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Abstract
Pile settlement is the downward displacement of a foundational pile in construction, used to support structures by transferring
loads to stable soil or rock layers beneath the surface. Accurately predicting pile settlement is critical for successful foun-
dation design in civil engineering. In recent years, machine learning techniques have been utilized to predict pile settlement
with improved accuracy compared to traditional analytical methods. This study has considered three different optimization
algorithms combined with Support vector regression (SVR) to enhance its predictive capabilities further. These algorithms
includeArchimedesOptimization (AO),Marine Predators Algorithm (MPA), andAugmentedGreyWolf Optimizer (AGWO).
The proposed SVR-based models are trained and tested using field data from several projects with varying soil conditions.
The input parameters include pile diameter, length, soil properties, and load characteristics. In addition, various statistical
measures are used to evaluate each model’s performance. In conclusion, the proposed SVR models, including optimization
algorithms, particularly AGWO, MPA, and AO, provide a robust and accurate prediction of pile settlement. In comparing
the models with each other, SVAO was able to obtain the most appropriate values compared to the other two models, with
R2 � 0.997 and RMSE � 0.201. In general, these models can be used as a reliable tool in foundation design for predicting
pile settlement and ensuring the safety and stability of structures.

Keywords Pile settlement · Support vector regression · Archimedes optimization algorithm · Marine predators’ algorithm ·
Augmented grey wolf optimizer

Abbreviations

SP Pile settlement
Ls Length of soil layer
D Diameter
SVR Support vector regression
MPA Marine predators algorithm
RMSE Root mean square error
T state T Statistic taste
R2 Coefficient correlation
Qu Ultimate pile bearing capacity
Lr Socket length
UCS Uniaxial compressive strength
AO Archimedes optimization algorithm
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AGWO Augmented grey wolf optimizer
MAPE Mean absolute percentage error
SMAPE Symmetric mean absolute percentage error

1 Introduction

In civil engineering, pile foundations are commonly
employed to transmit the load of buildings to the underly-
ing ground or rock. When piles are embedded in rock, they
transfer loads to the earth either through end bearing, shaft
resistance, or amixture of the two. In scenarios where the soil
overlay on top of the rock is weak and not deep, employing
piles into the bedrock is perceived as one of the most fitting
remedies (Carrubba 1997). The rock’s horizontal resistance
can create substantial support despite minimal pile displace-
ment in such situations. According to the results, it can be
inferred that the current techniques for designing socketed
piles in rock are comparably efficient (Carvalho et al. 2023;
Lu et al. 2023).

Nonetheless, owing to the intricacy of the pile’s behavior,
these techniques may not furnish precise forecasts (Ng et al.
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2001). Consequently, it is essential to create a novel paradigm
of soft computing able to accurately predict and precisely
anticipate settlement of piles (SP), an essential aspect of pile
design (Gutiérrez-Ch et al. 2021). Since SP can significantly
affect the durability and security of structures, it should be
considered a critical element in this process (Fleming 1992).
Despite the various design techniques available, geotechnical
engineers encounter difficulty in developing an innovative
and feasible forecasting model that produces satisfactory
results for SP prediction (Armaghani et al. 2020). Recent
studies have demonstrated that pile performance prediction
precision heavily relies on the choice of input variables.
Therefore, the subsequent sentences will examine pertinent
research studies to ascertain the appropriate input variables
to anticipate SP (Masoumi et al. 2020).

As stated in reference (Randolph andWroth 1978), multi-
ple factors impact theSP.These factors include themagnitude
of the load on the pile, the diameter and length of the pile,
as well as the shear modulus (Le Tirant 1992). Another fac-
tor is the radial gap, where the stress from shear decreases
(Nejad et al. 2009). Conversely, earlier research has sug-
gested that the pile capacity and, consequently, the SP can
be significantly influenced by the rocks’ unconfined com-
pressive strength (UCS) in the surrounding area (Rowe and
Armitage 1987). Utilizing common penetrating test data,
a prediction algorithm on the basis of data mining was
developed for predicting foundation settling. For training
the model, about 1000 data points were employed at first
from different sources. Later on, field measurements were
included to enhance the model’s effectiveness further. Inte-
grating fundamental geotechnical engineering principles is
essential to underscore the applied value of models. Compre-
hending soil behavior, including stress–strain dynamics and
shear strength, is paramount. Likewise, critical soil proper-
ties like permeability and compaction influence interactions
with structures. By intertwining these principles within
model elucidations, it becomes evident howmodels replicate
authentic soil behavior and its responses to diverse forces.
The incorporation of pertinent analytical methods, such as
finite element analysis and analytical solutions, underscores
model accuracy and relevance in predicting phenomena like
pile settlement. This approach offers a holistic perspective on
model alignment with established theories, augmenting their
practical efficacy in geotechnical engineering (Akbarzadeh
et al. 2023; Sedaghat et al. 2023).

Geotechnical engineering has become increasingly com-
mon in using artificial intelligence (AI) andmachine learning
(ML) in recent years.As described, anMLalgorithmcangen-
erate an anticipated result once provided with experimental
data (Alam et al. 2021). ML comprises several learn-
ing methods: supervised, unsupervised, semi-supervised,
and reinforcement (Vapnik 1999a). Recently, researchers
have integrated machine learning techniques into real-world

geotechnical engineering problems. Some of the methods
utilized consist of gene expression programming (GEP), arti-
ficial neural network (ANN), support vectormachine (SVM),
multilayer perceptron neural network (MLP), as well as the
multigroup approach for data management to predict the
desired output data (Vapnik et al. 1996; Smola and Schölkopf
2004).

Ge et al. (2023) used SVR coupled with two opti-
mizer algorithms containing the Arithmetic Optimization
Algorithm (AOA) and Grasshopper Optimization Algorithm
(GOA). They found that the RMSE values for SVR-AOA and
SVR-GOA were obtained as 0.550 and 0.592, respectively,
and the MAE presented values of 0.525 and 0.561, respec-
tively. The R-value of SVR-AOA shows a desired intensity
of 0.994, which is 0.10% higher than that of SVR-GOA.
Kumar and Robinson (2023) introduced the SVR combined
with Henry’s Gas Solubility Optimization (HGSO) and Par-
ticle Swarm Optimization (PSO) to predict the settlement
of the pile. The R2 of the model was obtained similarly at
0.99. In comparison, the RMSE of SVR-PSO appears more
than double that of SVR-HGSO, 0.46 and 0.29 mm, respec-
tively. Cesaro et al. (2023) proposed a new, simple analytical
method to predict the load–deflection response at the pile
tip. The reliability of the proposed method is verified against
a database consisting of 50 in situ pile loading tests per-
formedworldwide.Kumar andSamui (2020) proposed a least
squares support vector machine (LSSVM), a group data pro-
cessing method (GMDH), and a reliability analysis based on
Gaussian process regression (GPR) of a group of piles resting
on cohesive soil. The results showed that all models can be
applied to analyze the settlement of a group of piles reliably.

In addition, other investigations have been studied on
the effect of machine learning in geotechnical applications
(Onyelowe et al. 2022; Gnananandarao et al. 2023a, b, c).
Gnananandarao et al. (2020) presented the application of
artificial neural networks (ANN) and multivariate regres-
sion analysis (MRA) to predict the bearing capacity and
settlement of multi-sided foundations in sand. The R for
multi-sided foundations ranged from 0.940 to 0.977 for the
ANNmodel and from 0.827 to 0.934 for the regression anal-
ysis. Similarly, R for SRF prediction can be 0.913–0.985
for the ANNmodel and 0.739–0.932 for regression analysis.
Onyelowe et al. (2021) predict erosion potential and gener-
ate a model equation using ANN learning techniques. The
performance shows the model has an R2 more significant
than 0.95 during training and testing between the predicted
and measured values. Furthermore, the error metrics show
significantly low values, indicating good performance.

This study aims to employ a supervised learning method
for regression analysis to forecast SP. A regression analy-
sis technique is implemented to ascertain the association
between the independent variables or features and the depen-
dent variable or output. Because of the capacity of AI
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Fig. 1 Location of KVMRT project

methods to handle complex systems and process a large
number of parameters, the SVR method is used to predict
SP. Moreover, metaheuristic approaches are employed to
enhance the accuracy, reduce errors in themodel, andproduce
outputs similar to laboratory results. Various novel methods
are going to be covered in the following part, namely the
Archimedes Optimization algorithm (AOA), marine preda-
tors’ algorithm (MPA), and Augmented grey wolf optimizer
(AGWO), which are among various optimizers.

The effectiveness of optimizing methods in enhancing the
precision of the SVR estimating framework is highlighted
through various statistical measures. The SVR model’s per-
formance is evaluated using or not using the mentioned
techniques, and the outcomes show the framework with
optimizing methods outperforms the individual one. The
paper generally suggests a unique strategy to forecast pile
settlement by incorporating SVR and three unique opti-
mization algorithms. The results suggest that SVR can
accurately predict pile settlement, and implementing opti-
mization algorithms improves the model’s performance.
Therefore, geotechnical scientists are able to anticipate SP
and optimize pile foundation planning with the help of this
technology.

2 Dataset andmethodology

2.1 Data gathering

The Klang Valley Mass Rapid Transit (KVMRT) is a recent
endeavor that strives to ease traffic congestion in Kuala
Lumpur, Malaysia’s vibrant capital. Site analysis revealed
that to prevent station failure for the KVMRT project, sev-
eral bored piles would be required to be installed. Figure 1
illustrates that the project site in Malaysia includes diverse

rock foundations, such as granite, sandstone, limestone, and
phyllite, thus necessitating the construction of several heaps
(Hatheway 2009).

This research tends to look into a certain topic comprising
96 piles founded on granite rock. It was discovered that the
San Trias formation is where the granite rock in the region
originated. The study examined the geological characteris-
tics of the subsurface materials at the pile locations. The
study’s findings revealed that the subsoil profiles were pri-
marily constituted of residual rocks. As per the collected
data, the bedrock depth varied between 70 cm and more than
1400 m below the ground level. Further information regard-
ing the field sampling and bore log details is discussed in the
following sentences—

• The observed rock masses ranged from moderately to
extensively weathered.

• According to the ISRM, the UCS values ranged from 25 to
68 (MPa), with the minimum and maximum values being
observed.

• The bore log data indicate that the soil is highly weathered
up to 16.5 (MPa) depth, with the predominant soil com-
position being hard sandy mud. The minimum and the
maximum N_SPT values observed were 4 and 167 blows
per 300 (mm), respectively.

• From depths of 7.5–27.0 (m), most of the subsoil materials
have N_SPT values that exceed 50 blows per 300 (mm).

The initial step in developing a prediction model is to
collect a dataset with robust dependent variables. Identifying
and delineating the critical factors that substantially influence
the model’s output is essential. Table 1 shows the statistical
properties of model input and target values and the total data
(96 samples) presented in Appendix 1.

Figure 2 shows the correlation of input and output (Khatti
and Grover 2023b, c, e). The correlationmatrix observes cor-
relations between input variables (Lp/D,Ls/Lr,N_SPT,UCS,
Qu) and the output variable (SP). Lp/D and Ls/Lr exhibit
strong positive correlationswith SP (0.742 and 0.714, respec-
tively), indicating increased static penetration as these ratios
grow.Conversely,N_SPTandUCSdemonstrate strong nega-
tive correlationswith SP (− 0.727 and− 0.753, respectively),
revealing reduced static penetration with higher standard
penetration test blow count and unconfined compressive
strength. Qu displays a moderate positive correlation with
SP (0.662), suggesting elevated ultimate bearing capacity
increases static penetration.Understanding these correlations
aids in optimizing the given problem.

2.2 Support vector regression (SVR)

SVR stands out from other models because it can improve
generalization performance and achieve an optimal global
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Table 1 Statistical properties of
model input and target values Indicator Lp/D Ls/Lr N_SPT UCS Qu SP

Min 394 0 0 0 1086 1681

Max 500 225 43.3 10.5 1157 1867

Avg 415.16 106.15 21.34 4.2576 1135.8 1807.7

St. dev 37.850 53.06 18.27 2.670 23.376 61.63

Fig. 2 The correlation between
the input and output

solutionwithin a shorter timeframe (Vapnik et al. 1996;Gunn
1998).

2.2.1 Linear support vector regression

Assuming a training dataset of {yi , xi , i � 1, 2, 3, . . . n},
where yi represents the output vector, xi represents the input
vector, and n represents the dataset size. The general linear
regression form of SVR can be expressed as follows:

f (x , k) � k × x + b (1)

In the above equation, the dot product is represented by
(x , k), where k is the weight vector, x represents the nor-
malized test pattern, and b is the bias. As shown in Eq. (2),
the empirical risk is calculated using an ε-insensitive loss
function denoted by Lε(yi , f (xi , k)):

Remp(k, b) � 1

n

n∑

i�1

Lε(yi , f (xi , k)) (2)

Lε(yi , f (xi , k)) �
{

ε, i f |yi − f (xi , k)| ≤ ε

|yi − f (xi , k)| − ε, otherwise

(3)

The ε-insensitive loss function, denoted by
Lε(yi , f (xi , k)), represents the tolerance error between the
target output yi and the estimated output values f (xi , k)
during the optimization process. The training pattern, xi , is
also defined in this context. Minimizing the squared norm
of the weight vector, ‖k‖2, can simplify the complexity of
the SVR model when using the ε-insensitive loss function
for linear regression problems. The deviation of the training
data outside the ε-insensitive zone can be estimated using a

non-negative slack variable (ϕ∗
i ϕi ).

Lim
k, b,ϕ,ϕ∗

[
1

2
k · k + c

(
n∑

i�1

ϕ∗
i +

n∑

1�1

ϕi

)]
(4)

Subjected to,

⎧
⎪⎨

⎪⎩

yi − k.xi − b ≤ ε + ϕ∗
i

k · xi + b − yi ≤ ε + ϕi

ϕ∗
i , ϕi ≥ 0

i � 1, ..., n

One must find the Lagrange function’s saddle point to
solve the problem.

L(k, ϕ∗, ϕ, α∗, α, c, γ ∗, γ ) � 1

2
k.k + c

(
n∑

i�1

ϕ∗
i +

n∑

1�1

ϕi

)

−
n∑

i�1

αi [yi − k · xi − b + ε

+ϕi ]−
n∑

i�1

α∗
i

[
k ·xi +b− yi

+ε+ϕ∗
i

]−
n∑

1

(γ ∗
i ϕ∗

i +γiϕi )

(5)

The KKT conditions can be applied to minimize the
Lagrange function by performing partial differentiation of
Eq. (5) concerning k, b, ϕ∗

i , and ϕi .

δL

δk
� k +

n∑

i�1

αi xi −
n∑

i�1

α∗
i xi � 0, k �

n∑

i�1

(α∗
i − αi )xi

(6)

δL

δb
�

n∑

i�1

αi −
n∑

i�1

α∗
i � 0,

n∑

i�1

αi �
n∑

i�1

α∗
i (7)
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δL

δϕ∗ � c −
n∑

i�1

γ ∗
i −

n∑

i�1

α∗
i � 0,

n∑

i�1

γ ∗
i � c −

n∑

i�1

α∗
i (8)

δL

δϕ
� c −

n∑

i�1

γi −
n∑

i�1

αi � 0,
n∑

i�1

γi � c −
n∑

i�1

αi (9)

The parameters k in Eqs. (1) and (6) are connected. The
dual optimization function can be expressed as follows by
substituting Eq. (6) into the Lagrange function:

maxα,α∗
[
k(α, α∗)

]

� maxα,α∗

[
n∑

i�1

γi
(
α∗
i − αi

)− ε

n∑

i�1

(
α∗
i − αi

)

− 1

2

n∑

i j�1

(
α∗
i − αi

)(
α∗
i − αi

)
(xi .x j )

⎤

⎦

subjected to

⎧
⎨

⎩

n∑
i�1

(
α∗
i − αi

) � 0

0 ≤ α∗
i , αi ≤ 0

i � 1, . . . , n (10)

The Lagrange multipliers α∗
i and αi are used to define

the optimization problem (Luenberger and Ye 1984). Once
Eq. (10) is solved under the constraints in Eq. (11), the ulti-
mate linear regression function can be stated as:

f
(
x , α∗, α

) �
n∑

i�1

(
α∗
i − αi

)
(xi , x) + b (11)

2.2.2 Nonlinear support vector regression

Linear SVR may not be appropriate for complex real-world
problems. Bymapping the input data into a high-dimensional
feature space where linear regression is applicable, nonlin-
ear SVR can be obtained. A nonlinear function is used to
transform the input training pattern, xi , into the feature space
τ (xi ). Consequently, the formulation of the nonlinear support
vector regression takes shape, as shown below.

f (x , k) � k × τ (x) + b (12)

The parameter vector is represented by k and b, and the
mapping function τ (x) transforms input features into a fea-
ture space with higher dimensionality.

Figure 3 illustrates the diagram of nonlinear SVR with ε-
insensitive loss function. The bold points have the maximum
distance from thedecisionboundary, representing the support
vectors (Saha et al. 2020).

The ε-insensitive loss function that has an error tolerance
ε, shown on the right side of Fig. 3, and upper and lower

Fig. 3 The insensitive loss function of nonlinear SVR

bounds computed by the slack variable (ϕ∗
i , ϕi ). Last, non-

linear support vector regression can be communicated as:

maxα,α∗
[
k(α, α∗)

]

� maxα,α∗

⎡

⎣
n∑

i�1

γi
(
α∗
i − αi

)− ε

n∑

i�1

(
α∗
i + αi

)

− 1

2

n∑

i j�1

(
α∗
i − αi

)(
α∗
i − αi

)
(τ(xi ) · τ

(
x j
)
)

⎤

⎦

subjectedto

⎧
⎨

⎩

n∑
i�1

(
α∗
i − αi

) � 0

0 ≤ α∗
i , αi ≤ 0

i � 1, . . . , n (13)

The kernel function τ(xi ) · τ
(
x j
) � H (xi · x j ) can be

given instead of the inner product (Vapnik 1999b) because
of the complexity of the inner product τ(xi ) · τ

(
x j
)

maxα,α∗
[
k(α, α∗)

]

� maxα,α∗

[
n∑

i�1

γi
(
α∗
i − αi

)− ε

n∑

i�1

(
α∗
i + αi

)

− 1

2

n∑

i j�1

(
α∗
i − αi

)(
α∗
i − αi

)
H (xi .x j )

⎤

⎦

subjectedto

⎧
⎨

⎩

n∑
i�1

(
α∗
i − αi

) � 0

0 ≤ α∗
i , αi ≤ 0

i � 1, . . . , n (14)

2.3 Archimedes optimization algorithm (AOA)

The suggested approach uses the AOA algorithm, in which
the immersed objects represent the individuals of the popu-
lation. Like other metaheuristic algorithms according to the
population (Hashim et al. 2021), AOA begins the search
process with an initial population of candidate solutions
represented by objects with randomly assigned densities,
accelerations, and volumes (Zhang et al. 2021). Once the ini-
tial population’s fitness is assessed, the AOA works through

123



2108 Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:2103–2120

iterations until the termination condition ismet, duringwhich
each object is initialized with a random position within the
fluid (Houssein et al. 2021). During each iteration of the pro-
cess, each object’s acceleration has additionally recalculated
according to the condition of its collision with neighbor-
ing objects. Additionally, the AOA algorithm updates each
object’s volume and density. The new position of an object is
determined based on the updated values of its volume, accel-
eration, and density (Desuky et al. 2021). The steps involved
in the AOA algorithm are detailed in the following mathe-
matical expressions.

2.3.1 Algorithmic step

The mathematical formulation of the AOA algorithm is pre-
sented in this section. AOA can be regarded as a global
optimization algorithm as it involves theoretical exploitation
and exploration procedures. The proposed AOA algorithm’s
steps are outlined mathematically in the following sections:

(a) step one

The positions of all objects are initialized using Eq. (15):

Ri � lbi + rand × (ubi − lbi ); i � 1, 2, . . . , N (15)

The variables ubi and lbi correspond to the upper and
lower boundaries of the search space, respectively, and the
variable Ri denotes the ith object in a population of n objects.
Using Eq. (16), set the values of volume (vli ) and density
(dni ) for every ith object during the initialization process.

dni � rand

vli � rand (16)

Generate a D-dimensional vector called rand that ran-
domly generates a number between 0 and 1. Next, utilize
Eq. (17) to initialize the acceleration (ac) for the i th object.

aci � lbi + rand × (ubi − lbi ) (17)

During this stage, evaluate the original population and
select the most outstanding fitness value object. Set dnbest ,
xbest , vlbest , and acbest to the values of the selected object.

(b) Step two

To update the densities and volumes, apply Eq. (18) to
object i for iteration t + 1.

dnt+1i � dnti + rand × (dnbest − dnti )

vlt+1i � vlti + rand × (vlbest − volti ) (18)

The variables dnbest and vlbest represent the density and
the volume of the best object found thus far, while the rand
corresponds to a random number with uniform distribution.

(c) Step three

To start, objectswill collide and eventually strive to attain a
state of equilibrium. AOA utilizes the transfer operator TF to
convert the search process from exploration to exploitation,
as described in Eq. (19):

TF � exp(
t − tmax

tmax
) (19)

The TF slowly increases in value over time until it reaches
1. The variables, tmax and t represent themaximum allowable
number of iterations and the current iteration number. The
density decreasing factor, d, also aids AOA’s global to-local
search. It gradually decreases over time, as shown inEq. (20):

dt+1 � exp

(
tmax − t

tmax

)
− (

t

tmax
) (20)

The variable dt+1 gradually decreases over time, allowing
the algorithm to focus on exploring the already identified
promising region and converge toward it. It is important to
handle this variable properly to achieve a balance between
exploitation and exploration.

(d) Step four

When the value of TF is less than or equal to 0.5, it displays
a collision among objects. In such a scenario, the object’s
acceleration for the next iteration (t + 1) is updated, and a
material (mr) is chosen Eq. (21) randomly:

act+1i � dnmr + vlmr × acmr

dnt+1i × vlt+1i

(21)

In the equation, vli , aci , and deni refer to the volume, the
acceleration, and the density of object i. On the other hand,
vlmr , acmr , and dnmr represent the volume, the acceleration,
and the density of the random material chosen. Mentioning
that TF≤ 0.5 is significant as it ensures exploration in 33%of
the iterations, altering the value to anythingother than0.5will
modify the balance between exploration and exploitation.

Assuming TF is more significant than 0.5, it indicates no
occurrence of object collision; thus, the object’s acceleration
should be updated for iteration t + 1 utilizing Eq. (22):

act+1i � dnbest + vlbest × acbest
dnt+1i × vlt+1i

(22)
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Normalize the acceleration employing Eq. (23) to calcu-
late the percentage of change:

act+11−norm � u × act+1 − min(ac)

max(ac) − min(ac)
(23)

u and l define the normalization range and are set to 0.9 and
0.1. The value of act+1i , norm is used to calculate the percentage
of each agent’s steps. The acceleration value will be higher
when object i is located at a considerable distance from the
global optimum, denoting that the object is exploring the
environment. Conversely, if object i is relatively closer to
the global optimum. The acceleration value will be lower,
meaning the object is in the exploitation section. This shows
the transformation of the search from the exploration section
to the exploitation section. It is important to note that some
search agents may need additional time in the exploration
section compared to the average. Therefore, AOA ensures a
balance between exploration as well as exploitation. How-
ever, the acceleration factor initially has a high value and
gradually decreases over time. This aids search agents in
approaching the optimal global solution while moving away
from local solutions.

(e) Step five

When in the exploration section where TF is less than or
equal to 0.5, the position of the ith object for the subsequent
iteration t + 1 can be determined using Eq. (24):

xt+1i � xti + e1 × rand × act+1i−norm × d × (xrand − xti )
(24)

The constant e1 is assigned a value of 2. Alternatively,
during the exploitation phase where TF is higher than 0.5,
the objects adjust their positions using Eq. (25):

(25)

xt+1i � xtbest +F×e2×rand×act+1i−norm×d×(T ×xbest−xti )

The constant e2 has a value of 6. The variable T increases
as time passes, and its value is directly linked to the transfer
operator. Precisely, T is calculated as T � e3xTF · T , where
e3 is another constant. T value increases over time within the
range of e3x0.3–1, and from the ideal position, takes a cer-
tain percentage. The disparity between the best and current
positions will be significant when the percentage is initially
low. Consequently, the magnitude of the steps taken during
the random walk will be enormous. During the search, the

percentage gradually narrows the gap between the top and
the present positions. This outcome results in a satisfactory
equilibrium between exploitation and exploration.

F �
{
+1i f p ≤ 0.5
−1i f p > 0.5

wherep � 2 × rand − e4 (26)

Using Eq. (26), F serves as a marker for altering the direc-
tion of movement.

(f) Step six

Use objective function f to assess every object and keep
track of the most optimal solution found thus far. Set dnbest ,
acbest , xbest , and vlbest accordingly.

In addition, the flowchart of AOA is presented in Fig. 4.

2.4 Marine predators’ algorithm (MPA)

The following section presents the marine predator’s algo-
rithm formulation (Faramarzi et al. 2020). Like other meta-
heuristic techniques, it involves assigning random values to
a group of solutions based on the search space (Soliman et al.
2020). This can be expressed as:

O � LB + g1 × (UB − LB) (27)

Equation (27) defines UB as the upper boundary and LB
as the lower boundary of the search space. Additionally, g1 is
a random number between 0 and 1. This algorithm employs
a strategy in which predator and prey act as search agents.
This is because as the prey searches for its food, the preda-
tor also actively searches for its prey (Abdel-Basset et al.
2021). The elite will be updated at each generation’s end
(i.e., the matrix containing the most exceptional predators).
The details regarding the formulation of the prey and elite
(O) can be found in (Faramarzi et al. 2020).

Eli �

⎡

⎢⎢⎢⎣

O1
11 O1

12 · · · O1
1d

O1
21 O1

22 · · · O1
2d

· · ·
O1
n1

· · ·
O1
n2

· · ·
· · · O1

nd

⎤

⎥⎥⎥⎦,

O �

⎡

⎢⎢⎢⎣

O11 O12 · · · O1d

O21 O22 · · · O2d

· · ·
On1

· · ·
On2

· · ·
· · · Ond

⎤

⎥⎥⎥⎦ (28)
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Fig. 4 Flowchart of AOA

The position of prey O gets updated through a three-stage
process, which will be explained in detail in the following
subsections. The process considers the velocity variant ratio
and replicates the entire relationship between the predator
and prey (Abd Elminaam et al. 2021).

2.4.1 Stage one: high-velocity ratio

During the exploration phase, which happens in the first third
of the total generations (i.e., 13 tmax), the predatormoves faster
thanO. At this stage, the following equations update the prey
Si .

Si � RB ⊗ (Eli i − RB ⊗ Oi ), i � 1, 2, . . . , n (29)

Oi � Oi + P · R ⊗ Si (30)

The vector RB describes the Brownian motion while ⊗
signifies the process ofmultiplying each element in the vector
R within the range of 0–1 with a constant value of 0.5.

2.4.2 Stage two: the ratio of the unit velocity

In this stage, the predator and prey occupy the same terri-
tory, mimicking the food search. This action also denotes the
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Fig. 5 Flowchart of MPA

exploration to exploitation transition of the MPA’s status.
Both events hold an equal probability of occurrence dur-
ing this phase. As referred to (Faramarzi et al. 2020), while
the prey performs exploitation, the predator’s movement is
utilized during exploration. The predator is represented by
Brownian motion, while the prey’s motion is represented
using a Lévy flight. This is explicitly for the time rangewhere
1
3 tmax < t < 2

3 tmax defined in Eqs. (31) and (32):

Si � RL ⊗ (Eli i − RL ⊗ Oi ), i � 1, 2, . . . , n (31)

Oi � Oi + P.R ⊗ Si (32)

The variable represents the Lévy distribution RL which is
a set of random numbers. The first half of the population is
used to execute Eqs. (31) and (32) to indicate the exploita-
tion stage. The latter half of the population undergoes the
following modifications:

Si � RB ⊗ (RB ⊗ Eli i − Oi ), i � 1, 2, . . . , n (33)

Oi � Oi + P.CF ⊗ Si , CF � (1 − t

tmax
)
2 t
tmax

(34)

tmax indicates the maximum number of generations, while
CF regulates the magnitude of the predator’s displacement
per step.

2.4.3 Stage three: low-velocity ratio

Once the predator’s movement surpasses its prey’s, the final
step in the optimization process commences. This stage is
known as the exploitation phase and is identified byt >
2
3 tmax. It signifies the culmination of the process, as repre-
sented by the following formulation:

Si � RL ⊗ (RL ⊗ Eli i − Oi ), i � 1, 2, . . . , n (35)

Oi � Oi + P · CF ⊗ Si , CF �
(
1 − t

tmax

)2 t
tmax

(36)

2.4.4 Eddy formation and FAD effect

Environmental conditionsmay impact the behavior ofmarine
predators, like those attracted to fish aggregating devices
(FADs). The influence of FADs on predator behavior can
be described as:

Oi �
{
Oi + CF[Omin + R ⊗ (Omax − Omin) ⊗U ]r5 < FAD
Oi + [FAD(1 − r) + r ](Or1 − Or2)r5 > FAD

(37)

Equation (37) utilizes FAD � 0.2 and a binary solution
represented byU. The binary solution is generated randomly
and converted using a threshold of 0.2. The indices identify
the prey r1 and r2, while the random number r2 is on a scale
of 0–1.

The MPA’s flowchart is mentioned in Fig. 5.
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2.5 Augmented grey wolf optimizer (AGWO)

The nonlinear nature of specific large power system appli-
cations, such as grid-connected wind power plants, makes it
challenging to determine the transfer function leading to opti-
mal performance. As a result, online optimization is a more
feasible alternative to consider while optimizing power sys-
tem performance. When it comes to online optimization of
power system applications using the Grey Wolf Optimizer
(GWO) algorithm, the number of search agents available is
a limiting factor, unlike offline optimization of benchmark
functions or transfer functions optimization.

The GWO algorithm has been introduced in its sim-
plest form to achieve global optimization and be applicable
in a wide range of scenarios. This means that, like other
algorithms that have been suggested (like PSO), the GWO
algorithm could be enhanced and adjusted to improve both
exploitation and exploration performance in various fields.
M. H. Qais et al. (2018) suggested a new modification to
the GWO algorithm to improve its exploration capabili-
ties. It has been designed not to compromise the original
algorithm’s global optimization, flexibility, and simplicity
abilities. In the GWO algorithm, the parameter a that primar-
ily determines exploitation and exploration is contingent on
parameter a. The parameter variation shapes the algorithm’s
exploitation and exploration behavior, linearly ranging from
2 to 0 in the standard GWO. The augmentation proposed
in the AGWO algorithm introduces a nonlinear and random
variation of parameter a, ranging from 2 to 1, as shown in
Eq. (38). Accordingly, the algorithm leans toward the explo-
ration rather than the exploitation state.

−→a � 2 − cos(ran) × t/Max_i t (38)

−→
A � 2−→a · −→r 1 − −→a (39)

−→
H � 2 · −→r 2 (40)

In the GWO algorithm, the process of decision-making
and hunting is reliant on the updates made to betas (β),
deltas (δ), and alphas (α). However, the AGWO algorithm,
an adaptation of GWO, simplifies this process by only con-
sidering the updates made to betas and alphas (β and α)
as described in Eqs. (41)–(43). This modification greatly
streamlines decision-making and improves efficiency (Long
et al. 2017).

−→
D a �

∣∣∣
−→
H 1.

−→
X ai − −→

X i

∣∣∣,
−→
D B �

∣∣∣
−→
H 2.

−→
X βi − −→

X i

∣∣∣ (41)

Fig. 6 Flowchart of AGWO

−→
X 1 � −→

X ai − −→
A i

−→
D a ,

−→
X 2 � −→

X βi − −→
A i

−→
D β (42)

−→
X i+1 �

−→
X 1 +

−→
X 2

2
(43)

Figure 6 shows the flowchart of AGWO.
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Table 2 Result of developed
models Models

Metrics SVRAO SVRMP SVRAW SVRAO SVRMP SVRAW

Train Test

R2 0.989 0.981 0.976 0.997 0.990 0.968

RMSE 0.378 0.538 0.600 0.201 0.394 0.780

MAPE 2.962 3.925 3.876 1.879 3.400 5.220

SMAPE 0.00041 0.00056 0.00055 0.00058 0.001 0.0018

T state 0.835 0.483 1.094 0.302 1.129 1.156

Table 3 Comparing the present
study’s model with the published
articles’ model

Metrics Article

Khatti et al. (2023) Kumar et al. (2021) Kumar and Samui (2020) Present study

MS25 GRNN LSSVM SVRAO

R2 1 1 1 0.997

RMSE 0.1e-5 0 0.019 0.201

2.6 Performance evaluator

This section contains indicators that enable the assessment
of hybrid models by revealing their error levels and correla-
tion. The indicators featured in this section are symmetric
mean absolute percentage error (sMAPE), mean absolute
percentage error (MAPE), root mean square error (RMSE),
coefficient correlation (R2), and T statistic taste (T state). The
mathematical equations for each of these indicators are pro-
vided below:

R2 �

⎛

⎜⎜⎝

∑n
i�1

(
bi − b

)
(mi − m)

√[∑n
i�1

(
bi − b

)2][∑n
i�1(mi − m)2

]

⎞

⎟⎟⎠

2

(44)

RMSE �
√
1

n

∑n

i�1
(mi − bi )2 (45)

MAPE � 100

n

n∑

i

|bi |
|mi | (46)

sMAPE � 100

n

n∑

i

2 × |bi − mi |
|mi | + |bi | (47)

Tstate �
√

(n − 1)MBE2

RMSE2 − MBE2 (48)

Equations (44–48) utilize the following variables: n repre-
sents the number of samples, bi signifies the predicted value,
b andm represent the average predicted andmeasured values,
respectively. On the other hand, mi represents the measured
value.

3 Results and discussion

To predict the pile settlement, multiple hybrid models have
been implemented, including the SVR-archimedes opti-
mization algorithm (SVRAO), SVR-augmented grey wolf
optimizer (SVRAW), and SVR-marine predators’ algorithm
(SVRMP).During this study’s training and testingphases, the
measurements obtained from experimental trials were com-
pared to the predictions produced by three models: SVRAO,
SVRMP, and SVRAW. Table 2 displays that 70% of the
experimental outcomes were employed in the training stage,
while the remaining 30% was utilized in the testing phase.
Five statistical measures (R2, RMSE, MAPE, sMAPE, and
Tstate) were utilized to thoroughly assess and contrast the
algorithms’ effectiveness.

Amodel that has anR2 value of nearly 1 suggests excellent
performance during the training and testing stages. Mean-
while, parameters like RMSE, MAPE, s MAPE, and Tstate

illustrate the error present in the model, where a lower value
signifies a more satisfactory error level. The effectiveness of
the employed algorithmswas comprehensively evaluated and
compared using these metrics, whose results are compiled in
Table 2.

While the statistical performance criteria values of the
developed models were reasonably similar in the testing and
training phases, theSVRAOhybridmodel exhibited the high-
est level of accuracy, with an R2 value of 0.989 during the
trainingphase and0.997 in the testingphase. SVRAOshowed
the highest degree of agreement between the predicted and
observed values, as evidenced by its RMSE, MAPE, and
sMAPE being the lowest among all the other models. On the
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Fig. 7 Training and testing phase scatter plot of the given models

other hand, the SVRAW models exhibit the weakest perfor-
mancewith anR2 value of 0.976 and 0.968 during the training
and testing phases, respectively, and the highest values of
RMSE, MAPE, and sMAPE. This suggests that the SVRAW
models have poor performance. However, the SVRMP has
an intermediate performance among the other two models
with an R2 value of 0.981.

Table 3 indicates the comparison between the best present
model, as indicated in Table 2, and the published articles’
models.

Figure 7 depicts a scatter plot that compares the perfor-
mance of the hybrid models based on two parameters: R2,
which indicates the level of agreement, and RMSE, which
indicates the degree of dispersion. The centerline of the plot
is positioned at X � Y coordinates, and the distance between
the points and the centerline indicates the level of accuracy
in the model’s performance. The SVRAO model exhibited
a narrow range of dispersion, with the data points closely
grouped around the centerline. In contrast, the SVRMP and
SVRAWmodels indicated relatively similar levels of perfor-
mance where their data points were more broadly scattered.
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Fig. 8 Line series plot for comparison between the measure and predicted value of the developed model

The observed variance was impacted by the deviation
between the anticipated and actual values, notably dimin-
ished during the test phase, as illustrated in Fig. 8. During
the training phase, the SVRAW model displayed minimal
dispersion, and the difference in the line angles between
the measured bold points and train triangles was more per-
ceptible compared to the testing phase. Despite identifying
disparities between the predicted and measured values for
some samples during the training phase, leading to notewor-
thy divergences, enhancements in performance and favorable
learning outcomes have somewhat mitigated this weakness.

One additional analysis that should be carried out involves
observing the percentage error for each pile, indicating the
degree of difference between the predicted settlement rate
and the actual rate. Figures 9 and 10 showcased how well
eachmodel type predicted pile settlement and compared their
effectiveness. As per the error distribution chart, the pre-
cision of predicting pile settlement varied across SVRAW,
SVRMP, and SVRAO models. SVRAO demonstrated the
lowest degree of error, with most predicted values being
close to the actual values. SVRMP exhibited a moderate
error, with a broader range of predicted values. At the same
time, SVRAW had the highest error level, with several pre-
dicted values deviating significantly from the actual values.
The SVRAOmodel generally exhibited the most trustworthy
results, while SVRAW exhibited the weakest performance,
and SVRMPperformancewas in themiddle. The distribution
chart of errors offered significant insights into the relative

pros and cons of each model’s predictive accuracy, aiding
researchers in identifying the most efficient model for fore-
casting pile settlement in real-world scenarios.

3.1 Sensitivity analyses

3.1.1 Cosine amplitude method (CAM)

Table 4 displays the outcomes of sensitivity analyses focus-
ing on different input parameters. Sensitivity analysis serves
as a method for gaging how responsive the results of a model
or study are to changes in input variables (Ardakani and
Kordnaeij 2019; Khatti and Grover 2023a, d). In this con-
text, Table 4 examines the degree of sensitivity of results to
alterations in specific input parameters. Five input parameters
have been selected for sensitivity evaluation: Lp/D, Ls/Lr,
N_SPT, UCS, and Qu.

The sensitivity measure (ST) signifies the extent to which
the output changes in response to variations in the input
parameter. A higher ST value implies that the output is more
responsive to that specific parameter. ST_conf potentially
signifies the confidence intervals associatedwith the sensitiv-
itymeasures. Confidence intervals aid in assessing the degree
of uncertainty within the results of the sensitivity analysis.

The ST fluctuates among the input parameters, indicating
that the results of the model or study exhibit varying levels of
sensitivity to different parameters . For instance, the param-
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Fig. 9 Scatter box plot for error percentage of related models

eter “N_SPT” possesses a relatively high sensitivity value
of 3.7E−08, signifying that alterations in “N_SPT” exert a
substantial influence on the study’s results. The “ST_conf”
values, which represent confidence intervals, offer a range
within which the sensitivity measures are likely to lie with a
certain level of confidence.

4 Conclusion

This investigation’s principal aim is to assess the perfor-
mance of 3 hybrid SVRs in estimating the rock-socketed piles
settling. Three optimization algorithms, namely Archimedes
Optimization algorithm (AOA), marine predators’ algorithm
(MPO), and Augmented grey wolf optimizer (AGWO), are
employed in constructing the SVR models. In order to
achieve this goal, the investigators examined the outcomes of
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Fig. 10 Error percentage of developed models is based on a density scatter plot
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Table 4 Result of the sensitivity analysis

Input Parameter

ST ST_conf

Lp/D 6.5E−12 1.6E−12

Ls/Lr 9.4E−12 2.2E−12

N_SPT 3.7E−08 1.1E−08

UCS 6.7E−11 1.8E−11

Qu 1.00101 0.17344

experiments using pile-driving analyzers as well as the fea-
tures of the heaps and the soil. The investigation produced
the subsequent significant findings:

1. The study shows the promising predictive ability of
SVR models for SP, with training R2 at 0.976 and
testing at 0.968. SVRAO outperformed SVRMP and
SVRAW, especially for small SP values. AOA opti-
mization demonstrated superior performance for all SP
ranges.

2. Despite displaying weaker performance than the other
SVR models across all statistical indices, SVRAW still
produced acceptable results, achieving respective R2,
RMSE, MAPE, sMAPE, and T state values of 0.968,
0.780, 5.220, 0.0018, and 1.156. On the other hand, the
SVRAO model demonstrates the most optimal perfor-
mance, with the highest R2, RMSE, MAPE, sMAPE,
and T state values observed during the phases of testing
and training, excluding MAPE in the training stage.

3. The advantages of the present study include improving
predicting accuracy, robust performance, real-world data
utilization, and informing decision-making.

4. The present study also has limitations, including limited
input parameters and data variability.

5. The future scope for expansion can encompass diverse
parameters, hybrid model integration, validation through
long-term monitoring, and generalizability and scalabil-
ity.
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Appendix 1

Lp/D Ls/Lr N_SPT UCS Qu SP

8.47 1.71 132.85 67.34 13,868.61 6.04

7.89 1.14 144.53 64.46 20,072.99 4.97

11.69 4.29 132.85 48.35 13,868.61 8.85

13.15 4.29 154.74 58.71 14,598.54 6.05

14.03 3.14 124.09 35.11 24,452.55 9.94

14.61 5.71 119.71 34.53 32,481.75 9.94

20.16 6.57 125.55 48.92 33,941.61 12.10

26.01 8.57 20.44 33.38 27,007.30 12.10

28.05 24.00 23.36 25.32 34,671.53 14.91

18.13 8.86 13.14 42.59 32,116.79 11.24

31.56 19.43 21.90 29.93 41,605.84 20.09

28.06 14.57 46.72 32.23 18,978.10 12.97

20.18 10.86 5.84 26.47 27,007.30 14.06

19.89 12.29 13.14 43.17 21,897.81 10.17

18.14 12.57 14.60 30.50 20,437.96 12.98

11.43 3.71 4.38 43.74 22,262.77 11.04

21.65 10.86 27.74 28.78 22,992.70 14.06

20.20 7.71 27.74 29.35 17,153.28 14.07

12.03 4.00 127.01 58.71 19,343.07 8.89

16.41 7.71 20.44 46.04 18,978.10 10.83

21.67 11.14 29.20 60.43 16,788.32 9.97

19.63 8.00 11.68 47.77 26,277.37 11.27

21.96 14.57 27.74 35.68 18,248.18 12.14

9.71 2.29 115.33 49.50 18,248.18 9.12

11.17 2.57 112.41 47.77 33,576.64 8.90

26.94 15.71 20.44 28.78 36,131.39 16.89

16.14 5.71 18.98 27.63 18,978.10 14.95

8.26 2.86 5.84 35.68 15,693.43 10.64

15.56 6.86 159.12 58.71 19,708.03 8.26

9.72 5.43 5.84 34.53 33,576.64 9.78

11.19 3.14 166.42 68.49 24,452.55 10.86

13.82 4.00 62.77 41.44 24,452.55 12.37

12.36 2.57 103.65 52.95 31,751.82 14.10

6.82 1.43 160.58 65.04 19,343.07 4.61

15.58 8.86 13.14 46.62 17,518.25 11.95

17.33 3.43 102.19 35.68 16,058.39 9.14

10.91 3.43 153.28 47.77 20,437.96 10.87

17.05 0.57 2.92 46.04 24,817.52 10.87

20.26 17.14 7.30 28.20 36,496.35 16.06

20.26 6.00 5.84 28.78 38,686.13 16.06

13.84 3.43 113.87 42.59 21,897.81 12.39

12.97 2.57 113.87 42.59 39,416.06 13.26

19.11 15.14 116.79 32.23 34,306.57 15.20

21.74 22.29 7.30 29.93 33,941.61 16.93

27.58 9.43 109.49 29.35 30,656.93 12.40

23.49 14.29 7.30 25.32 38,686.13 15.86

12.99 13.43 2.92 25.90 34,671.53 15.21

25.54 15.43 11.68 29.35 30,291.97 17.80
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Lp/D Ls/Lr N_SPT UCS Qu SP

20.58 6.00 13.14 31.65 36,496.35 15.22

8.62 6.29 140.15 65.61 15,328.47 5.72

26.43 31.71 11.68 28.20 40,875.91 18.67

7.45 2.86 8.76 48.92 21,167.88 13.06

6.58 1.43 140.15 42.59 32,846.72 8.10

10.96 4.57 140.15 57.55 32,116.79 8.97

5.42 1.71 140.15 62.73 15,693.43 5.52

9.51 2.57 140.15 62.73 14,233.58 6.17

13.89 2.57 8.76 52.95 15,328.47 9.62

14.77 7.43 157.66 59.86 17,518.25 6.39

15.07 7.71 157.66 31.65 14,598.54 7.25

22.08 11.43 52.55 45.47 16,788.32 12.43

20.91 25.43 52.55 28.78 35,036.50 17.83

14.78 10.86 32.12 43.74 20,072.99 10.28

13.04 4.86 148.91 28.78 24,817.52 8.99

6.03 2.00 119.71 29.93 31,021.90 10.93

6.03 1.71 119.71 48.92 31,021.90 11.15

6.04 1.43 148.91 54.68 24,817.52 5.11

14.51 6.00 140.15 59.28 16,788.32 5.98

11.88 2.00 141.61 59.28 17,518.25 5.98

7.21 1.71 103.65 40.29 21,532.85 12.02

7.51 1.14 128.47 48.92 25,182.48 7.28

16.56 8.57 138.69 48.92 20,802.92 8.14

13.94 3.43 11.68 36.26 23,722.63 10.09

10.15 2.86 121.17 37.41 20,072.99 12.25

12.78 4.00 151.82 54.10 18,248.18 6.42

13.95 2.00 113.87 50.07 24,817.52 10.96

9.57 2.00 148.91 65.04 28,467.15 9.88

9.87 3.14 90.51 40.86 19,343.07 10.10

7.24 1.14 141.61 56.40 16,788.32 5.14

4.62 0.86 154.74 50.07 17,883.21 6.00

6.08 1.71 160.58 66.19 19,708.03 4.49

4.33 0.29 160.58 62.73 25,547.45 6.22

8.13 2.29 115.33 60.43 19,708.03 6.23

22.15 2.00 5.84 33.38 19,708.03 14.21

24.19 9.43 37.96 30.50 24,817.52 15.08

9.89 0.86 108.03 49.50 12,408.76 8.61

20.40 10.29 11.68 42.59 35,036.50 12.71

28.87 22.57 10.22 41.44 39,781.02 18.97

28.29 27.43 10.22 28.20 34,306.57 18.97

17.20 8.86 30.66 33.96 42,700.73 13.58

22.17 10.57 27.74 45.47 14,598.54 11.21

20.42 8.00 118.25 34.53 15,693.43 9.27

13.71 2.00 119.71 35.68 13,868.61 9.27

15.17 1.14 100.73 37.99 19,343.07 10.13

18.97 2.00 134.31 34.53 20,802.92 9.92

13.72 0.86 8.76 26.47 35,401.46 14.02

8.17 2.57 134.31 59.86 18,613.14 7.34
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