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Abstract
The new Kudryashov approach, with the help of symbolic calculations, has been used to obtain solitary wave solutions of
the Calogero–Degasperis (CD) and potential Kadomtsev–Petviashvili (pKP) equations in this paper. These equations arise
in a number of scientific models, including astrophysics, plasma physics, fluid mechanics, chemical chemistry, solid-state
physics, chemical kinematics, optical fiber, and geochemistry. A number of new solitary wave (SW) solutions to these two
equations are observed for the first time. We believe that this approach is one of the most efficient schemes for obtaining
new SW solutions of nonlinear evolution equations (NLEEs). NLEEs arising in nonlinear sciences play an important role in
understanding the nonlinear phenomenon. Solitons consist of huge applications in physics, communication systems, optical
science, applied mathematics, and engineering problems. They are generally used to emphasize the motion of separated
waves. In recent years, it has been a very interesting topic to discuss the SW solutions of NLEEs.

Keywords Calogero–Degasperis equation · Potential Kadomtsev–Petviashvili equation · Solitary wave solution ·
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1 Introduction

Many phenomena in nature are often demonstrated by non-
linear evolution equations (NEEs), such as plasma physics,
electromagnetic theory, solid-state physics, chemical kinet-
ics, fluid dynamics, and mathematical biology. Suppose we
want to understand better the physical mechanism of the
natural phenomenon described by NEEs. In that case, we
must look for solitary wave (SW) solutions to the NEEs,
so techniques for extracting SW solutions to the governing
equations must be developed. Examining SW solutions to
solve NEEs has become one of the most important con-
cerns of scientists in various sciences. In recent decades,
there have been many powerful techniques for obtaining SW
solutions for NEEs. For example, the new extended direct
algebraic technique (Vahidi et al. 2021), the generalized
exponential rational function technique (Ismael et al. 2021),
the Adomian decomposition technique (Sunthrayuth et al.
2021), the singular manifold technique (Saleh et al. 2021),
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the generalized (G’/G)-expansion technique (Li and Han
2020), the sine–cosine technique (Abdelrahman et al. 2020),
the simplified Hirota’s technique (Ismael et al. 2021), the
homogeneous balance technique (Fan 2000), the variational
iteration approach (He 1999), the modified Sardar Sub-
equation technique (Saliou et al. 2021), the Jacobi elliptic
function technique (Kudryashov 1919), the simplest equation
technique (Kudryashov 2005) and exp-function technique
(Navickas et al. 2010), etc. (Kumar et al. 2017; Kumar et al.
2021; Khatri et al. 2019, 2020; Fatema et al. 2022; Ekramul
and Ali Akbar 2021; Chu et al. 2021; Yiasir Arafat et al.
2023; Fatema et al. 2022; Arafat et al. 2022; Odabaşı 2021;
Jafari et al. 2012).

In this work, by means of the new Kudryashov approach,
we will get some SW solutions of the following CD and
the pKP equations given in Yusufoglu and Bekir (2007) and
Kumar et al. (2021):

vxt − 4vxvxx − 2vyvxx + vxxxy � 0, (1)

and

vxt +
3

2
vxvxx +

1

4
vxxx +

3

4
vyy � 0, (2)
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respectively. Equation (1) was to describe the (2 + 1)-
dimensional interaction of a Riemann wave propagating
along the y-axis with a long wave along the x-axis, first
developed by Degasperis and Calogero (1976). Equation (2)
can be used to describe the dynamics of small, small but
limited two-dimensional waves in various fields of research,
which is the generalized (2 + 1)-dimensional equation of
Korteweg-de Vries (KdV) (Gao and Zhang 2020). In addi-
tion, these equations arises in number of scientific models
including astrophysics, fluid mechanics, chemical kinemat-
ics, solid-state physics, plasma physics, chemical chemistry
and optical fiber (Jumarie 2006; Jafari and Tajadodi 2010;
Biswas and Ranasinghe 2010; Ghorbani and Saberi-Nadjafi
2007).

2 The new Kudryashov approach

The purpose of this section is to explain the use of the new
Kudryashov approach (Mirhosseini-Alizamini et al. 2021) to
solve nonlinear evolution equations. Suppose a nonlinear EE
for v(x , y, t), in the form

F(v, vt , vx , vy , vxt , vxx . . .) � 0. (3)

The transformation

v(x , y, t) � V (ς ), ς � x + y − λt , (4)

reduces (3) to the ODE

G(V , V ′, V ′′, V ′′′, . . .) � 0, (5)

whereλ is constant. Assume that in terms ofℵ(ς ) the solution
to ODE (5) is as follows:

V (ς ) �
κ∑

ι�1

βιℵι(ς ), βκ �� 0, (6)

where ℵ(ς ) satisfies the first-order ODE in the form

(7)

(ℵ′(ς )
)2 � (σ (ln�)ℵ(ς ))2

(
1 − 4abℵ2(ς )

)
,

� > 0, and � �� 1,

where βι(0 ≤ ι ≤ κ), a, b and σ are constants. The solutions
of Eq. (7) is

ℵ(ς ) � 1

a�σς + b�−σς
. (8)

Substitute Eq. (6) into Eq. (5). Consequently, we get a
polynomial of this substitution. In this polynomial, we gather
all terms of the same powers and equate them to zero.

This leads to a system of algebraic equations that can be
solved by Maple software and gives us unknown parameters
β0, β1, . . . , βκλ; as a result, we get the SW solutions of Eqs.
(1) and (2).

3 The CD equation

To find the SW solutions of Eq. (1), transformations (4) are
written as ODE as follows:

−λV ′′ − 4V ′V ′′ − 2V ′V ′′ + V ′′′′ � 0. (9)

Integrating (9) once, we obtain

−λV ′ − 3(V ′)2 + V ′′′ � 0. (10)

If we catch the transformation ℘ � V ′, then (11) can be
written as follows:

−λ℘ − 3℘2 + ℘′′ � 0. (11)

Balancing the terms ℘2 and ℘′′, we get 2κ � κ + 2 ⇒
κ � 2. By substituting κ � 2 into (6), we get

℘(ς ) � β0 + β1ℵ(ς ) + β2ℵ2(ς ). (12)

A set of algebraic equations for β0, β1, β2 and a, b, σ , λ

is obtained by replacing (12) in Eq. (11). These systems are
found as

ℵ0 : −λβ0 − 3β2
0 � 0,

ℵ1 : −λβ1 − 6β0β1 + σ 2β1 ln
2(�) � 0,

ℵ2 : −λβ2 − 6β0β2 − 3β2
1 + 4σ 2β2 ln

2(�) � 0,

ℵ3 : −6β1β2 − 8σ 2β1ab ln
2(�) � 0,

ℵ4 : −3β2
2 − 24σ 2β2ab ln

2(�) � 0. (13)

In solving the above algebraic system using Maple, the
following sets are obtained.

Set I.

β0 � 0, β1 � 0, β2 � −8σ 2ab ln2(�), λ � 4σ 2 ln2(�). (14)

Set II.

β0 � 4

3
σ 2 ln2(�), β1 � 0,

β2 � −8σ 2ab ln2(�), λ � −4σ 2 ln2(�). (15)
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From Eqs. (12) and (14), we get the following SW solu-
tions:

℘1(ς ) � −2ab

(
2σ ln(�)

a�σς + b�−σς

)2

. (16)

Integrating Eq. (16) once, we will obtain

V1(ς ) � 4bσ ln(�)

a�2σ ς + b
, (17)

or

v1(x , y, t) � 4bσ ln(�)

a�2σ
(
x+y−4σ 2 ln2(�)t

)
+ b

. (18)

From Eqs. (12) and (15), we get the following SW solu-
tions:

℘2(ς ) � 4

3
σ 2 ln2(�) − 2ab

(
2σ ln(�)

a�σς + b�−σς

)2

. (19)

Integrating Eq. (19) once, we will obtain

V2(ς ) � 4

3
σ 2ς ln2(�) − 4bσ ln(�)

a�2σ ς + b
, (20)

or

v2(x , y, t) � 4

3
σ 2

(
x + y + 4σ 2 ln2(�)t

)
ln2(�)

+
4bσ ln(�)

a�2σ
(
x+y+4σ 2 ln2(�)t

)
+ b

. (21)

Kink-shaped soliton of Eq. (1) for σ � 2, a � 0.2, b �
0.5, y � 0.5, � � 2.6, within the interval −5 ≤ x , t ≤ 5,
the top left figure shows the 3Dplot, the top right figure shows
contour plot, the bottom left figure shows the 2D plot and the
bottom right figure shows polar coordinates for t � 0, 0.3,
0.6 (Fig. 1).

4 The pKP equation

To find the SW solutions of Eq. (2), transformations (4) are
written as ODE as follows:

(
3

4
− λ

)
V ′′ + 3

2
V ′V ′′ + 1

4
V ′′′′ � 0. (22)

Integrating (22) once, we obtain

(
3

4
− λ

)
V ′ + 3

2

(
V ′)2 + 1

4
V ′′′ � 0. (23)

If we catch the transformation ℘ � V ′, then (23) can be
written as follows:
(
3

4
− λ

)
℘ +

3

2
℘2 +

1

4
℘′′ � 0. (24)

Balancing the terms ℘2 and ℘′′, we get 2κ � κ + 2 ⇒
κ � 2. By substituting κ � 2 into (6), we get

℘(ς ) � β0 + β1ℵ(ς ) + β2ℵ2(ς ). (25)

A set of algebraic equations for β0, β1, β2 and a, b, σ , λ

is obtained by replacing (25) in Eq. (24). These systems are
found as

ℵ0 :
3

4
β0 − λβ0 +

3

4
β2
0 � 0,

ℵ1 :
3

4
β1 − λβ1 +

3

2
β0β1 +

1

4
σ 2β1 ln

2(�) � 0,

ℵ2 :
3

4
β2 − λβ2 +

3

2
β0β2 +

3

4
β2
1 + σ 2β2 ln

2(�) � 0,

ℵ3 :
3

2
β1β2 − 2σ 2β1ab ln

2(�) � 0,

ℵ4 :
3

4
β2
2 − 6σ 2β2ab ln

2(�) � 0.

(26)

In solving the above algebraic system using Maple, the
following sets are obtained.

Set I.

β0 � 0, β1 � 0, β2 � 8σ 2ab ln2(�), λ � 3

4
+ σ 2 ln2(�).

(27)

Set II.

β0 � −4

3
σ 2 ln2(�), β1 � 0, β2 � 8σ 2ab ln2(�),

λ � 3

4
− σ 2 ln2(�). (28)

From Eqs. (25) and (27), we get the following SW solu-
tions:

℘1(ς ) � 2ab

(
2σ ln(�)

a�σς + b�−σς

)2

. (29)

Integrating Eq. (29) once, we will obtain

V1(ς ) � − 4bσ ln(�)

a�2σ ς + b
, (30)

or

v1(x , y, t) � − 4bσ ln(�)

a�
2σ

(
x+y−

(
3
4 +σ 2 ln2(�)

)
t
)

+ b

. (31)
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tolpruotnoC)I(tolpD3)I(

setanidrooCralop)IV(tolpD2)III(

I

Fig. 1 I 3D plot, II Contour plot, III 2D plot and IV polar coordinates of Eq. (18) when σ � 2, a � 0.2, b � 0.5, and y � 0.5, with � � 2.6

From Eqs. (25) and (28), we get the following SW solu-
tions:

℘2(ς ) � −4

3
σ 2 ln2(�) + 2ab

(
2σ ln(�)

a�σς + b�−σς

)2

. (32)

Integrating Eq. (32) once, we will obtain

V2(ς ) � −4

3
σ 2ς ln2(�) − 4bσ ln(�)

a�2σ ς + b
, (33)

or

v2(x , y, t) � −4

3
σ 2

(
x + y −

(
3

4
− σ 2 ln2(�)

)
t

)
ln2(�)

− 4bσ ln(�)

a�
2σ

(
x+y−

(
3
4−σ 2 ln2(�)

)
t
)

+ b

.

(34)

Singular Kink soliton of Eq. (2) for σ � 2, a � 0.5,
b � 0.75, y � 1, � � e, within the interval −5 ≤ x ,
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tolpruotnoC)II(tolpD3)I(

setanidrooCralop)IV(tolpD2)III(

Fig. 2 I 3D plot, II contour plot, III 2D plot and IV polar coordinates of Eq. (34) when σ � 2, a � 0.5, b � 0.75, and y � 1, with � � e

t ≤ 5, the top left figure shows the 3D plot, the top right
figure shows contour plot, the bottom left figure shows the
2D plot and the bottom right figure shows polar coordinates
for t � 0, 0.3, 0.6 (Fig. 2).

5 Conclusions

In this paper, we obtain the new SW solutions of the CD
and pKP equations using the new Kudryashov approach and
with the help of symbolic calculations. It is worthwhile to

mention that this approach is effective and reliable in solving
NLEEs. The applied approach will be used in further works
to establish more entirely new SW solutions for other kinds
of NLEEs.
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