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Abstract

Currently, single machine learning models are mostly used for predicting the compressive strength of geopolymer concrete, but
the use of single models has limitations. This study proposes the use of an integrated model to predict the compressive strength
of geopolymer concrete. However, there are few applications of ensemble learning model and lack of model optimization.
In this study, an improved beetle antennae search (IBAS) algorithm was proposed to tune the hyperparameters of decision
tree (DT). random forest (RF), and K-nearest neighbor (KNN) models to predict the compressive strength of geo-polymer
concrete. The focus of this paper is to compare the reliability and efficiency of IBAS algorithm applied to three integrated
learning models for the prediction of geopolymer concrete compressive strength. The test results show that the corresponding
R values are 0.9043, 0.6866, 0.9024, respectively. Therefore, it can be judged that the DT-IBAS integrated model has the
worst prediction effect in these three models. In addition, the minimum RMSE values obtained by RF-IBAS and KNN-IBAS
models in the ten-fold verification were 5.9 and 7.1, respectively. Therefore, RF-IBAS has the best predictive performance
in comparison. On the other hand, the molar concentration of NaOH is the most important factor affecting the compressive
strength of geopolymer concrete. Through the importance score test, the importance score of NaOH molar concentration
(4.2981) far exceeds that of other input variables. Therefore, it is necessary to focus on the molar concentration of NaOH
when making geopolymer concrete.
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Abbreviations condense and harden at room temperature to form a solid

structure with strength and durability. Compared to tra-
BAS Beetle antennae search ditional cement concrete, the preparation of geopolymer
IBAS Improved beetle antennae search concrete does not require the use of a large amount of
KNN  K-nearest neighbor cement, thus reducing the energy consumption and carbon
DT Decision tree dioxide emissions required for cement production (Cao et al.
RF Random forest 2018; Nguyen et al. 2023). At the same time, geopolymer
ANN  Artificial neural network concrete can use waste, industrial by-products, and other
MNLR The multivariate nonlinear regression resources as raw materials, reducing the demand for natu-
MLR  The multi-linear regression ral resources, and having good environmental sustainability.
GEP  Genetic programming A three-dimensional polymer network structure is formed in
GGBS Ground granulated blast-furnace slag the condensation process of geopolymer concrete, which has
RMSE Root mean squared error good strength and durability. It usually shows high compres-
R Correlation coefficient sive strength, tensile strength, and permeability resistance,
SI Scatter Index which can meet the requirements of engineering structures

(Mehta and Siddique 2018). Geopolymer concrete has good
corrosion resistance to chemical substances such as acid,
alkali, and salt. This makes it have better adaptability and
durability under some special environmental conditions, such
as acidic soil and seawater environment (Meng et al. 2019).
Because less cement is used in the preparation of geopoly-
mer concrete, its carbon footprint is relatively low. This has
positive implications for reducing the carbon footprint of the

Geopolymer concrete is a type of concrete that uses geopoly-  ¢qnstruction industry and combating climate change (Ahmad
mer material as a gelling agent (Lloyd and Rangan 2010; et al. 2021).

Verma 2023). Compared with traditional cement-based con-
crete, it is different in material composition and preparation
process. The gelling agent of geopolymer concrete is mainly
composed of geopolymer materials instead of conventional
cement. Geopolymer is a gelling material produced by the
reaction of alkaline active substances such as silicates and

1 Introduction

1.1 Background

The compressive strength of geopolymer concrete can be
adjusted and controlled according to the specific ratio and
preparation process. The compressive strength of geopoly-
mer concrete can usually reach the level of ordinary concrete
or higher, depending on several factors, including the type of
geopolymer, activity, gelling agent content, curing time, etc.

aluminates with silicic and aluminic acids (Lavanya and (Ahmed et al. 2021; Rahman and Al-Ameri 2021). Under
Jegan 2015; Sharma et al. 2023). The gelled material can
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Table 1 Common methods to predict the compressive strength of geopolymer concrete

Prediction methods

Detailed approaches

Features

Empirical model (Garces et al. 2022; Le and
Bui 2021; Sudhir et al. 2022)

Statistical model (Rai et al. 2018; Bellum
etal. 2019; Dolamary et al. 2018; Ahmed
et al. 2022a)

Physical models and numerical simulations
(Cao et al. 2018; Chen et al. 2022;
Veerapandian et al. 2022; Zhang et al. 2021)

Machine learning algorithm (Ahmad et al.
2021; Rahmati and Toufigh 2022; Faraj
et al. 2022a; Ahmed et al. 2022b)

Based on known data and experimental
results, the compressive strength can be
estimated using empirical formulas. Based
on statistical data and empirical rules, these
formulas can give approximate compressive
strength estimates (Sudhir et al. 2022;
Ozbayrak et al. 2023; Jonbi and Fulazzaky
2020)

By collecting and analyzing test data from a
large number of polymer concrete samples,
statistical models can be constructed to
predict compressive strength. Common
methods include regression analysis,
artificial neural (Huang et al. 2022a)
networks, support vector machine, and so on
(Rai et al. 2018; Dolamary et al. 2018)

By using a physical model and numerical
simulation method, the compressive strength
of geopolymer concrete can be predicted by
establishing a mechanical property model
and corresponding calculation method
(Meng et al. 2019; Zhang et al. 2021;
Colangelo et al. 2013)

Using machine learning algorithms, such as
decision trees (Nguyen et al. 2023), random
forest (Verma 2023), neural networks
(Bhogayata et al. 2021), etc., the model can
be trained to predict the compressive
strength of geopolymer concrete by the input
of known material properties and other
relevant factors (Rahman and Al-Ameri
2021, 2022)

These models are often appropriate for
specific conditions and materials and may
not be accurate in other situations (Sudhir
et al. 2022; Rai et al. 2018; Bellum et al.
2019)

These models can take into account
multiple influencing factors, such as
material composition, curing conditions,
etc., and predict the numerical range of
compressive strength (Lavanya and Jegan
2015; Ali et al. 2022; Kishore et al. 2022)

This method can consider more material
properties and influencing factors, but it
needs corresponding experimental data
and model validation (Colangelo et al.
2013)

This method can learn patterns and
correlations from large amounts of data,
providing relatively accurate predictions
(Sharma et al. 2023; Gupta and Rao 2022)

normal circumstances, the compressive strength of polymer
concrete can be in the range of 20—100 MPa. This range is rel-
atively wide, and the specific compressive strength depends
on several factors, such as the characteristics of the geopoly-
mer material used, the selection and ratio of aggregates, and
the curing temperature (Ali et al. 2022; Chen et al. 2022). Pre-
dicting the compressive strength of geopolymer concrete is a
complex task, which requires consideration of many factors
and estimation with appropriate models or methods (Garces
et al. 2022). Table 1 shows some common methods.
Among these methods, machine learning models can
process and analyze large amounts of data in a highly auto-
mated manner, thereby quickly and accurately predicting the
performance of geopolymer concrete, saving the time and
cost of manual testing (Gupta and Rao 2022; Ahmed et al.
1868, 2022¢). At the same time, it considers multiple factors
that affect the performance of geopolymer concrete, such
as material composition, process parameters, environmental
conditions, etc., to provide more comprehensive prediction
results (Rahman and Al-Ameri 2022; Ahmed et al. 2022d;

Ghafor et al. 2022). Machine learning can be flexible in deal-
ing with nonlinear relationships, because the performance
of geopolymer concrete is often affected by the complex
interaction of multiple factors (Choudhary and Gianey 2017,
Huang et al. 2022b). Machine learning models can capture
these nonlinear relationships and provide more accurate pre-
dictions. Not only that, but machine learning models can
improve their predictive performance through continuous
training and optimization (Grazzi et al. 2020; Faraj et al.
2022b). As the amount of data and the complexity of the
model increase, the predictive power of the model can be
continuously improved (Ahmed et al. 2023a, 2022¢). How-
ever, it should be noted that the performance of the machine
learning model depends heavily on the training data avail-
able. If the data quality is poor or insufficient, the predictive
power of the model may be limited. Also, if a machine learn-
ing model is too complex or has insufficient training data,
overfitting problems can occur, in which the model performs
well on training data but has poor generalization ability on
new data. Gupta et al. employed the artificial neural network
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(ANN), multiple linear regression, and the multivariate non-
linear regression (MNLR) models to predict the compressive
strength of the geopolymer concrete. The results showed that
the performance of the ANN model was better than the multi
linear regression (MLR) and multi non-linear regression
(MNLR) models (Gupta and Rao 2022). Awoyera et al. used
genetic programming (GEP) and ANN techniques to pre-
dict the strength properties of geopolymer self-compacting
concrete. It is confirmed that both GEP and ANN methods
exhibited good prediction of the experimental data, with min-
imal errors (Awoyera et al. 2020). Tanyildizi tried to predict
the geopolymerization process of fly ash-based geopolymer
using deep long short-term memory and machine learning
(Tanyildizi 2021). Ayar Mazumder et al. developed the gene-
based expression programming (GBEP) model to predict the
mechanical properties of self-compacting geopolymer con-
crete and the developed model can predict the experimental
data results very precisely and with very few errors (Chai and
Draxler 2014). Rizvon et al. combined random forest mod-
els with Artificial Neural networks and the Least absolute
shrinkage and selection operator (LASSO). To predict the
compressive strength and physical properties of eco-friendly,
cement-based materials (Rizvon and Jayakumar 2021a, b,
2023).

Compared with the traditional model, the machine learn-
ing model does have greater advantages in predicting the
compressive strength of geopolymer concrete (Kakasor
Ismael Jaf et al. 2023; Unis Ahmed et al. 2023). However,
it should be noted that due to the complexity of the machine
learning model itself and the size of the data set, the overly
sensitive performance of a single machine learning model
in the prediction process may lead to overfitting or under-
fitting problems (Ahmed et al. 2023b; Huang et al. 2021;
Zhu et al. 2022). Overfitting means that the model can pre-
dict the data too well in the training stage, but has poor
generalization ability to the unencountered data. Underfit-
ting refers to the insufficient fitting effect of the model on
the training data and the inability to find the hidden inter-
nal relationship in the data. Although the results obtained
from the examples mentioned above meet the requirements
of experimental prediction accuracy in terms of data. How-
ever, single machine learning models are often trained and
predicted based on specific data sets, and if the data distribu-
tion changes, the model’s prediction effect will be affected
(Huang et al. 2022c). On the other hand, a single machine
learning model can usually only be used to deal with a spe-
cific problem or a specific data type, and it is necessary to find
a suitable machine learning model for different problems.
But choosing the right model often requires domain knowl-
edge and experience. The wrong model choice can result in
performance degradation that fails to meet problem solving
requirements (Huang and Xue 2022; Huang et al. 2022d).

@ Springer

Therefore, in order to solve the above problems, it is neces-
sary to use the integrated model to predict the compressive
strength of geopolymer concrete.

In order to solve the limitation of single machine learning
model on the compressive strength of geopolymer concrete.
In this study, three ensemble learning models are adopted,
and an improved BAS (IBAS) algorithm is proposed to opti-
mize the hyperparameters of the other three models to form
an ensemble model. And focus on the comparison of the
IBAS algorithm cited in decision tree (DT), random forest
(RF), and K-nearest neighbor (KNN) models to build the
ensemble learning models (Huang et al. 2022¢). By compar-
ing the predicted data, a more suitable prediction model for
the compressive strength of geopolymer concrete is further
selected, which is an important step for the manufacture and
use of geopolymer concrete. The importance of the influenc-
ing factors in geopolymer concrete is analyzed by using the
prediction model, which can provide reference for the effi-
cient design of geopolymer concrete in the future. In future
research, it is meaningful to directly establish the visualiza-
tion software of the output variables. However, this paper
mainly discusses the prediction effect of different integrated
models on the compressive strength of geopolymer concrete,
and selects the prediction model with the best prediction
effect. In future studies, if the results of this study can be
adopted, it is intended to build visualization software that
can output different results by changing the input variables.

1.2 Significance of the study

The purpose of this study is to explore the prediction accu-
racy of geopolymer concrete compressive strength and find
out the influence degree of influencing factors, so as to
provide new ideas and methods for solving this problem.
This study is of great significance for promoting the devel-
opment of geopolymer concrete. Compared with previous
studies, the innovation of this study lies in the adoption of
ensemble learning model in prediction, which makes up for
the deficiency of prediction generalization ability of single
machine learning model. The integrated machine learning
model proposed in this study provides a reference for the
future design of geopolymer concrete by predicting the com-
pressive strength of geopolymer concrete.

2 Methodology
2.1 Determination of the input variables
The compressive strength of geopolymer concrete is affected

by many factors, including cementing materials (such as fly
ash, metallurgical slag, etc.), aggregates, and activators. The
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ratio of raw materials directly affects the chemical compo-
sition and physical properties of concrete, thus affecting the
compressive strength. The appropriate ratio of raw materials
can improve the compressive strength of geopolymer con-
crete. The activator of geopolymer concrete is used to activate
the silicates in the gelling material and promote the gelling
reaction. The type and dosage of activator have a significant
influence on the compressive strength of concrete. Different
activators have different activation mechanisms and reaction
effects. Appropriate selection and adjustment of the type and
dosage of activators can improve compressive strength. The
properties of cementitious materials play an important role in
the compressive strength of geopolymer concrete. For exam-
ple, the silicate content of fly ash and the activity index of
metallurgical slag affect the reactivity and strength devel-
opment of gelling materials. The compressive strength of
geopolymer concrete can be improved by selecting suitable
cementitious material and treating and activating it. Aggre-
gate is a particle filler in geopolymer concrete, which has a
certain influence on the mechanical properties of concrete.
The physical and mechanical properties of aggregates (such
as particle size distribution, shape, surface properties, etc.)
affect the interaction between particles and the internal struc-
ture of the concrete, thus affecting the compressive strength.
Based on the above analysis, this study selected the contents
of fly ash (Lloyd and Rangan 2010) and ground granulated
blast-furnace slag (GGBS) (Mehta and Siddique 2018) as
the influencing factors of the cementing materials, Na;SiO3
(Mohseni 2018), NaOH (Mohseni 2018), and NaOH molar-
ity (Ahmed et al. 2021) as the activator design parameters,
the contents of the fine aggregate, gravel (4/10 mm), gravel
(10/20 mm) (Ahmed et al. 2021) and water/solids ratio as
the concrete design parameters to predict the compressive
strength of geopolymer concrete. Table 2 summarizes the
determination of the input variables.

2.2 Experimental procedure

Raw materials used in the experiment mainly include fly ash,
ground granulated blastfurnace slag (GGBS), fine aggregate,
alkali activator (NapSiO3, NaOH), stone, sand and water, etc.
To systematically study the influence of various influencing
factors on the mechanical properties of geopolymer concrete
and collect data for the training of mechanical learning mod-
els. A variety of experimental blocks in different situations
are prepared with different mix ratios to improve the predic-
tion accuracy of the machine learning model.

The main preparation process of geopolymer concrete is:
firstly, raw materials such as fly ash, GGBS, fine aggregate,
alkali exciter (NapSiO3, NaOH), stone, sand and water are
introduced into the mixer for mixing in turn, which is stirred
slowly for 180 s at first, then stopped stirring for 20 s, and
then stirred quickly for 120 s. Finally, the stirred slurry is

Table 2 Determination of the input variables

Design considerations Input variables

Cementing materials Contents of fly ash (Bellum et al.
2019; Huang et al. 2022f) and
ground granulated
blast-furnace slag (GGBS)
(Mehta and Siddique 2018;

Huang et al. 2022f)

Contents of Na;SiO3 (Mohseni
2018) and NaOH (Mohseni
2018); Molarity of NaOH
(Mohseni 2018)

Contents of the fine aggregate,
gravel (4/10 mm),
gravel(10/20 mm) and
water/solids ratio (Lavanya and
Jegan 2015; Rahman and
Al-Ameri 2021; Sudhir et al.
2022)

Activator design parameters

Concrete design parameters

poured into the sample mold. It was placed on the shaking
table for 60 s. After the slurry was formed, it was demoulded
and placed in a standard curing box for 7 days. The prismatic
specimen of 150 mm x 150 mm x 300 mm was used for the
axial compressive strength test.

2.3 Data collection and analysis

Based on the determination of the input variables from Table
2, this research collected the dataset from the previous studies
including the design parameters and the compressive strength
of the geopolymer concrete (Zou et al. 2022). Table 3 gives
the detail of the input variables.

The proportion of training and testing data accounts for
70% (147) and 30% (63) of the total data set, respectively. The
curing time of geopolymer concrete test block in this exper-
iment adopts the standard of 7 days. Therefore, the curing
time is not used as a reference factor in the model prediction.
To test the independence of these input variables, the corre-
lation between these input variables was tested by using the
method of determining the Pearson correlation coefficient.
Figure 1 gives the results.

Correlation coefficients can help identify collinearity
(linear correlation) between variables. In machine learn-
ing models, multicollinearity can lead to instability and
decreased explanatory power of the model. As can be seen
from the figure, most variables have correlation coefficients
below 0.4, which indicates that the linear correlation between
them is weak and, therefore, does not lead to instability in the
machine learning prediction model. It should be noted that
the correlation coefficient only measures the linear correla-
tion between variables and ignores the nonlinear relationship.

@ Springer
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Table 3 Detail of the input variables

Compressive
strength
(MPa)

NaOH

Water/solids

NaOH Fine Gravel Gravel
ratio

Na,SiO3 (kg/m3)

GGBS

Fly ash

molarity

aggregate 4/10 mm 10/20 mm

(kg/m?)

(kg/m?)

(kg/m?)

(kg/m?)

(kg/m?)

(kg/m?)

48.72

10.62

698.64 420.65 718.58 0.32

54.15

257.65 127.93 106.97

Average

value
Standard

17.58

2.61

125.86 119.64 0.10

43.33

17.08

38.13

83.76

90.38

deviation

NaOH Molarity

Water/solids ratio
Gravel 10/20 mm (kg/m?)

Gravel 4/10 mm (kg/m?)
Fine aggregate (kg/m?)
NaOH (kg/m?)
Na2SiO3 (kg/m?3)
GGBS (kg/m3)

Fly ash (kg/m3)

Fig. 1 Correlation coefficient of the input parameters

In some cases, there may be complex nonlinear relation-
ships between variables, and the correlation coefficient may
not accurately capture this relationship. However, the results
obtained so far showed that the databases selected in this
study are independent of each other in terms of input vari-
ables, and these input variables are acceptable for machine
learning in this study.

2.4 Ensemble learning models used in the study

Decision tree (DT) is a commonly used machine learning
algorithm that can be used for classification and regression
tasks (Song and Ying 2015; Myles et al. 2004). Decision trees
classify or predict data by constructing a tree-structured deci-
sion process. The tree structure of the decision tree consists
of nodes and edges. Each internal node represents a feature
or attribute, while each leaf node represents a category or
predicted value (Myles et al. 2004). By dividing the fea-
ture layer by layer, the decision tree can assign the sample
to different categories or predicted values according to the
value of the feature; the RF model is an ensemble learning
method based on the decision tree (Cutler et al. 2012; Belgiu
and Drégut 2016). Random forests (RF) perform classifica-
tion and regression tasks by building multiple decision trees
at the same time and integrating their predictions (Wang
et al. 2021). The model takes samples randomly from the
original training data to form several different training sub-
sets. A decision tree model is constructed using a decision
tree algorithm. Each decision tree is independently gener-
ated from a different subset of training (Cutler et al. 2012;
Belgiu and Drigut 2016). For regression predictions, the ran-
dom forest averages the predictions of each decision tree;
The K-nearest neighbor (KNN) model is a commonly used
machine learning algorithm for classification and regression
problems. The core idea of the KNN model is to compare the
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classification or prediction results of a new sample with its
nearest neighbor training sample based on similarity mea-
sures. For a new sample, the KNN model calculates the
distance between it and each sample in the training set (Guo
et al. 2003). Common distance measures include Euclidean
distance, Manhattan distance, etc. According to the results of
distance measurement, K training samples closest to the new
sample are selected as the nearest neighbors. For regression
prediction, the KNN model averages the predicted values of
the nearest neighbors as the prediction results of the new
sample (Guo et al. 2003; Huang et al. 2022f, Huang et al.
2022g).

2.5 Improved Beetle antennae search (IBAS)
algorithm

The Beetle antennae search (BAS) (Wang and Chen 1807;
Huang et al. 2022¢) is a heuristic optimization algorithm
based on the search behavior of the beetle antennae in
nature. The algorithm simulates the feedback signal gener-
ated when the beetle antennae touches the environment and
optimizes the solution by adjusting the search direction and
distance. The BAS algorithm will initialize a certain number
of solution vectors as the initial population according to the
characteristic dimension of the problem, and then calculate
the fitness value of each solution vector, that is, the perfor-
mance of the objective function on the solution vector (Wang
and Chen 1807). For each solution vector, according to its fit-
ness value and neighborhood information, the solution vector
is updated by adjusting the search direction and distance, and
the global optimal solution is recorded. Determines whether
to end the search based on a set termination condition, such
as reaching a maximum number of iterations or meeting a
specific stop criterion (Huang et al. 2020, 2021).

For traditional BAS, the beetle’s step size remains the
same or decreases with each iteration. Adopting this step
adjustment strategy can cause some problems. If the given
step size is too small, the BAS algorithm may converge
slowly or fall into a local optimal state (Zhang et al. 2019).
However, if the given step size is very large, global optimal-
ity may be skipped and the result may oscillate. Therefore,
Levy flight and self-inertia weights are used in this study to
adjust the step size of BAS (Huang et al. 2022g). To improve
the search efficiency, this paper named the improved BAS
the improved beetle antennae search (IBAS) algorithm. It
can quickly adjust the step size according to the current fit-
ness value, and reduce the oscillation by using the adaptive
weight; also, using Levy flying, randomly expand the step
size when the BAS falls into a local optimal state (Huang
etal. 2021).

In the implementation of this study, since the BAS algo-
rithm is in the local optimal state, the following formula is

triggered to increase the beetle step size:
8® = g|Levy| @ 8¢~V )

where « is the randomization parameter; ® means term-by-
term multiplication; Levy is a Levy distribution with infinite
variance, where infinity is expressed as Levy ~ u = 1%,
(1 <\ < 3). Trigger Levy flight as,

FO— =0 < w(fuw = fo), )

where u represents the coefficient; f,, and f;, are the worst
fitness value and the best fitness value, respectively. In the
implementation of this study, the adaptive inertia weight
adopts a monotone reduction equation, which is described
as follows:

where 8 is the step size of the current position; ' represents
the adaptive inertia weight, given by:

7 = (1 —a)0.95 + ol =S )

fi—

where f! represents the fitting equation of the current posi-
tion; flf represents the best fitting value; f! represents the
worst fitting value; o represents the hyperparameter to trade-
off between the two items (Huang et al. 2020).

2.6 Evaluation of predictive performance

In this study, n-fold cross-validation will be used to evaluate
the model performance (Malhotra and Meena 2021). It is
a commonly used model evaluation method to evaluate the
performance and generalization ability of machine learning
models. It divides the original data set into n subsets of equal
size, where n-1 subsets are used as the training set, and the
remaining subset is used as the validation set. This process
is repeated n times, each time using a different subset as the
validation set, and the average of the n evaluations is used
as the performance indicator of the model. To improve the
reliability of model comparison, 10-fold cross-validation was
selected in this study. For quantitative comparison indicators,
this study determined the standard deviation (Lee et al. 2015),
root mean squared error (RMSE) (Chai and Draxler 2014),
and correlation coefficient (R) (Benesty et al. 2008) for the
model comparison to predict the compressive strength of the
geopolymer concrete.
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RF-IBAS

1 2 3 4 5 6 7 8 9 10 1 2 3 4
Fold number

Fig.2 10-fold cross-validation results

3 Analysis of results
3.1 Results of the tenfold cross-validation

Tenfold cross-validation evaluates a model’s ability to gener-
alize, that is, how it performs on previously unseen data. By
evaluating different validation sets, the generalization perfor-
mance of the model can be better understood, and overfitting
or underfitting problems can be avoided (Huang et al. 2022f,
h). Figure 2 shows the tenfold cross-validation results. It can
be seen RF-IBAS model can earn the minimum RMSE value
for the tenfold, indicating that the model has a lower proba-
bility of overfitting or underfitting. At the same time, it can
be seen that compared with the other two models, the gen-
eralization ability of RF-IBAS is also strong, which can be
proved by the relatively stable RMSE value obtained by the
tenfold. KNN-IBAS can also obtain an ideal RMSE value,
but it seems to have less generalization than DT-IBAS (see
the relative stability of RMSE values of DT-IBAS and KNN-
IBAS models).

3.2 RMSE values for increasing iteration times

Figure 3 gives the RMSE values for DT-IBAS, RF-IBAS,
and KNN-IBAS models. As can be seen from the figure,
for the three ensemble learning models, under the hyperpa-
rameter adjustment of the IBAS algorithm, RMSE usually
decreases rapidly with the increase of iterations in the early
stage of model training. This is because the model is learn-
ing and gradually fitting the patterns and relationships in the
training data. As the number of iterations increases further,
the model may reach a stage of plateau or slow decline. At
this point, the performance of the model may already be
close to the local optimal, and further iterations may result
in only minor performance improvements. For the DT-IBAS
model, it can be observed that the RMSE value decreased
slightly with the increase in the number of iterations and
remained unchanged. This showed that the IBAS algorithm

@ Springer

Fold number

KNN-IBAS

6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Fold number

30 ) T T T T
—eo—DT-IBAS
1 —e—RF-IBAS
25+t —o—KNN-IBAS 1
m 20 [ i}
7]
10 >
5 L L I L I
0 10 20 30 40 50

Iteration

Fig.3 RMSE values for DT-IBAS, RF-IBAS, and KNN-IBAS models

cannot effectively adjust the parameters during training so
that the RMSE remains unchanged. Another possible rea-
son is that DT-IBAS models are not sufficiently expressive
to capture complex patterns and relationships in the data. In
this case, even if the number of iterations is increased, the
model does not improve the prediction performance. For RF-
IBAS and KNN-IBAS models, the iteration will be adjusted
in the direction of the gradient of the loss function. This iter-
ative process gradually reduces the value of the loss function,
thereby reducing the RMSE.

3.3 Predictive results of the DT-IBAS, RF-IBAS,
and KNN-IBAS models

Table 4 shows the hyperparameters of the developed DT-
IBAS, RF-IBAS, and KNN-IBAS models, including the
initial values and the IBAS suggested values for the hyper-
parameters.

Figure 4 gives the results of the predicted compressive
strength and actual compressive strength for the DT-IBAS,
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Table 4 Obtained
hyperparameters of the Developed models  Hyperparameters
DT-IBAS, RF-IBAS, and
KNN-IBAS models DT-IBAS Number of samples contained by a leaf Number of samples contained in
node the intermediate node
Initial value  Suggested value by IBAS  Initial value Suggested value by
IBAS
25 45 50 90
RF-IBAS Number of trees in the forest Number of leaf node samples per
tree
Initial value  Suggested value by IBAS  Initial value Suggested value by
IBAS
40 19 40 1
KNN-IBAS Number of nearest neighbor samples considered for each sample
Initial value Suggested value by IBAS
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Fig. 4 Predicted and actual compressive strength of the geopolymer concrete for the developed models

@ Springer



1802 Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:1793-1806

RF-IBAS, and KNN-IBAS models. It can be seen from the
figure that the good prediction effect of KNN-IBAS and
RF-IBAS, which can be seen from the predicted compres-
sive strength and the actual compressive strength close to
the “1:1” curve. Specifically, KNN-IBAS achieves RMSE
values of 2.65 and 8.2072 for the training set and the test
set, respectively; RF-IBAS achieves RMSE values of 4.2847
and 8.5659 for the training set and the test set, respec-
tively. Such low RMSE values indicate that the developed
model has a small prediction error and can better predict the
compressive strength of geopolymer concrete. At the same
time, comparing the distribution of the predicted and actual
compressive strength of the two models, it can be found
that the test set results of KNN-IBAS are more symmet-
ric in the “1:1” curve. However, the prediction results of
RF-IBAS are larger in smaller compressive strength regions
and smaller in larger compressive strength regions. This
suggests that the RF-IBAS model may overestimate the pre-
dicted compressive strength of the geopolymer concrete with
low compressive strength and underestimate the predicted
compressive strength of geopolymer concrete with high com-
pressive strength. For the DT-IBAS model, it can be clearly
seen that the regression fitting effect is poor due to the
low learning rate, and the loss function target is almost not
reached. Such a prediction model is difficult to be adopted in
the strength modeling of geopolymer concrete.

3.4 Models’ comparison

Figure 5 shows the model comparison of the three developed
using the form of a Taylor diagram, indicating the values of
the RMSE, standard deviation, and correlation coefficient.
The Taylor diagram shows the difference between the pre-
dictions of multiple models and the observed data in the
form of a circular coordinate system. Each point in the plot
represents a model, where the position of each point rep-
resents the model’s standard deviation (the difference from
the observed data) and its correlation coefficient (the corre-
lation with the observed data). In the Taylor diagram, the
better model will be located closer to the observed data,
with a small standard deviation and a high correlation coeffi-
cient. This allows us to intuitively compare the performance
between different models and understand how they differ in
terms of predictive power and correlation (Table 5). It can
be seen from the figure that similar to the previous results,
RF-IBAS and KNN-IBAS achieved better results in terms
of prediction accuracy and reliability. Specifically, RF-IBAS
and KNN-IBAS have similar performance in terms of the
correlation coefficient. KNN-IBAS has a slight advantage
in RMSE compared with RF-IBAS, while RF-IBAS has a
better performance in standard deviation than KNN-IBAS;
DT-IBAS has a small standard deviation, but its performance
in correlation coefficient and RMSE value is unsatisfactory.
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The above table shows the evaluation index of the three
models on the compressive strength prediction results of
geopolymer concrete after data training. It can be clearly seen
from the table above that the KNN-IBAS model has the low-
est RMSE, Scatter Index(SI) and OBJ values and the highest
R values. Therefore, it can be shown that KNN-IBAS model
has the best prediction ability in the prediction of geopolymer
concrete compressive strength.

3.5 Importance analysis and sensitivity analysis
of input variables

Figure 6 gives the importance score of these influential vari-
ables determining the compressive strength of geopolymer
concrete. Importance Score is an indicator used to evaluate
the importance of parameters in the calculation, and the value
obtained by it can measure the contribution of each feature
to the prediction result of the model. Through the impor-
tance score of each feature, we can know which features
have the greatest impact on the predictive performance of
the model, so that we can better understand and interpret the
prediction results of the model. It can be clearly seen from
the figure that NaOH molarity is the most important factor
affecting the compressive strength of geopolymer concrete
and its influence far outweighs other possible factors. This is
because a higher concentration of sodium hydroxide solution
can be used as an activator to promote polymer reactions in
geopolymer concrete. These polymer reactions lead to the
formation of polymer networks in the concrete and increase
the compressive strength of the concrete. However, too high
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Table 5 Forecast the result of the
DT-IBAS, RF-IBAS, and Training set Test set Training set R Testset R SI OBJ
KNN-IBAS models RMSE RMSE
DT-IBAS 12.9415 14.0024 0.6663 0.6866 0.32189 12.6021
KNN-IBAS 2.65 8.2072 0.9883 0.9024 0.18867 7.63269
RF-IBAS 4.2847 8.5659 0.9727 0.9043 0.19691 7.88062
appropriate models or methods. This study employed three
NaOH Molarity 4.2981 ensemble learning models and proposed an improved BAS
Fly ash (kg/m?) 1.3576 algorithm to predict the compressive strength of geopoly-
Na28i03 (kgzme) [ 13013 me.r coooncrete. AIS(?, this study focu'sefi on comparing the
2 reliability and efficiency effects of this improved BAS algo-
=2 3G m3 1832 . . .
5 aans trg/u’) [N 125 rithm when applied to the three ensemble learning models.
g NaOH (kg/m®) [ 10913 Through this comparative study, it can build an important
2 Water/solids ratio 10458 step for the establishment of the geopolymer concrete com-
S seeaste gy 10059 pressive strength prediction model. Using the established
model, the importance of these factors affecting the com-
Gravel 10/20 mm (kg/m?3) 0.8333 . .
pressive strength of geopolymer concrete is also analyzed.
Gravel 4/10 mm (ig/m?) [ Jo.6191 The following are the conclusions that can be obtained.
0 | 2 ; 4 5

Importance score

Fig.6 Importance analysis of input variables for the compressive
strength

NaOH molarity may cause the reaction to be too fast or vio-
lent, which adversely affects the performance of the concrete.
Therefore, such polymer reaction is significant for the for-
mation of the compressive strength of geopolymer concrete.
Similar to NaOH, NaSi; O3 can also be used as an activator to
promote polymer reactions in geopolymer concrete. Its main
role in concrete is to form hydrated silicate gels by react-
ing with calcium ions in water, which helps to strengthen
the structure of concrete and improve compressive strength.
This is the reason why its content has achieved an importance
score of 1.3013. However, it should be noted that the impor-
tance of NaOH molarity is far greater than that of the NaOH
content in forming the compressive strength of geopolymer
concrete, indicated by the importance score of 1.0913 for the
NaOH content. For those concrete design parameters (includ-
ing water/solids ratio, fine aggregate, gravel 10/20 mm, and
gravel 4/10 mm), the importance is less than that of the poly-
mer cement design parameters, This should be paid enough
attention in the design of geopolymer concrete in the future.

4 Conclusion

Geopolymer concrete has been developed to contribute to
sustainable construction, but predicting the compressive
strength of geopolymer concrete is a complex task, which
requires consideration of many factors and estimation with

1. The developed RF-IBAS model can earn the minimum
RMSE value for the tenfold and the model has a lower
probability of overfitting or underfitting. Compared with
the other two models, the generalization ability of RF-
IBAS is strong, which can be proved by the relatively
stable RMSE value obtained by the tenfold. KNN-IBAS
can obtain an ideal RMSE value but show less general-
ization than DT-IBAS. Therefore, RF-IBAS model has
the best prediction effect on the compressive strength of
geopolymer concrete.

2. Under the hyperparameter tuning of IBAS algorithm, the
RMSE of the three-medium integrated model proposed
in this study usually decreases rapidly with the increase
of iterations in the early stage of model training. This
suggests that IBAS algorithm has effective hyperparam-
eter tuning capability for these three integrated models.
As the number of iterations increases further, the model
may reach a stage of plateau or slow decline, indicating
the performance of the model may already be close to
local optimal, and further iterations may result in only
minor performance improvements.

3. KNN-IBAS and RF-IBAS showed good prediction
effects, indicated by the fact that the predicted com-
pressive strength and the actual compressive strength
are close to the "1:1" curve. Specifically, KNN-IBAS
achieves RMSE values of 2.6500 and 8.2072 for the train-
ing set and the test set, respectively; RF-IBAS achieves
RMSE values of 4.2847 and 8.5659 for the training set
and the test set, respectively. Such low RMSE values
indicate that the developed model has a small prediction
error and can better predict the compressive strength of
geopolymer concrete.
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4. NaOH molarity is the most important factor affecting
the compressive strength of geopolymer concrete and its
influence far outweighs other possible factors. Similar
to NaOH, NaSi»O3 can also be used as an activator
to promote polymer reactions in geopolymer concrete.
The importance of NaOH molarity is far greater than
that of the NaOH content in forming the compressive
strength of geopolymer concrete. Those concrete design
parameters are less important than the polymer cement
design parameters to form the compressive strength of
the geopolymer concrete.

Although the model presented in this study has cer-
tain advantages and prediction ability in the prediction of
geopolymer concrete compressive capacity, it also has some
limitations. First, these three models are trained based on
specific data sets and experimental conditions, and therefore,
may not be applicable to all types of cement-based concrete
composites. Second, it may not be possible to accurately
predict the properties of concrete composites in different
strength ranges. This is because concrete composites with
different strength ranges may have different compositions
and structures, thus affecting the predictive power of the
model. Nevertheless, because the model is an integrated
model, it has certain universality and extensibility. By
properly adjusting the parameters and input characteristics
of the model, the application range of the model can be
extended to adapt to different types and strength ranges of
concrete composites. It is hoped that the launch of the model
will promote the development of geopolymer concrete,
and further improve the use of geopolymer concrete in
the construction field, so as to implement the policy of
environmental protection.

In future research, it is meaningful to directly establish the
visualization software of the output variables. However, this
paper mainly discusses the prediction effect of different inte-
grated models on the compressive strength of geopolymer
concrete, and selects the prediction model with the best pre-
diction effect. In future studies, if the results of this study can
be adopted, it is intended to build visualization software that
can output different results by changing the input variables.
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