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Abstract
In recent years, many experimental articles have been conducted to study ultra-high-performance concrete (UHPC). Thus, the
relationship between its blend composition and the mechanical properties of UHPC is highly non-linear and challenging to
utilize conventional statistical approaches. A robust and sophisticated method is needed to rationalize the variety of relevant
experimental datasets, provide insight into aspects of non-linear materials science, and make estimative tools of desirable
accuracy. Machine learning (ML) is a potent strategy that can reveal underlying patterns in complex datasets. This study
aims to employ state-of-the-art ML methods for predicting the UHPC compressive strength (CS) by operating 165 previously
published sampleswith 8 input characteristics via support vector regression (SVR). In addition, a novel approach has been used
based on meta-heuristic algorithms to enhance accuracy, including Dynamic Arithmetic Optimization Algorithm (DAOA),
Arithmetic Optimization Algorithm (AOA), and Black Widow Optimization (BWO). Furthermore, the models evaluated
the prediction input dataset by some criteria indicators. The results indicated that the represented models obtained suitable
estimative efficiency and can be reliable on ML methods in saving time and energy. In general, in comparing hybrid models,
SVDA has a more acceptable performance than other hybrid models.

Keywords Ultra high-performance concrete · Support vector regression ·Black widow optimization ·Arithmetic optimization
algorithm · Dynamic arithmetic optimization algorithm

1 Introduction

In recent years, Ultra High-Performance Concrete (UHPC)
has been a new class of concrete generated. UHPC has supe-
rior compressive, tensile behavior, and durability properties
compared to High-Performance Concrete (HPC) (Graybeal
2007). UHPC demonstrates excellent durability, ductility,
and strength as an alternative to new construction. This mate-
rial has been produced over the last decades, and UHPC
has various illustrations according to different classifications.
The French Association of Civil Engineers (AFGC) specifi-
cations defineUHPC as concrete with a compressive strength
(CS) greater than 150 MPa and up to 250 MPa (Shafieifar
et al. 2018). The properties of UHPC enable the develop-
ment of long-span bending structures, lightweight bridge
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decks, and structural construction projects that demand high-
strength material (Wille et al. 2012).

Compressive and tensile strength and Young’s modulus
are the effective properties of the UHPC structural perfor-
mance. Hence, it is difficult to precisely determine the above
mechanical properties due to the complex microstructures
shaped when cementitious composites’ hydration occurs
(Mattei et al. 2007). Investigators searching for the complex
microstructural interactions and properties of these complex
cementitious composites have mainly turned to exploratory
examinations. Other advantages of utilizing UHPC include
decreasing the number of concretes required for the struc-
ture. This improves the total net space equipment required,
decreases labor to assemble precast units, and shortens struc-
ture time (Abellán García et al. 2020; Yin et al. 2021; Cheng
et al. 2022). UHPC has a complexmixture design, and apply-
ing experimental approaches to obtain CS is labor-intensive,
time-consuming, and expensive equipment materials. Some
investigators use machine learning (ML) techniques to make
concrete predictions to overcome test approach limitations.
Choosing the suitable algorithm can enhance the estimation
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accuracy of models while ensuring training speed (Huang
et al. 2022; Akbarzadeh et al. 2023).

A support vector machine (SVM) is an ML that imple-
ments the inductive principle of structural risk minimization
to generalize well to a limited set of learning designs.
Support vector regression (SVR) endeavors to minimize
the bounded development error to obtain developed perfor-
mance. SVR uses a loss function to penalize errors higher
than a threshold. These loss functions result in sparse rep-
resentations of decision rules. It provides algorithmic and
representative advantages. SVMs have been used in different
design recognition applications like image recognition and
text classification and have been observed to be expanded
to regression investigation. SVM has proven successful
in various areas of engineering (Vapnik 1999; Ye et al.
2005; Mukherjee et al. 1997; Masoumi et al. 2020; behnam
Sedaghat et al. 2023).

The study conducted by Awodiji and colleagues (Awodiji
et al. 2018) investigate a. sequences of. artificial neural
network (ANN) employing various modeling techniques to
explore the correlation between CS and the ratio of material
mass to establish the age of a range of hydrated lime-cement
concrete specimens’ mixtures. Their model obtained corre-
lation coefficients ranging from 90.1 to 98.4 percent. This
indicates that the model successfully predicted the CS of
different concrete mixes. Samui (2008) employed SVM to
specify the subsidence of shallow scaffolds in non-cohesive
soils and found that SVM could be a helpful and practi-
cal tool for predicting subsidence. Shi et al. (2011) used
SVMs to predict cement strength. The SVM results were
compared with those of an ANN model, and it was found
that SVM achieves more suitable precision than the ANN
approach. Kasperkiewicz et al. (1995) utilized ANN. to.
enhance cement, superplasticizer, silica, small and large
granular components, and water in (HPC)., irrespective of
the intricacy, data gaps, and reliability issues, forecasted a
good blending proportion. Their model shows a strong asso-
ciation between the recorded real and. estimated standards,
and artificial neural network (ANN). models offer a means to
estimate ideal combinations. Maity et al. (2010) confirmed
the potential of SVR to predict monthly current flow using
intrinsic features.Chen et al. (2009) usedSVMtoestimate the
exposure temperature of fire-damaged concrete. They have
been obtained that the accuracy of the SVMmodel estimation
improves as the effective parameters increase, and the ratio
of training to total samples was assumed when analyzing
the SVM method. Lee et al. (2007) used the SVR method
and neural network (NN) on experimental results to suc-
cessfully predict the strength of concrete according to mixed
data. The SVR approach showed higher estimation accuracy
and shorter calculation time. Ghafari et al. (2012) explored
the application of a (BPNN). and a statistical blending tech-
nique created to predict the ultra-high performance concrete

Table 1 Summary of several published articles for predicting CS of
UHPC

Work ID Model R2 RMSE

Wu (2023) FDA-RBF 0.916 9

Abuodeh et al. (2020) BPFNN 0.8 5.5

Alabduljabbar et al.
(2023)

Gene
expression

0.969 6.5

demeanor presentation. Their goal was applying a BPNN in
combination with a statistical mix plan approach to forecast
both the compressive strength (CS) and uniformity of UHPC.
across two. different curative styles,mostly steamcuring and.
wet curative. Fifty-three concrete. specimens were created
using a statistical blending designmedium. The elements that
make up the. combinationwere. taken byway of autonomous
variables within the BPNN. framework. The outcomes indi-
cated that theBPNN. can anticipate compressive strength and
workability with higher accuracy than. a statistically blended
design.

Table 1 summarizes several published articles to measure
ML models’ accuracy.

The primary objective of this study is to leverage SVR, a
subset of SVM, for the precise prediction of CS inUHPC. CS
prediction in UHPC holds immense importance in civil engi-
neering and material science, aiding in optimizing structural
designs and material compositions. The prediction process is
approached in two integral phases: training and testing, uti-
lizing a dataset of 165 experimental samples extracted from
published studies. Accurate prediction of CS in UHPC is
essential for ensuring the structural integrity and durability
of construction projects. By employing the SVR model, a
powerful and versatilemachine learning technique, this study
aims to improve the accuracy of CS prediction and enhance
the overall efficiency of UHPC applications.

A novel approach is proposed to enhance prediction
accuracy and minimize errors by integrating meta-heuristic
algorithms with the SVR model, forming hybrid models.
Specifically, the Dynamic Arithmetic Optimization Algo-
rithm (DAOA), Arithmetic Optimization Algorithm (AOA),
and BlackWidowOptimization (BWO) are selected for their
potential to fine-tune the SVRmodel and improve prediction
outcomes.

In the subsequent section, these meta-heuristic algorithms
will be thoroughly introduced, elucidating their mathemat-
ical foundations and principles. The specifics of the hybrid
models also delve into SVDA, SVAO, and SVBW, which
represent the amalgamation of the SVR model with DAOA,
AOA, and BWO, respectively. These hybrid models are
designed to leverage the strengths of the SVR model and
the meta-heuristic algorithms, aiming for superior prediction
accuracy while considering computational efficiency.
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Fig. 1 Process of the present study

Furthermore, an evaluation framework will be established
to assess the performance of the hybrid models, utilizing
appropriate evaluation metrics to quantify prediction errors.
This rigorous evaluation process is vital in selecting the most
effective hybrid model, optimizing the prediction accuracy,
and ultimately contributing to efficient resource utilization
by saving energy and time in UHPC prediction processes.
In addition, the process of the present study is mentioned in
Fig. 1.

2 Materials andmethodology

2.1 Data gathering

The paper used 165 experimental samples published in pre-
vious studies (Abuodeh et al. 2020; Chang and Zheng 2020).

Table 2 shows the fed variables feature of models. As it is
clear in the table, the concretemixing design has eight inputs,
which include all cement (C), sand–cement ratio (S/C), silica
fume–cement ratio (SF/C), fly ash–cement ratio (FA/C), steel
fiber–cement ratio (STF/C), quartz powder–cement ratio
(QP/C), water–cement ratio (W/C), and admixture–cement
ratio (Ad/C), in addition, CS is the output. The specified unit

for the inputs except for (C), which is in
(
Kg
m3

)
, the rest are

in (percent) because of showing the ratio with (C). In addi-
tion, the output, i.e., CS, is expressed in terms of (MPa). In
addition, Fig. 2 shows the histogram distribution of variables.

The presented Figure and Table offer a comprehensive
overview of vital variables central to the study of UHPC.
These variables encompass critical components and ratios
significantly influencing the material’s properties, specifi-
cally its CS, a key performance indicator. C demonstrates
variability from a minimum of 383 units to a maximum of

Table 2 The fed variables feature of models

Variable C FA/C SF/C S/C STF/C QP/C W/C Ad/C CS

Status Input Input Input Input Input Input Input Input Output

Max 1600 0.33 1.01 4.70 0.45 0.94 0.51 0.28 240

Min 383 0 0 0 0 0 0.04 0 77

Avg 921.24 0.14 0.12 1.31 0.13 0.04 0.22 0.03 150.73

St. Dev 273.72 0.12 0.15 1.16 0.14 0.13 0.06 0.04 32.99
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Fig. 2 The histogram distribution of inputs and output

1600 units. This variation signifies the diverse compositions
of concrete mixtures used in the study. Moreover, ratios have
a pivotal role in determining the material’s characteristics.
FA/C ranges from 0 to 0.332, highlighting the varying pro-
portions of fine aggregate, while SF/C exhibits a range of 0
to 1.011, emphasizing the diverse use of silica fume. Other
ratios, for instance QP/C,S/C., Ad/C, STF/C.,W/C, and, also
demonstrate noteworthy variations. For instance, the W/C
ranges from 0.0375 to 0.514, showcasing different water-
cement proportions employed. CS, the target variable crucial
for assessing concrete performance, ranges from 95 to 240
MPa. This indicates the spectrum of strengths observed in
the dataset, emphasizing the influence of these variables on
the ultimate compressive strength of the UHPC.

2.2 Support vector regression (SVR)

For use in many civil engineering problems, a support vec-
tor machine (SVM) was proposed by Vapnik et al. (1996) to
use a non-linear fitting (mapping) of input data to a larger D-
dimensional feature space (An et al. 2007; Çevik et al. 2015).
Customization is common in kernel functions, including sig-
moidal, Linear, Gaussian radial basis functions (RBF), and
polynomials (Vapnik 2013). A linear model in feature space
is a mathematical notation as:

f (x , w) �
D∑
j�1

w jv j (x) + c. (1)

In Eq. (1), v j (x), j � 1, 2, . . . , D indicates a vector of
weight in which the choice of kernel function parameters
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often relies on the execution kernel and software type used.
Nevertheless, the selection of function parameters and kernel
sort should consider the distribution of the training datasets.

Some non-linear regression models define the relation-
ship between outcome factors and two or more illustratives
via fitting a linear equation to a sample dataset. The use of
linear regression models is the first attempt due to their wide
acceptance and ease of use in predictive modeling (Chou
et al. 2014; Liang and Song 2009). Non-linear regression
fits a hyperplane into a D-dimensional space when solving
computer modeling issues. Where D determines the illustra-
tive components’ number. Provided a system with variable
x describing D and components y of the result, the general
least-squares problem is for determine the unknown param-
eters Pi of a linear model. A common equation is:

Y � P0 +
n∑

i�1

Pivi (x) + c. (2)

Here, Y determines the output, i.e., CS, Pi shows the
regression coefficient, x shows the specific descriptive com-
ponent, and c indicates the error term. The non-linear
regression model usage has been commonly utilized in
civil engineering issues. Furthermore, Fig. 3 indicates the
flowchart of SVR.

2.3 Black widow optimization (BWO)

The problem variables’ values should be put into desirable
structures to solve the problem. This structure is called a
“widow”. BWA sawBlackWidow Spider as a powerful solu-
tion to any problem. Each Black Widow spider specifies the
values of task variables. The document should assume the
structure to resolve the benchmark function as an array. The
widow is a 1× Nv array determined by solving the problem
for Nv-dimensional optimization problems. The array can be
calculated in Eq. (3):

A � [
x1, x2, . . . , xNv

]
. (3)

Each component value
[
x1, x2, . . . , xNv

]
indicates a

floating-point number. The fitness of a widow is
(
x1, x2,

. . . , xNv

)
and can be calculated in Eq. (4):

f (A) � (
x1, x2, . . . , xNv

)
. (4)

A potential widowsmatrix of sizeNpop ×Nvar is produced
in the initial population of spiders at the start of the optimiza-
tion algorithm. Parent pairs are then randomly selected, and
a mating reproduction step is implemented.

At this stage, black male widows are eaten by females.
Pairs initiate mating independently of each other and repli-
cate new development in parallel. In addition, each pair on

Fig. 3 The SVR flowchart

the web mates independently with other pairs in nature. A
single mating will produce about 1000 eggs, but some more
powerful spider babies can survive in the real world. With x1
and x2 as parents and y1 and y2 as ε, the following formula
produces children:

{
y1 � ε × x1 + (1 − ε) × x2
y2 � ε × x2 + (1 − ε) × x1

. (5)

The strategy involved is repeated Nvar/2 times, but the
randomly selected digits are not copied. Finally, mothers and
children were sorted by fitness value and added to an array.
Some of the best individuals are added to the newly generated
population according to cannibalism ratings. Instructions are
used in all pairs. Figure 4 illustrates the flowchart of BWO.

2.4 Arithmetic optimization algorithm (AOA)

AOA was suggested by Abualigah et al. in 2020 using some
mathematical equations and operators (Castelli et al. 2013).
This algorithm starts with a set of random solutions. Tar-
get values for each solution are calculated at each iteration.
Before updating the solution position, AOA has two control
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Fig. 4 The BWO flowchart

parameters named F and V that must be updated as:

F(i) � Min + c ×
(
bmax − bmin

Maxiter

)
, (6)

V (i) � 1 −
(

c

Maxiter

) 1
s

. (7)

In the above equations, F(i) indicates the function value
at iteration ith, c is the current iteration, Maxiter indicates the
maximum iteration andbmax, bmin indicate themaximumand
minimum values for bonding F . Also, V is the coefficient,
which is the probability of the mathematical optimizer, V
(i) defines the function at the value of the ith iteration, and s
shows the constant value.After updatingV and F , it develops
a random number, namely r2 to switch between mining and
discovery. The exploration and exploitation are utilized in
Eqs. (8) and (9), respectively:

xi , j (t + 1) �
{

best(x j )
(V+g) × (

ub j − lb j
) × m + lb j i f r1 < 0.5(a)

best
(
x j

) × V × (
ub j − lb j

) × m + lb j i f otherwise (b)
, (8)

xi , j (t + 1) �
{
best

(
x j

) − V × (
ub j − lb j

) × m + lb j i f r2 < 0.5(a)

best
(
x j

)
+ V × (

ub j − lb j
) × m + lb j i f otherwise (b)

. (9)

where best
(
x j

)
shows the jth position in the best-achieved

solution so far, m indicates the parameter of controlling, g
defines a small number for avoiding division with zero, and
ub j , lb j indicate the upper and lower value of the jth bound
position, alternatively. Figure 5 indicates the AOA flowchart.

Fig. 5 The flowchart of AOA
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2.5 Dynamic arithmetic optimization algorithm
(DAOA)

Two dynamic properties with new accelerator features have
been implemented in the basic version of the arithmetic
optimization algorithm to improve performance (Khodadadi
et al. 2022). The dynamic version modifies solution candi-
dates during optimization techniques and examines sections
simplifying exploitation and exploration methods. The most
notable attribute of DAOA is that it does not need prior fine-
tuning of parameters associated with the most commonly
utilized meta-heuristics.

Arithmetic Optimization Algorithms’ Dynamic Acceler-
ation Functions for Dynamics play an important role in the
exploring phase.AOAneeds to adjust themaximumandmin-
imum values for the initial stats of the acceleration ability. As
a new downward function replaces the dynamically accel-
erated function, employing an algorithm without tunable
internal parameters is suggested. The improvement factor
in the algorithm is given as follows:

C �
(
Maxiter

c

)s

. (10)

The noteworthy point is that the parameters mentioned
in Sect. 2.4 are related to AOA, some of them are repeated
in this section, so they have an explanation similar to the
explanation of AOA metrics. The function is reduced with
each iteration of the algorithm.

Furthermore, the twomain sections of metaheuristic algo-
rithms are exploration and exploitation; a proper balance
between them is essential for the algorithm. During the opti-
mization strategy to emphasize exploration and exploitation,
each solution dynamically updates its position from the best
solution achieved in this dynamic version in the following:

xi , j (t + 1) �
{
best(x j ) ÷ (D + s) × ((ub j − lb j ) × M + lb j )), r1 < 0.5
best(x j ) × D × ((ub j − lb j ) × M + lb j )), otherwise

,

(11)

xi , j (t + 1) �
{
best

(
x j

) − (D + s) × ((ub j − lb j ) × m + lb j )), r2 < 0.5
best

(
x j

)
+ D × ((ub j − lb j ) × m + lb j )), otherwise

.

(12)

The value decreases during each iteration, and a dynamic
candidate solution function (D) is given by the effect of
reducing the percentage of candidate solutions as:

D(0) � 1 −
√

c

Maxiter
, (13)

D(t + 1) � D(t) × 0.99. (14)

Many exploration agents and iterations suggest that using
candidate solutions in DAOA will accelerate AOA’s con-
vergence. Also, the improvements enhance the quality of
the solution. The algorithm’s ability is often considered an
advantage of these algorithms to work without parameters.
The use of dynamic functions varies between DAOA and
AOA. The DAOA algorithm has the advantage of being
parameter adaptive so that the number of parameters is mini-
mal to be adjusted. This contrasts competing algorithms that
need parameter tuning for different problems. One of the
drawbacks of the algorithmcanbementioned in that the adap-
tive mechanism depends on the number of iterations rather
than improving fitness. The pseudocode of DAOA is illus-
trated in Algorithm 1.

Algorithm 1 The dynamic form of AOA

Initialize the parameters for DAOA

Create random values for primary positions

while < do

Compute the fitness values for the represented solution

   Find the best solution

       Update the D value utilizing Eq. (10)

Update the C value utilizing Eq. (13)

for = 1:

for = 1:

Create random values between 0 and 1 for r1, r2, and r3

if r1 > D

 if r2 > C

Using the first rule in Eq. (11)

else

Using the second rule in Eq. (11)

end if

if r1 < D

    if r2 > 0.5

Using the first rule in Eq. (12)

else

Using the second rule in Eq. (12)

end if

end if

end for

end for

t = t + 1

end while

Return the best solution
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2.6 Performance evaluationmethods

This section has introduced the metrics that have the role of
evaluating the models. Evaluators included weight absolute
percentage error (WAPE), correlation coefficient (R2), mean
absolute percentage error (MAPE), root mean square error
(RMSE), and median absolute percentage error (MDAPE).
In addition, the mathematical equations are represented in
the following:

R2 �

⎛
⎜⎜⎝

∑N
i�1(Ei − E)(Mi − M)√[∑N

i�1(Ei − E)
2
][∑N

i�1(Mi − M)
2
]

⎞
⎟⎟⎠

2

, (15)

RMSE �
√√√√ 1

N

N∑
i�1

(Ei − Mi )2, (16)

MAPE � 100

N

N∑
i�1

|Ei |
|Mi | , (17)

WAPE � max

[∣∣Ei − Mj
∣∣

Mj

]
, (18)

MDAPE � 100 × median

( |Mi |
|Ei |

)
. (19)

In the above equations, N is the sample number, Mi indi-
cates the measured value, Ei determine the estimated value,
and E , M are the mean value of the estimated and measured
samples, alternatively.

2.7 Hyperparameter

Table 3 presents the hyperparameters for the Support Vec-
tor Regression (SVR) model in the context of the proposed
hybrid models: SVDA, SVAO, and SVBW. Hyperparame-
ters are crucial in determining the SVRmodel’s behavior and
performance, allowing customization based on the specific
dataset and prediction goals. Optimal selection of hyperpa-
rameters is crucial to achieve the best performance of the
SVR model. These values have been carefully tuned to max-
imize prediction accuracy and are essential in achieving the
study’s objectives of precise CS prediction in UHPC.

3 Results and discussion

The results of hybrid models are examined in two training
and testing phases. In this evaluation, 70% of the samples
were related to the training phase, and the remaining 30%
were related to the test. Table 4 determines the results cal-
culated by models to make a statistical assessment. In the

related table, it should be noted that except for R2, the rest
of the metrics should have their lowest value due to showing
the errors in the models. In R2, the highest value belonged
to SVDA in the training and testing phases, equal to 0.987
and 0.991. The lowest value and, in other words, the weakest
performance in R2 was related to the SVBWmodel, equal to
0.967 in training and 0.970 in the test. In RMSE, the most
suitable value in training has been achieved by SVDA �
4.98 MPa, which obtained the best value in the test phase
via SVAO � 5.25 MPa. In MAPE, the lowest value obtained
in training and testing was 2.02 MPa and 2.36 MPa, respec-
tively, which belonged to SVDA. For MDAPE, the lowest
value was obtained by SVDA, equal to 1.32 in the training
phase and 1.53MPa in the test. Like other evaluators, alterna-
tively, the SVDAmodel obtained the lowest value in WAPE,
equal to 0.020 and 0.024MPa. On the other hand, the SVBW
model obtained the poorest values in all evaluators and both
phases. Broadly speaking, one could infer that DAOA suc-
ceeded in achieving a better combination with SVR to obtain
CS of UHPC prediction results. In addition, compared to the
other two models, BWO has not obtained acceptable val-
ues by combining them with SVR. Furthermore, it should be
noted that the SVDA and SVAO models have obtained the
most appropriate values in the test phase, which indicates
that the samples have learned well in the training phase. As a
result, they obtained satisfactory values in the testing phase.

Figure 6 illustrates the scatter plot for hybrid presented
models. The scatter of points is related to two evaluators, R2

and RMSE, the highest and lowest value of the result is the
most appropriate performance, respectively. The points have
been analyzed in two phases, including training and testing.
For each corresponding phase, the linear fit has been deter-
mined,whose angle differencewith themidpoint denotes the.
proper presentation of. the. model. The. two specified axes
are based on the predicted andmeasured that themiddle point
has determined the X � Y. organizes. As a result, the. closer
the. points are to these coordinates is accepted themore accu-
rately the prediction. In addition, two axes of 1.1 × and 0.9
× specify the overestimated and underestimated predictions
of the models, respectively. In SVDA, it can be seen that the
points are concentrated on the center line in both phases and
are not observed over or under-estimated points. SVAO also

Table 3 The hyperparameters of SVR

Model Hyperparameters

C Epsilon Gama

SVDA 0.711 1.02 384

SVAO 0.1 1.45 300

SVBW 0.296 1 134.87
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Table 4 The results calculated by
models to make a statistical
assessment

Models SVR SVDA SVAO SVBW

Status Train Test Train Test Train Test Train Test

RMSE (MPa) 13.87 11.40 4.985 5.259 7.392 4.990 8.529 9.542

R2 0.855 0.880 0.987 0.991 0.974 0.987 0.967 0.970

MAPE (%) 4.215 3.861 2.028 2.363 3.267 2.574 3.855 4.740

MDAPE (%) 3.331 3.011 1.320 1.537 2.266 2.290 2.718 3.207

WAPE (%) 0.105 0.0862 0.020 0.024 0.032 0.025 0.038 0.047

Fig. 6 The scatter plot for hybrid presented models

performed almost the same as SVDA but with more disper-
sion than SVDA. On the other hand, for SVBW, there are
scattered points and underestimated in some samples.

Figure 7 shows the comparison bar chart of measured
and predicted values. The ideal state of Fig. 7 is that the

predicted and measured bar charts should be superimposed,
which results in the low error percentage shown in Fig. 8.
In SVDA, it can be seen that in some examples, there was a
difference between the predicted and the measured, so that
the highest error was equal to 7% in the training phase, which
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Fig. 7 The comparison bar chart
of measure and predicted values

with the improvement of itself performance, the difference
has been reduced and reached 7.5%. For SVAO, the differ-
ence between predicted and measured was more significant
in the training phase than SVDA, which was an error equal to
12%. This difference was equal to 4.5%, with an acceptable
reduction in the testing phase. On the other hand, for BWO,
which had the weakest performance compared to the other
two models, it can be seen that in the training phase, there
were many differences between the predicted and measured
bar charts,which resulted in a 29%error. In addition, the error
has reduced to under 10% in the test, which determines that
the samples have not been trained well in the training phase.
In general, the SVDA, SVAO, and SVBWmodels were from
the most appropriate to the poorest performances in both the
comparison bar chart and error percentage, respectively.

Figure 9 shows the error percentage based on the violin
with a stick plot for the presented models. In the section
related to SVDA, it can be seen that in the training phase, the
dispersion of errors was low, and most of the density was in
the near zero percent range. Moreover, the same behavior is
repeated in the test phase, with the difference that the error
percentage has decreased. For SVAO, even though the pre-
diction error went up to 14% in the training phase, they can
be called outliers, and most of the errors were below 10%.

Also, the errors were obtained below 5% by improving the
performance in the test phase of the corresponding model.
Finally, for SVBW in the training phase, the dispersion of
errors has gone up to 12%, although almost 75% of the errors
were below 10%. On the other hand, SVBW has observed a
weakening performance in the test where the dispersion and
increase of errors are evident. Generally, the most desirable
performance and the least error were related to SVDA in both
phases.

4 Conclusion

In recent years, many experimental studies have been con-
ducted to study ultra-high-performance concrete (UHPC).
Regardless, the relationship between mixture variables and
the engineering properties of UHPC is highly challenging
and non-linear to design employing a conventional statisti-
cal approach. A robust and sophisticated method is needed
to rationalize the variety of relevant experimental data avail-
able for creating estimative methods of reasonable accuracy
and provide insight into aspects of non-linear materials sci-
ence. Machine learning (ML) is a potent strategy that can
reveal underlying patterns in complex datasets. Therefore,
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Fig. 8 The error percentage of
developed models

Fig. 9 The error percentage based on violin with stick plot for presented
models

this study seeks to use state-of-the-artML techniques consist-
ing of support vector regression (SVR) to estimate the UHPC
compressive strength (CS) utilizing a comprehensive pub-
lished literature observed dataset containing 165 experiment
samples and eight input characteristics. In addition, three
meta-heuristic algorithms have been used to enhance the per-
formance of the related model, which include the Dynamic
Arithmetic Optimization Algorithm (DAOA), Arithmetic

Optimization Algorithm (AOA), and Black Widow Opti-
mization (BWO). The results of the developed hybridmodels
were as follows:

• In RMSE, SVDA and SVAO have obtained the best values
in the training and testing phases, respectively, so they have
a difference of almost 41% with SVBW.

• For R2, the highest value was equal to 0.99 MPa, which
belonged to SVDA, so it had a very small difference with
SVAO and a difference of 2% with SVBW.

• The lowest value in MAPE � 1.35 MPa was associated
with SVDA,which. obtained a variance of. 27 to 90 percent
within SVAO and. SVBW, alternatively.

• In. MDAPE and other metrics, SVDA obtained the most
appropriate value, with a. variance of. 71% with SVAO
and 51% with SVBW.

• Finally, for WAPE, the SVDA could obtain the lowest
value equal to 0.0135 MPa, with a difference of 23% and
46% by SVAO and SVBW, respectively.
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