials selection. The application of metaheuristic-optimized
machine learning models for predicting its strength prop-
erties offers a powerful tool for engineers and construction
professionals. They can use these models to assess mate-
rial performance quickly and accurately during the design
phase, leading to better-informed decisions. The use of
predictive modeling reduces the reliance on extensive and
time-consuming laboratory testing, speeding up material
characterization. This not only accelerates the research and
development process but also lowers testing costs, benefiting
both researchers and construction projects for the utilization
of SCGC and SC-AASC. The utilization of GGBFS as a
primary binder encourages collaboration between the con-
struction and steel industries, promoting the repurposing of
industrial byproducts and fostering sustainable practices.

8 Conclusions

The high-performance SC-AASC represents an eco-
conscious alternative to conventional cement-based com-
posites. By utilizing industrial waste materials and emitting
lower quantities of carbon dioxide, AASC emerges as a
sustainable construction material, effectively minimizing its
environmental influence. Predicting the mechanical strength
in SC-AASC presents a notable hurdle, necessitating the
use of advanced techniques for precise estimation. This
study tackles this challenge through the creation of innova-
tive machine-learning models optimized with metaheuristic
methods. The subsequent section presents the concluding
insights derived from this research endeavor.

• The study proposes a method of production of high-
strength SC-AASC from a base M25 mix grade to an M45
and M60 mix grade.

• The AAS content varied from 220 to 190 kg/m3 and the
AAS/binder varied from 0.47 to 0.36 to produce high-
performance SC-AASC. The percentage of SP varied
between 6–7% while the percentage of extra water kept
at 21% and 24%.

• AAScontent of 200 kg/m3 andAAS/binder of 0.39 yielded
greater strength for M45 graded SC-AASC while M60
grade SC-AASC showed higher strength with AAS con-
tent of 190 kg/m3 and AAS/binder of 0.36.

• SP of 6% and extra water content of 24% facilitated good
workability of M45 and M60 grade SC-AASC.

• A database containing 135 datapoints was developed
for the creation of machine learning models by taking
12 input parameters and compressive strength and split-
tensile strength as output.

• Data analysis resulted in the database having no outlier but
having non-linear co-relation.

• Six machine learning models were developed consisting
of two single supervised algorithms and four ensembled
supervised algorithms.

• The hyperparameters of all the machine learning models
were optimized using the metaheuristic bio-based spotted
hyena optimization method.

• The ensembled ML algorithm (Bagging and Boosting)
showed better accuracy and tolerable error in compari-
son to the single ML algorithm (Lasso and SVR). Error
metrics showed boosting ensemble models (AdaBooster
and XGB) showed better accuracy than bagging ensemble
models (BR and RF).
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• Non-linear single ML models (SVR) showed better per-
formance than modified linear single ML models (Lasso;
which can be termed as the worst-performing model). The
optimized XGB was found to be best best-performing
model.

• Sobol and FAST sensitivity methods were used for the
assessment of relative influence. The AAS/binder, AAS
content, binder content, and curing days were found to
be the primary influencing factors concerning the strength
properties of high-strength SC-AASC.

9 Limitations and future scope of the study

9.1 Limitations

The following are the limitations of this study.

• The research primarily focuses on specific mix grades
(M25 to M60) and may lack broader applicability to other
concrete grades or different environmental conditions.

• While the study emphasizes reduced environmental
impact, the broader environmental implications can be
derived using life cycle assessments or environmental foot-
print analysis.

• Although the study explores variations in critical parame-
ters like AAS content, AAS/binder ratio, and curing days,
the scope might not cover all potential combinations or
extreme ranges of these parameters. This limitation might
restrict the model’s predictive capacity in scenarios not
fully represented in the dataset.

• The size of the dataset needs to be enhanced with more
parametric variation and experimental testing for better
ML performance.

• The sensitivity analysis, while valuable, might not encom-
pass the entire spectrum of potential influencing factors.
Factors not included in the analysis might have an impact
on the material properties, affecting the comprehensive-
ness of the conclusions drawn.

9.2 Future scope

The future scope of the study includes

• Researching novel materials or hybrid systems that com-
bine various sustainable elements, such as recycled aggre-
gates, nano-materials, or bio-based additives, could lead to
the development of even more advanced and sustainable
construction materials.

• Conducting a comprehensive life cycle assessment (LCA)
or environmental footprint analysis to evaluate the holistic

environmental impact of SC-AASC, including its produc-
tion, use, and disposal stages, would provide valuable
insights into its sustainability.

• Expanding the study to encompass awider range of param-
eters could provide a more comprehensive understanding
of their impact on the properties of high-strength SC-
AASC.

• Conducting extensive external validation by applying the
developed models to real construction projects or experi-
mental testing would validate the models’ performance in
practical scenarios, ensuring their reliability and applica-
bility.

• Investigating optimization strategies beyondmetaheuristic
methods, such as evolutionary algorithms or reinforcement
learning, could enhance the precision of parameter opti-
mization for high-strength SC-AASC production.

• Collaborating with industry stakeholders and standard-
ization bodies to develop guidelines or standards for the
production and application of high-strength SC-AASC
would facilitate its widespread adoption in the construc-
tion sector.
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