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Abstract
This study examines the optimization of double-curved sandwich panels containing composite layers and magnetorheological
(MR) fluid cores to determine the optimal parameters that influence free vibration. The bee optimization algorithmwas applied
to minimize the mass and maximize the first modal loss factor. Additionally, the improved high-order theory (IHOT) and
extended Hamilton’s principle were applied for the first time to extract the motion equations of the panel. The layers and
core thickness, the fibers angle, and magnetic intensity have been assumed to be optimization parameters. For the first time,
the technique for order of preference by similarity to ideal solution (TOPSIS) technique has been applied to obtained the
optimal design points from a set of optimal points. This indicates that in a similar situation regarding dimensions and mass,
doubly-curved panels exhibit a greater modal loss factor than single-curved panels. The results of the bee and particle swarm
optimization algorithms demonstrate that the bee algorithm provides the modal and mass loss factors 50% and 30% better
than the particle swarm algorithm, respectively. As a result, this method is highly recommended for analyzing such issues.

Keywords Optimization · Sandwich panel · Loss factor · Bee colony algorithm · Pareto front

1 Introduction

Composite structures and panels are modern structures pos-
sessing a considerably high strength-to-weight ratio due to
their unique properties (Pekbey et al. 2012; Maleki and Toy-
gar 2019; Hoseinzadeh et al. 2023; Maleki et al. 2022; Niu
et al. 2022; Li et al. 2022). In general, low weight, resistance
to a specific load, and multi-purpose ability have increased
the usageof these panels (Vinyas 2020).A sandwich structure
comprises two thin yet strong layers that coat a flexible, soft,
and moderately thick core. The layers are frequently made
of thin and strong metal or multi-layered panels. The core
of these structures is typically composed of light polymers,
foams, or honeycomb structures (Makweche and Dundu
2022; San Ha and Lu 2020; Khosravi 2022; Toygar et al.
2019).

Overall, fluidswhose characteristics changewith the alter-
ation of the magnetic field are called magnetorheological
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fluids. These materials are widely utilized to control struc-
tures owing to their swift time response (Kolekar et al.
2019). Moreover, there is a significant change in the hard-
ness and loss properties of these fluids. Also, these fluids are
ideal for controlling large-amplitude vibrations (Nagiredla
et al. 2022; Joladarashi et al. 2022; Momeni and Zabihol-
lah 2023). Among the recent studies on MR fluid is the
work of Selvaraj et al. (Selvaraj et al. 2023). They investi-
gated the optimum placement of the MR layers to maximize
the loss factor of a sandwich beam. In addition, Lotfan
et al. (2021) have introduced a general framework for the
formulation and calculations of the dynamic analysis of
the shell and the multilayered doubly-curve sheet with a
medium thickness. Optimizing is an important and decisive
part of the structural design process. Optimizing methods
allows designers to produce better designs and save time and
money. Boddeti et al. (2020) analyzed the optimal design
with discrete variables stiffness of sandwich sheets. Gao et al.
(2019) also optimized corrugated-core sandwich panels by
minimizing two objective functions, including weight and
structure deviation. Cai et al. (2021) examined a general
procedure for optimizing sandwich sheets to minimize the
impacts of explosive loading. Ly et al. (2022a) developed a
neural network-nondominated sorting genetic algorithm II
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approach to optimize laminated carbon nanotube-reinforced
composite quadrilateral panels.

Using magneto-electro-elastic panels combined with
active damping, Nguyen-Thoi et al. (2022) examined vibra-
tion analysis and optimal control. Their study examines the
influence of porous distribution and boundary conditions on
the dynamic response of the plate as well as the optimal
control solution. For hybrid damping vibration control of
laminated composite plates, Ly et al. (2022b) utilized the
zig-zag theory. The influence of magnetic field and materi-
als on the vibrations of MR-laminated beams was studied
by Ly et al. (2022c) and Momeni and Zabihollah (2023).
To construct the sandwich MR-laminated beam, materials,
including carbon fiber, E-glass, and Kevlar, have been used
as base materials. For different boundary conditions of MR
fluid sandwich beams, Nagiredla et al. (2023) determined
the influence of magnetic field strength, length, and thick-
ness on loss factor, deflection, and frequencies. Sharif et al.
(2022) manufactured and experimentally analyzed beams
with ametal face plate and an elastomer in a honeycomb core.
Based on the results of the experiment, it was established
that frequencies, amplitudes, and damping ratios of panels
with MR honeycomb cores shifted with an increase in an
induced magnetic field. Under high-temperature conditions,
MirzavandBorojeni et al. (2022) investigated the influence of
magnetoelastic load and temperature on the dynamics of an
elastomer beam. Based on elastic foundations and corrugated
composite sandwich plates filled with MR elastomer, Zhao
et al. (2023) investigated their dynamic behavior. A com-
parison of numerical results indicates that the performance
of the structure is improved when the magnetic field inten-
sity, boundary stiffness, and elastic foundation are increased.
Based on the study by Zheng et al. (2023), predictions of
nth-order derivatives of dynamics and loss factors for a shell
composed of an MR core and composite face layers. Sahu
et al. (2022) investigated the dynamics of the MR sandwich
plate and found increasingmodal loss factors and frequencies
when the magnetic field is applied.

Themain objective of this work is to obtain optimal values
of effective parameters on the free vibrations of the panel for
single- and multi-objective optimization of doubly-curved
panels with laminated faces and MR core to minimize the
mass and maximize the loss factor by the bee algorithm.
Sandwich panel studies in this research have simple sup-
port conditions. Using the high-order theory of sandwich
panels for the first time, the equations of motion govern-
ing the doubly-curved sandwich panel with MR core and
Hamilton’s principle were extracted to determine the objec-
tive optimization functions for the system based on the IHOT
of sandwich panels. Following the extraction of the equa-
tions of motion that govern the system, comparing them to
similar results, and ensuring that the extracted equations are
correct and reliable, a single-objective and multi-objective

Fig. 1 Doubly-curved sandwich panel geometry with composite layers
and MR core

optimization of the panel has been performed utilizing this
valid model. As a next step, the layer thickness, the thickness
of the core, the fiber angle, and the magnetic field inten-
sitywere considered optimization variables. Single-objective
optimization involves finding the intensity of the magnetic
field and the optimal thickness for the layers to improve the
panel’s vibrations. Furthermore, minimizing the sheet’smass
is considered in multi-objective optimization in addition to
the vibration behavior criterion.

2 Formulation

Considering that the face layers thickness is usually thin,
therefore the theory of first-order shear deformation theory
will be accurate. On the other hand, due to the greater thick-
ness of the core, it is better to use high-order theories. Based
on this, in the present research, to improve the accuracy of
themathematicalmodel, surface layers aremodeled using the
FSDT, and the thick core ismodeled using the high-order the-
ory. The IHOT of the sandwich panel was utilized to obtain
the motion equations of the system. Based on this theory,
the FSDT theory has been used for the layers’ composite
panel. Furthermore, for the core, the polynomial expression
of the displacements based on the displacements of the high-
order model presented by Frostig et al. (Frostig and Thomsen
2004) is used. Subsequently, using the minimum potential
energy principle, governing equations have been extracted.
The geometry of a doubly-curved sandwich panel with MR
core and composite (laminated) layers is shown in Fig. 1.
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Based on FSDT, v, u, and w displacements of layers in the y,
x, and z directions, assuming linear displacements, are as:

ui (x , y, z, t) � ui0(x , y, t) + zψx (x , y, t)

vi (x , y, z, t) � vi0(x , y, t) + zψy(x , y, t)

wi (x , y, z, t) � wi
0(x , y, t), i � T , B

(1)

where t represents time, ψx is the normal rotation com-
ponents around the x axes, and ψy is the normal rotation
components around the y axes. ui0،v

i
0 and wi

0 are displace-
ments in the direction of the x- and y-axes and the vertical
deformation of the layers. T and B represent the top and bot-
tom surfaces of the panel, respectively.

Based on the Frostig model (Frostig and Thomsen 2004),
displacement for the core are as:

(2)

uc (x , y, z, t) �
(
1 +

z

Rx

)
uc0 (x , y, t) + z3cu

c
3 (x , y, t)

+ z2cu
c
2 (x , y, t) + zcu

c
1 (x , y, t)

(3)

vc (x , y, z, t) �
(
1 +

z

Ry

)
vc0 (x , y, t) + z3cv

c
3 (x , y, t)

+ z2cv
c
2 (x , y, t) + zcv

c
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wc (x , y, z, t)� z2cw
c
2 (x , y, t)+zcw

c
1 (x , y, t)+wc

0 (x , y, t)

(4)

where uck and vck stand in-plane displacements andwc
k (k � 0,

1, 2) is the vertical displacements. Rx and Ry represent the
curvature of the panel in the y- and x- plane, respectively. This
research assumes that the layers are ideally attached to the
core. As a result, all of the upper layer and the core displace-
ment components are equal at the interface. So, assuming
full bending among the layers and the core, the compatibility
equation in the bottom and top connection of layers and core
is obtained as:

(5)

uc (z � zc) � ui0 +
1

2
(−1)k hiψ

i
x

vc (z � zc) � vi0 +
1

2
(−1)k hiψ

i
y

wc (z � zc) � wi
0

where hi is the thickness of the ith layer.
MR has linear viscoelastic properties before yielding, so

its shear modulus is mixed and depends on its magnetic
field intensity. In this research, the relationship proposed
for the connection between MR magnetic field intensity and
mixed shearmodulus is employed (Srinivasa et al. 2020). The
mixed shear modulus for viscoelastic materials is defined as

(Rajamohan et al. 2010):

Q � Q′ + i Q′′ (6)

where Q′ and Q′′ represent storage modulus and loss modu-
lus, respectively, and for MR, it is a polynomial function of
the intensity of the magnetic field B as:

Q′ � −3.3691B2 + 4.9675 × 103B + 0.873 × 106 (7)

Q′′ � −0.9B2 + 0.8134 × 103B + 0.1865 × 106 (8)

Finally, by replacing the displacement fields and also the
relations of the layers’ stress in the relations of the poten-
tial and kinetic energy variation using Hamilton’s principle
(Fallah and Arab Maleki 2021; Pourreza et al. 2022, 2021;
Nasrabadi et al. 2022) and the basic principle of the calcu-
lus of variations, the motion equations for the doubly-curved
sandwich panel with the MR core are acquired. Therefore,
after some algebraic manipulation, the motion equations
obtained as:

(9)
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(12)
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in which Nyy
j, Nxx

j and Nxy
j remain stress resultants in

the transverse and longitudinal directions, and the in-plane
shear stress resultant; Myy

j, Mxx
j and Mxy

j stand bending
moment in transverse and longitudinal directions and the tor-
sionmoment, respectively. These parameters are obtained as:

⎡
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It can be observed that the following answers can meet the
simple support boundary conditions.

(15)
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,

αm � mπ

Lx
, βn � nπ

Ly

where m and n are the wave numbers. Substituting Eq. (15)
in the motion equations of and then using the weighted resid-
ual method, and Galerkin method (Maleki and Mohammadi
2017; Rezaee and Maleki 2015; Rezaee and Arab Maleki
2019), the governing equations are obtained as a system of
coupled ODE as:

[M]
{
d̈
}
+ [K]{d} � {0} (16)

where {d} � {U j
0mn , V j

0mn , W j
0mn , ψ

j
xmn , ψ

j
ymn , Uc

0mn ,
V c
0mn , W

c
0mn}T . Instead of a set of differential equations,

Eq. (16) produces a set of homogeneous algebraic equations.
As a result, PDEs are substituted by an eigenvalue prob-
lem, stiffness and mass matrix, in which eigenvalue equals
the square of eigenfrequency, and eigenvectors are the series
constants for each m and n. Consequently, the last two equa-
tions of motion, which describe the compatibility conditions

in the longitudinal and transverse directions at the lower
face–core interface, do not contain any inertial terms. So,
the stiffness matrix can be reduced to the same dimension
as the mass matrix by a factor of 6. Therefore, for specified
values of m and n, the eigenvalue problem yields only six
eigenfrequencies. Eventually, supposing free vibrations, and
also considering that the MR shear modulus is mixed and is
in terms of the magnetic field intensity, an eigenvalue prob-
lem with complex eigenvalues will be acquired from which
the system frequencies,ω, and the loss factor, η, for different
vibration modes, can be obtained as:

ω �
√
Re

(
ω2

)
, η � Im

(
ω2

)
Re

(
ω2

) (17)

3 Optimization

The bee optimization algorithm is a collective intelligent
search algorithm for solving optimization problems initially
developed in 2006 (Pham et al. 2006). This algorithm simu-
lates the behavior of bee groups searching for food in nature.
This algorithm can optimize single or multi-objective prob-
lems. The special features of this method make it impossible
to consider it a simple, random, and conventional searcher
or nature imitation without any reason. The flow chart of
the main stages of the bee algorithm is summarized in Fig. 2.
The sources (Kamaruddin and Abd Latif 2019) provide more
details about this algorithm. This algorithm depends on sev-
eral parameters the user must specify before starting the
algorithm (Table 1).

The objective function in this research is the loss factor
( f (X) � η) for the single-objective mode and the modal
loss factor and the weight ( f (X) � η, m(X)) for the two-
objective mode. The design parameters include the magnetic
field intensity (B), the fibers angles, the composite layers’
thickness, and the core’s thickness. The loss factor is a func-
tion of layers and core thickness, the angles of the fibers,
and the magnetic field intensity. The structure’s mass is
also affected by the thickness and density of layers and
core. Therefore, the following relationships represent the
mathematical expression of design variables and objective
functions:

Modal loss factor � f (θt1, θt2, θt3, ht , hc, B) (18)

mass � f (ht , hc, ρt , ρc) (19)

The range of changes related to the thickness (thickness
of the whole panel) is consistently between 2 and 10 mm.

The angles of the fibers can also be changed between -
90 and + 90 degrees with a value of 2 degrees discretely.
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Fig. 2 The proposed flowchart for the basic bee algorithm

Table 1 Parameters in the bee algorithm

Parameter Definition

n Number of the Scout bee

m Number of groups, excluding the random group

i Group index

j Input variable index

Ngh Radius vector of the neighborhood

Ngh(i) Radius vector of the neighborhood

The intensity of the magnetic field can also vary between 0
and 500 gausses with an increase of 10 G. discretely. For
multi-objective optimization, the population size used in the
proposed method and particle swarm optimization algorithm
is 150.

4 Results

The aim of this section is to associate the numerical results
obtained in this study with those obtained in other studies
of a similar nature. According to Table 2, the results of the
present research using the IHOT of sandwich panels have
been matched with those obtained via the high-order theory
of sandwich panels (Biglari and Jafari 2010). Similarly, in

Table 2 Values of natural frequencies for the sandwich panel

Natural
frequency (Hz)

Present
method

Ref. Biglari and
Jafari (2010)

Error
(%)

First 14.42 14.59 1.17

Second 25.69 26.86 4.36

Third 27.09 27.35 0.95

Fourth 35.16 35.54 1.07

Table 3 Optimum values for the sandwich panel with MR core

Parameter Present
method

Ref. Asgari
(2010)

Error
(%)

hl (mm) 0.19 0.20 5.00

hc (mm) 1.89 2.00 5.50

m (kg) 0.449 0.484 7.23

Modal damping
ratio

0.125409 0.13722 8.61

Table 3, the optimization results obtained from this research
using the bee algorithm method are compared with those
acquired from particle swarm (Asgari 2010) and genetic
algorithms. Table 2 demonstrates a respectable agreement
between the results, which indicates the certainty and accu-
racy of the equations extracted in the present research. The
lack of complete compatibility is due to the difference in
the solution method. In addition, in the high-order theory of
sandwich panels, the classical theory of multi-layered panels
is used for the layers, and the vertical and transverse shear
strains of the layers are omitted. In Table 3, the energy loss
factor was compared with the existing results of ref. (Asgari
2010). The results show that the accuracy of the current study
is around 8%, and one of the factors of this error is related to
the different theories used and the solution method.

Subsequently, two single-objective and two-objective
optimization problems have been investigated.

4.1 Maximization of the first loss factor
of the sandwich panel considering themass
constraint

In this example, a symmetrical doubly-curved composite
panel with composite layers consisting of three layers with
a thickness equal to hl and an MR core with a thickness of
hc is designed to maximize the loss factor by considering the
mass constraint. Themaximumweight of the panel is consid-
ered 500 g. This problem is also solved by the bee algorithm,
and Fig. 3 illustrates the most optimal values of the modal
loss factor in terms of generations. As shown in Fig. 3, from
generation 45 onwards, the optimal value of the objective
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Fig. 3 Convergence diagram of a modal mass factor in terms of gener-
ations for the single-objective mode of doubly-curved sandwich panel

Fig. 4 The average distance in each generation in the single-objective
mode of the doubly-curved sandwich panel

function has not changed. In other words, convergence has
begun, and the average and best points have coincided. And
finally, it has reached an end in the 55th generation of the
algorithm. Figure 4 illustrates the average distance between
generations. The distance is greater in the first generations
and decreases as we approach the last generations. Finally,
the optimal values for the variables and the objective function
for this problem are presented in Table 4.

4.2 Optimization of the doubly-curved sandwich
panel for maximummodal loss factor
andminimummass

In this case, the aim is to obtain optimal solutions of thePareto
front for the maximum loss factor and the minimummass for

Table 4 Optimal parameters and the objective function for a single-
objective mode of the doubly-curved panel

Parameters and objective function Value

hl (mm) 0.423

hc (mm) 1.982

θt1 � θb3 −69°

θt2 � θb2 24°

θt3 � θb1 60°

B (G) 0.859

m (kg) 0.429

Modal loss factor 0.152348

Fig. 5 Convergence diagram of structural mass and modal loss factor
in the two-objective mode of doubly-curved sandwich panel

the doubly-curved sandwich panel. The design parameters,
like the previous problems, include magnetic field inten-
sity, fiber angles, the thickness of composite layers, and core
thickness. Figure 5 shows the average distance between indi-
viduals in each generation. In this case, as can be observed,
the distance is greater in the first generations and decreases
as we approach the last generations. Figure 6 depicts the
Pareto front. As mentioned earlier, it is observable that the
optimal solutions are obtained as a set of points that form a
front. One can choose among the optimal answers based on
the need since none of the answers is optimal in the absolute
sense.

In this problem, the TOPSIS method has been utilized to
select a design point among the Pareto front points (Shih and
Olson 2022). Based on this, point number 10 was selected
as the design point, and the optimal values of the parameters
and the objective function at this point are provided in Table
5. Figure 7 shows the convergence diagram.Also, the conver-
gence results of the proposedmethod, and the particle swarm
optimization algorithms are given for comparison. As can be
detected, the proposed algorithm achieved the optimal design
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Fig. 6 Pareto front for the two-objective mode of a doubly-curved sand-
wich panel

Table 5 Optimal values of parameters and objective function for two-
objective optimization

Parameters and objective
function

Proposed method Particle Swarm
Optimization

hl (mm) 0.408 0.412

hc (mm) 1.396 1.238

θt1 � θb3 −46° 85

θt2 � θb2 −32° 40

θt3 � θb1 80° −32

B (G) 3.56 4.15

m (kg) 0.1268 0.185

Modal loss factor 0.154468 0.102354

Computational time (s) 32.42 35.65

Fig. 7 Convergence diagram of modal loss factor of the proposed
method, and the particle swarm optimization

in less than 150 iterations. However, the computational time
needed to achieve the optimal results of the proposed method
is much less than that of particle swarm optimization.

5 Conclusion

Overall, in the current research, the thickness layers, angles
of the fibers, and the magnetic field intensity are deliber-
ated as optimization variables. Additionally, the maximum
modal loss factor in the single-objective mode and the max-
imum modal loss factor, and the minimum mass in the
dual-objectivemode (with the functions of themass objective
and themodal loss factor) for sandwich panel with composite
layers and MR core were analyzed. In the single-objective
mode, the optimal values have been acquired, and in the
multi-objective mode of the Pareto front, the optimal solu-
tions have been presented. Regarding the single-objective
mode, the results indicate the tendency of the structure to
have thin layers and a thick core, which appears correct and
feasible from a physical point of view, as MR fluid is placed
in the core and contributes significantly to the increase in
the modal loss factor. In the two-objective mode, the optimal
solutions are obtained as a set of points that form a front.
In fact, none of the resulting answers is optimal, and one of
these optimal answers can be chosen depending on the need.
Ultimately, in the case of the two-objective mode, TOPSIS
was utilized to select a design point from the points of the
Pareto front and to determine optimal values of parameters
and objective functions.

The proposed approach may be extended in future
research to identify optimal designs of curved sandwich pan-
els by taking dynamic failure mechanisms into consideration
in the optimization process. Moreover, further research will
be conducted to increase the strength of sandwich panels. The
proposed optimization algorithms still have a great deal of
potential for speeding up. Additionally, artificial intelligence
or machine learning methods may also play an important
role in optimizing the performance of doubly-curved sand-
wich panels. Further work should focus on these meaningful
topics.
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