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Abstract
High-performance concrete (HPC) is one of the concrete types with high strength, good performance, and high durability,
which has been considered in the structural industry. Testing and sampling this type of concrete to determine its mechanical
properties is daunting and complex. In addition, human and environmental factors were significant in the preparation of
samples, which was also time-consuming and energy-consuming. Artificial intelligence (AI) can be used to eliminate and
reduce these factors. This article intends to use the machine learning (ML) method to forecast one of the HPC mechanical
properties: compressive strength (CS). The experimental data set used from the published article includes 168 samples, of
which 70% (118) of the sample belonged to training and 30% (50) to the testing phase. Least square support vector regression
(LSSVR) is one of theMLmodels used for forecasting in this article. In addition, meta-heuristic algorithms have been utilized
to obtain the target to improve the accuracy and reduce the error. Algorithms include Honey Badger algorithm (HBA), COOT
optimization algorithm (COA), and generalized normal distribution optimization (GNDO). Combining the algorithms with
the introduced model forms a hybrid format evaluated by metrics in the training and testing phases. By evaluating the hybrid
models, it has been determined that they can forecast with high accuracy and are reliable. In general, the LSHB hybrid model
obtained the highest R2 and the lowest error compared to other models.

Keywords High-performance concrete · Compressive strength · Least square support vector regression · Honey Badger
algorithm · COOT optimization algorithm · Generalized normal distribution optimization

1 Introduction

High-performance concrete (HPC) is the material of a build-
ing defined as concrete that satisfies high durability, strength,
and workability (Aïtcin 1998). The American Concrete
Institute (ACI) identifies HPC with specific combinations
of uniformity and performance needs that are not always
routinely achievable, operating normal mixing, established
ingredients, placement, and curing practices (Russell 1999).
While normal concrete combines water, coarse and fine
aggregates, and Portland cement, HPC uses silica fume, fly
ash, and superplasticizer asmineral and chemical admixtures
(Bharatkumar et al. 2001; Lim et al. 2004). Using mineral
admixtures as partial cement substitutes increases concrete
behaviour via acting as pozzolanic materials and mineral
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admixtures. Conversely, chemical admixtures improve the
HPC compressive strength (CS) by decreasing the porosity
and water content within the hydrated cement paste (Larrard
and Malier 2018; Huang et al. 2022).

Compressive strength (CS) is an important mechanical
property, perhaps the most important quality of concrete,
and is usually achieved by measuring concrete samples after
standard curing for 28 days (Ni and Wang 2000). Therefore,
developing forecasting models for the early specification of
CS has received much attention. CS values can be fore-
casted using nonlinear and linear regression models for
conventional concrete. However, for HPC, the relationship
between input factors and CS is highly nonlinear; it gets
complicated as the number of input factors enhancements.
Therefore, regression models are improper for HPC’s esti-
mation of CS values. Hence, models according to artificial
intelligence (AI) are attracting attention (Benemaran and
Esmaeili-Falak 2020; Sarkhani Benemaran et al. 2022; Yin
et al. 2021;Cheng et al. 2022). Forecasting the nonlinear rela-
tionship between concrete composition and strength based
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on machine learning (ML) demands complete, large, consis-
tent data sets. However, data sets are often incomplete due
to missing data corresponding to various input characteris-
tics, making it difficult to develop robust ML-based forecast
models, so the availability of such data sets is critical. More-
over, as the complexity of these ML models improves, the
results become more difficult to interpret. Interpreting these
results is important for developing efficient material design
processes to improve material performance (Lyngdoh et al.
2022; Yaltaghian and Khiabani 2023; Masoumi et al. 2020).

Yeh (1998) suggested a new neural network architecture
and studied its efficiency and precision in modelling con-
crete CS. Sobhani et al. (2010) investigated some adaptive
neuro-fuzzy inference systems (ANFIS), artificial neural net-
works (ANN), and regression models for estimating 28-day
CS of concrete. They indicated that ANFIS and ANN could
estimate CS with satisfactory performance, but regression
models are unreliable. Prasad et al. (Prasad et al. 2009)
employed ANN for forecasting 28-day CS of normal, HPC,
and high-strength self-compacting concrete (SCC)with large
amounts offly ash.Alshihri et al. (Alshihri et al. 2009) studied
a method to forecast the CS of lightweight concrete (LWC)
utilizing backpropagation (BP) and cascade correlation (CC)
neural networks. Their identification demonstrated that the
ANN model was sufficient to forecast the LWC CS.

Topcu and Saridemir (2008) investigated a fuzzy logic
model with ANN to forecast 7-, 28-, and 90-day concrete
CS, including low- and high-lime fly ash. Their conclusions
indicated that fuzzy logic models and ANN are practical
models to forecast concrete CS. Chen et al. (2012) suggested
a hybrid for estimating CS of HPC by incorporating fast,
chaotic genetic algorithms in an evolutionary fuzzy sup-
port vector machine inference model (EFSIMT), weighted
support vector machines (SVM), and fuzzy logic for time
series data. They showed that the EFSIMTapproach obtained
higher performance goals compared to SVM. In addition,
they determined that SVM performed the worst compared
to ANN and EFSIMT. Zhang et al. (2020a) used the ran-
dom forest (RF) algorithm to calculate variable importance
in their study, and they imputed the data using kNN-10. In a
separate study, Nguyen et al. (2021) used XGBoost to gen-
erate feature importance for concrete tensile strength. Both
studies assessed feature importance by directly examining
the data or observing the decrease in model performance.
However, there has been no effort to integrate data interpre-
tation algorithmswithmachine learning (ML)-basedmodels.
Therefore, there is a need for a more efficient integration of a
robust data interpretation algorithm with ML-based models
for concrete strength prediction, to develop a powerful and
interpretable predictive tool.

The novelty of this article is to enhance the SVMmodel’s
accuracy in estimating the HPCCS. Despite themany advan-
tages of SVMs, the theory of SVMs only covers parameter

specification and kernel selection for specific values of reg-
ularization and kernel parameters. In addition, the existing
SVM method has a very complex algorithm and requires
much memory. This study proposed the least square support
vector regression (LSSVR) model, a lower calculation cost
conversion of the support vector regression (SVR) model.
Nevertheless, like SVR, the LSSVR’s effectiveness model
relies on kernel parameter settings and proper regularization,
which can be defined as optimization issues.

Moreover, the meta-heuristic algorithm has been com-
bined with LSSVR to improve the efficiency and accuracy of
forecasting CS and optimize the output. The algorithms are
included Honey Badger algorithm (HBA), COOT optimiza-
tion algorithm (COA), and generalized normal distribution
optimization (GNDO). The models were in hybrid form and
framework of LSSVR + HBA (LSHB), LSSVR + COA
(LSCO), and LSSVR + GNDO (LSGN). The hybrid models
have been evaluated with several indicators for choosing the
most suitable model. In addition, the models’ performance
compared via the experimental data set used from the pub-
lished article include 168 samples, of which 70% (118) of
the sample belonged to training and 30% (50) to the testing
phase.

2 Materials andmethodology

2.1 Data gathering

This study used the experimental data set published in Lam
et al. (1998). The main concrete variables are water, coarse
and fine aggregates and binders. In addition to these main
ingredients, other additives, such as fly ash (FA), micro-silica
(MS), and superplasticizer (SP), can be added to the mixture
to improve concrete properties. On the other side, it is clear
that the longer the time of the curing, the higher the CS.
Hence, considering to use all these components as inputs
for improving the completeness of the model. Eight com-
ponents were chosen as input components based on their
impact on CS forecasting using FA and MS in samples of
different ages. The input variables consisted of sample age
(age), superplasticizer to total binder ratio (SP/B), micro-
silica to total binder ratio (MS/B), fly ash to total binder ratio
(FA/B), water to total binder ratio (W/B), the ratio of coarse
aggregate to total binder (CA/B), coarse aggregate to the
total aggregate ratio (CA/TA), and total binder content (B),
which the output variable is CS. Tables 1 and 2 indicate 70%
(118) of training and 30% (50) of testing samples, respec-
tively. Furthermore, the minimum (min), standard deviation
(St. dev.), maximum (max), and average (avg) values of vari-
ables.
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Table 1 Statistical attributes of inputs and CS in the train phase

Indicators Variables

Input Targets

B (kg/m3) FA/B % MS/B % CA/B % CA/TA% SP/B% W/B % Age (day) CS (MPa)

Min 394 0 0 2.172 0.6 0.3 0 28 24

Max 500 0.55 0.110 2.906 0.679 0.5 2.6 180 107.8

Avg 429.62 0.247 0.032 2.658 0.634 0.410 1.05 78.50 65.09

St. dev 44.23 0.176 0.038 0.308 0.022 0.081 0.755 57.14 17.59

Table 2 Statistical attributes of inputs and CS in the test phase

Indicators Variables

Input Targets

B (kg/m3) FA/B % MS/B % CA/B % CA/TA% SP/B% W/B % Age (day) CS (MPa)

Min 394 0.15 0.090 2.906 0.615 0.3 1 28 46.5

Max 394 0.3 0.110 2.906 0.615 0.5 1 56 86.43

Avg 394 0.227 0.102 2.906 0.615 0.377 1 47.02 61.73

St. dev 0 0.053 0.008 4.5E-16 5.6E-16 0.080 0 13.19 8.42

2.2 Least square support vector regression (LSSVR)

The least squares support vector machine algorithm (LS-
SVM) is a refinement of the standard SVM, which is
computationally more computationally efficient than the
standard SVM by transforming the quadratic optimization
issues into a transformed, more linear system of equations.
Instead of solving the quadratic programming issues in stan-
dard SVM, the LS-SVM algorithm solves a linear set of
equations. LS-SVM is able to be utilized for both regression
and classification troubles. The present work uses LS-SVR to
predict theCSofHPC in regression form.Here is an overview
of LS-SVR:

Input xi (experimental variable) and output yi (forecasted
value: local precipitation). Based on the LS-SVR approach,
the nonlinear LS-SVR function is able to be presented in the
following equation:

f (x) � w
′
m + t (1)

here f represents the relationship between local precipitation
and experimental variables, and w is m-dimensional weight
vectors, m and t show mapping functions and bias terms,
alternatively (Kisi 2015).

The regression issue employing the function forecasting
error for the structure minimization principle can be pre-
sented in the following:

minG(w, r) � 1

2
w

′
w +

p

2

n∑

i�1

r2i (2)

It has the following limitations:

yi � w
′
m(xi ) + t + ri , i � 1, 2, . . . , n (3)

where ri represents the training error of xi and p is the penalty
term.

For solving for w and r , use Lagrange multiplier opti-
mal programming for solving Eq. (2). The objective function
can be defined by transforming the constrained issue into an
unconstrained one. The Lagrange function F is able to be
determined in the following equation:

F(w, t , r , a) � G(w, r) −
n∑

i�1

ai
{
w

′
m(xi ) + t + ri − yi

}

(4)
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Here ai is the multipliers’ Lagrange. Considering the
Karush–Kuhn–Tucker (KKT) condition, the partial results
of Eq. (5) for w, t , r , and a, alternatively are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w � ∑n
i�1 aim(xi )∑n

i�1 ai � 0
ai � pri

w
′
m(xi ) + t + ri − yi � 0

(5)

Then the linear equation can be derived after removing ri
and w in the following equation:

[
0 Y

′

Y Z Z
′
+ H

p

][
t
a

]
�

[
0
1

]
(6)

here Y � (y1, . . . , yn), Z �
(
m(x1)

′
y1, . . . , m(xn)

′
yn

)
,

H � (1, . . . , n), a � (a1, . . . , an).
The function of kernel C(x , xi ) � m(x1)

′
m(xi ), i �

1, . . . , n, satisfied with the condition of Mercer (Suykens
et al. 2002). Consequently, LS-SVR can be expressed in the
following equation:

f (x) �
n∑

i�1

aiC(x , xi ) + t (7)

2.3 Honey Badger algorithm (HBA)

TheHoney Badger algorithm (HBA)mimics the Honey Bad-
gers searching manner (Hashim et al. 2022). To find food
sources, honeyguide birds are sniffed and dug or followed
by honey badgers. The first case is named digging mode, and
the second is named honey mode. In the previous mode, it
utilizes scent capability to get closer to the location of prey.
Once there, it moves around its prey to choose a suitable spot
to dig and capture it. In the latter mode, honey badgers use
honeyguide bird guides for locating hives directly.

Initialize each location based on the badgers’ number (N)
and Eq. (8):

xi � lbi + r1 × (ubi − lbi ) (8)

where r1 shows a random number between 0 and 1, xi shows
the ith honey badger’s position associated with the candi-
date solution for the N population, and ubi and lbi show the
explore region’s upper and lower bounds, respectively.

The intensity was the distance between the honey badger
and the prey and prey concentration. Li shows the prey odour
severity. When the smell is powerful, the movement is fast
and vice versa, represented by the inverse square law (Kapner

et al. 2007) as given by the following equation:

Li � r2 × C

4πd2i
C � (xi − xi+1)

2

di � xprey − xi

(9)

Here r2 is the random number between 0 and 1, C shows
the strength of concentration, di is the distance between the
ith badger and the prey.

The factor of density (f ) manages the time-varying ran-
domness to provide a smooth transition from exploration to
exploitation. In addition, updating the factor of the density
(d), which reduces with repetition, to reduce the randomness
over time utilizing the following equation:

a � S × exp

( −t

tmax

)
(10)

where tmax is a maximum iteration number, and S shows a
constant ≥ 1 (default � 2).

Escaping from the local optimum step and the position
of agents’ phases are employed for exiting the optimal local
region. The presented algorithm operates an indicator (I) that
alterations the explore direction to take advantage of large
opportunities for agents to traverse the search space closely.

As previously mentioned, the HBA (xnew) location update
strategies are split into two parts, the "honey phase" and the
“digging phase”. Here is a suitable illustration.

A badger shows an action resembling the Cardioid shape
(Akopyan 2015) during the digging phase. Cardioid motion
can be simulated by the following equation:

(11)

xnew � xprey + I × b × L × xprey + I × r3 × a

× di × |cos(2πr4) × [1 − cos(2πr5)]|

here xprey shows the position of the prey; this is the finest
position found thus far—that is to say, the finest overall posi-
tion. b ≥ 1 (default � 6) is the capability of the badger to
get food, r3, r4, and r5 shows 3 various accidental numbers
among 0 and 1, and I acts as a explore direction change flag,
which is defined by the following equation:

I �
{
1 i f r6 ≤ 0.5
−1 else

(12)

A honey badger is highly dependent on the odour intensity
of its prey, the distance between the badger and the prey di
and the time-varying foraging influence factor a during the
digging phase. In addition, a badger can pick up on any F-
noise, allowing it to find its prey’s location even better during
foraging.
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If the honey badger follows the honey leader to attain the
hive, it is given by the following equation:

xnew � xprey + I × r7 × a × di (13)

where xnew refers to the new position of the honey badger
and xprey shows the position of the prey. I and a indicate
calculated employing Eqs. (12) and (10), alternatively. Based
on the distance information di , can observe how the badger
explores near the prey position xprey found so far in Eq. (13).
The exploration is subject to time-varying search behaviour.
Honey badgers can also find I obstacles. In addition, Algo-
rithm 1 has shown the pseudo-code of HBA (Hashim et al.
2022).

2.4 COOT optimization algorithm (COA)

Coots are small waterfowl belonging to the Rallidae family.
They form the genus Fulica, Latin for “coot” (Paillisson and
Marion 2001).

The algorithm starts with x � {x1, x2,…, xn} primary
random populations (Naruei and Keynia 2021). For deter-
mining target values V � {V1, V2, . . . , Vn}, the random
population is frequently assessed by the target function.
Furthermore, this is powered by a rules’ set that form the
optimization method’s core. Population-based optimization
methods search an optimal set of optimization issues, so it
is not guaranteed that a solution will be found in a single
pass. Thus, using sufficient optimization steps and random
solutions increases the likelihood of finding the global opti-
mum. The population is accidentally developed in visible
space according to the following equation:
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P(i) � r(1, d) × (ub − lb) + lb (14)

here P(i) shows the Coot’s position, lb, ub are the lower and
upper bound of exploring space, d is the dimensions of the
trouble.

In addition, we need to compute each solution’s fitness
utilizing the objective function Oi� f (x) after specifying the
location of each agent and producing the initial population.
Select several coots as the group leader. Leader selection is
random.

We have implemented the four motions of the Coot on the
water surface described in the earlier section.

To assume a random location based on Eq. (15) in the
explore space and move the Coot toward the accidental loca-
tion for achieving random motion.

G � r(1, d) × (ub − lb) + lb (15)

TheCoot’smovements explore various parts of the explore
space. This move will bring the algorithm out of the local
optimum if the algorithm is blocked in a local optimum. The
new position of Coot is calculated on the basis of the follow-
ing equation:

P(i) � P(i) + E × r × (G − P(i)) (16)

where r demonstrates a random number among 0 and 1, and
E is determined in the following equation:

E � 1 − T ×
(

1

MaxIter

)
(17)

whereMaxIter shows the maximum iteration, and T show the
present iteration.

Chainmovement can be implemented using the two coots’
average position. Another way to achieve chain motion is
to compute the distance vector among the two coots, then
move the Great Coot closer to the other by about half the
vector distance. Using the first method, Coot’s new position
is computed based on the following equation:

P(i) � 0.5 × (P(i − 1) + P(i)) (18)

here P(i − 1) shows the second Coot.

Sometimes, the remaining coots should control their loca-
tion according to the group’s leader and approach them, and
a few coots in the face of the group manage the group. The
idea is to control its location according to the leader. The
leader’s average location can be considered, and the Coot
can update its location according to this average location.
Assuming the average location leads to premature conver-
gence. For implementing the move, a can be chosen a leader
using the mechanism based on the following equation:

L � 1 + (nN ) (19)

where L indicates the index number of the leader, n shows
the present coot number, and N shows the number of leaders.

According to the leader’s location, the Coot must update
its position. The Coot’s next location according to chosen
leader can be computed in the following equation:

P(i) � l + 2 × r × cos(2πr1) × (l − P(i)) (20)

here P(i) shows the Coot’s present location, l shows the
location of chosen leader, and r1 indicates a random number
in the interval [− 1, 1].

The group needs to align itself toward the purpose, so the
leader needs to update his position toward the goals. Equa-
tion (21) recommends updating the leader’s location as the
equation searches the suitable locations around the present
suite spot. Leaders must pull away from their present optimal
location to find a suitable position. The equation delivers a
great way to get away from or near the optimal location.

l �
{
D × r × cos(2πr1) × (B − l) i f r < 0.5(a)
D × r × cos(2πr1) × (B − l) − B i f r ≥ 0.5(b)

}

(21)

Here B shows the finest location found so far, and D is
computed based on the following equation:

D � 1 − T ×
(

1

MaxIter

)
(22)

Moreover, the COA pseudo-code has been indicated in
Algorithm 2.
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2.5 Generalized Normal distribution optimization
(GNDO)

Generalized normal distribution optimization (GNDO)mim-
ics the normal distribution theory (Zhang et al. 2020b). The
normal distribution is a very important tool for explaining
natural phenomena called Gaussian distribution. The nor-
mal distribution can be determined by assuming a random

variable x follows a contingency distribution with position
parameter μ and scale parameter δ, whose contingency den-
sity function is able to be stated as

f (x) � 1√
2πδ

.exp

(
− (x − μ)2

2δ

)
(23)

where x shows a normal random variable and the distribu-
tion is normal, μ is the location parameter, and δ is the scale
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parameter used to determine the mean and standard variance
of the randomvariable, respectively. Local exploitation refers
to finding the finest solution in the exploration space that con-
tains everyone’s present location.Can construct a generalized
normal distributionmodel for optimization based on the rela-
tionship between the normal distribution and the distribution
of individuals in the population in the following equation:

vti � μi + δi × η, i � 1, 2, 3, . . . , N (24)

where vti denotes the ith individuals’ tracking vector at time
t, μi denotes the ith individual’s generalized mean position,
δi denotes the generalized standard variance, and η is the
penalty that shows the coefficient. Furthermore, μi , δi , and
η can be determined in the following:

μi � 1

3
(xti + xtbest + M) (25)

δi �
√
1

3
[(xti − μ)2 + (xtbest − μ)2 + (M − μ)2] (26)

η �
{√−log(λ1) × cos(2πλ2), i f a ≤ b√−log(λ1) × cos(2πλ2 + π), i f a > b

(27)

where a, b, λ1, and λ2 denote random numbers between 0
and 1, xtbest denotes the present finest position, andM denotes
the present population means position. In addition, M can be
computed in the following equation:

M �
∑N

i�1 x
t
i

N
(28)

Global exploration is searching language zones around
the world to find hopeful zones. The global scan on GNDO
assumes 3 accidentally elected persons, which can be
expressed as

vti � xti + β × (|λ3| × v1) + (1 − β) × (|λ4| × v2) (29)

where λ3 and λ4 denote two random numbers following a
standard normal distribution, β is a tuning parameter denot-
ing a random number between 0 and 1, and v1 and v2 denote
two tracking vectors. In addition, v1 and v2 can be computed
in the following:

v1 �
{
xti − xtp1, i f f

(
xti

)
< f

(
xtp1

)

xtp1 − xti , otherwise
(30)

v2 �
{
xtp2 − xtp3, i f f

(
xtp2

)
< f

(
xtp3

)

xtp3 − xtp2, otherwise
(31)

where p1, p2, and p3 indicate 3 random integers chosen
from 1 to n.

2.6 Performance evaluationmethods

Five performance indicators are commonly employed in con-
crete estimative evaluations. In addition, they were used
for assessing the machine learning method proposed in this
paper. The correlation coefficient (R2) determines an amount
of how acceptable the explanatory variables explain the vari-
able’s measured response. Provides the virtue of fit of the
model. The suitable estimative potential of such a model is
defined with a higher R2 value. Root mean squared error
(RMSE) shows a forecast accuracy’s statistical measure.
RMSE calculates a response variable’s variance, which can
be described via models. Mean absolute error (MAE) indi-
cates a statistic that computes the average error size of the
model’s forecasting. Furthermore, variance account factor
(VAF) and mean absolute percentage error (MAPE) are pre-
sented in the following:

R2 �
⎛

⎝
∑n

i�1(pi − p)(ri − r)√[∑n
i�1(pi − p)2

][∑n
i�1(ri − r)2

]

⎞

⎠
2

(32)

RMSE �
√
1

n

∑n

i�1
(ri − pi )2 (33)

MAE � 1

n

n∑

i�1

|pi − ri | (34)

MAPE � 100

n

n∑

i

|ti |
|pi | (35)

VAF �
(
1 − var (ri − pi )

var (ri )

)
× 100 (36)

where pi and ri determine the forecasted and measured
values, r and p show the mean values of measured and fore-
casted, respectively; also, n is the sample number.

3 Results and discussion

3.1 Hyperparameter

LSSVR is a type of support vector machine (SVM) that is
used for regression tasks. Like other machine learning algo-
rithms, LSSVR has hyperparameters that must be set before
training the model (Kovačević et al. 2016, 2021). Table 3
shows the important hyperparameters of LSSVR. For each
optimization algorithm, the table shows the values of C and
Gamma that were found to give the best performance on
the data set being used. Specifically, for LSHB, the opti-
mal hyperparameters were found to be C � 938.505 and
Gamma � 917.994; for LSCO, the optimal hyperparame-
ters were C � 895.8666 and Gamma � 801.9936; and for
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Table 3 Results of hyperparameters

Models Hyperparameter

C Gama

LSHB 938.5047 917.9939

LSCO 895.8666 801.9936

LSGN 980.1297 793.2765

Table 4 Initiation parameter HBA

Initiation parameter Optimizer

HBA COA GNDO

Population size 50 50 50

Beta 6 – –

C 2 – –

MaxIter 100 100 100

Lower bound 0 0 0

Higher bound 1000 1000 1000

n_leader – 5 –

n_COOT – 45 –

LSGN, the optimal hyperparameterswereC � 980.1297and
Gamma � 793.2765. These hyperparameters were likely
found through a process of hyperparameter tuning, where
the optimization algorithms were used to search through a
range of possible hyperparameter values to find the combi-
nation that resulted in the best performance on a held-out
validation set. The specific range of searched hyperparame-
ter values and the performance metric used to evaluate the
models are not shown in the table but would be important
to consider for a full understanding of the hyperparameter
tuning process.

In addition, Table 4 displays the initiation parameters
for three optimization algorithms (HBA, COA, and GNDO)
in the context of a practical implementation. The initiation
parameters are used to set up the optimisation algorithms’
initial conditions, including the population size, the range of
variable values, and the maximum number of iterations. For
HBA, the population size is 50, and the maximum number
of iterations is 100. The beta and C parameters are also spec-
ified, with beta set to 6 and C set to 2. The lower and upper
bounds are set to 0 and 1000, respectively. For COA, the pop-
ulation size is also set to 50, and the maximum number of
iterations is set to 100. In addition, the number of leaders and
COOTS are specified, with n_leader set to 5, and n_COOT
set to 45. The lower and upper bounds are set to 0 and 1000,
respectively. For GNDO, the population size and maximum
number of iterations are as same as other optimizers. The

Table 5 Results obtained from the proposed models

Phase R2 RMSE MAE MAPE VAF

Methods

LSHB Train 0.999 0.377 0.2342 0.4280 99.952

Test 0.997 1.408 1.0551 1.6294 96.46

LSCO Train 0.996 0.994 0.5727 1.112 99.67

Test 0.988 2.214 1.6987 2.720 86.62

LSGN Train 0.993 1.353 0.7793 1.514 99.38

Test 0.982 2.579 1.9790 3.165 79.66

lower and upper bounds are set to 0 and 1000, respectively.
It is worth noting that these initiation parameters are specific
to the problem being addressed and may need to be adjusted
for different problems or optimization algorithms.

3.2 Comparing the performance

This section examines the present models according to the
metrics explained in the previous section. In evaluating the
models, the highest value of R2 and VAF and the lowest
value of RMSE, MAE, and MAPE are considered. Table
5 demonstrates the obtained model values in the evalua-
tors in two testing and training phases. 70% and 30% of
the samples are assigned to the training and testing phase.
According to Table 5, the highest R2 value equal to 0.999was
obtained for LSHBTrain, and the lowest value was obtained
by LSGNTest equal to 0.982. For RMSE, the lowest valuewas
for LSHBTrain � 0.377, and the highest was for LSGNTest �
2.579. In MAE, LSHBTrain � 0.234 had the finest perfor-
mance, while LSGNTest � 1.979 had the worst performance.
The noteworthy point in evaluating the models is that all
the models have obtained the highest value in the training
section, and their performance has weakened in the testing
section, which indicates that the models are not well trained
in the training section. In MAPE, the most appropriate value
was obtained by LSGBTrain � 0.428, while the poorest value
belonged to LSGNTest � 3.165. Finally, for VAF, which, like
R2, is the highest value of the finest performance criterion, the
most satisfactory value is LSHBTrain � 99.95, and the lowest
value is obtained by LSGNTest � 79.66. From the strongest
to the weakest performance, LSHB, LSCO, and LSGN have
generally performed. In addition, it was shown that combin-
ing HBA with LSSVR can provide a suitable model with
high accuracy for forecasting.

Figure 1 shows the Scatter plot of forecasted andmeasured
CS in two testing and training phases. The corresponding
shape is determined based on two evaluators, R2 and RMSE,
which determine being in a series and dispersion or density,
respectively. In addition, the center line component, which is
basedonX �Y coordinates, and the linear fit component have
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Fig. 1 Scatter plot of forecasted and measured CS

Fig. 2 Comparison between
forecasted and measured CS

been in two phases of training and testing. The difference in
the angle of these two lines indicates the appropriate or poor
performance of the models. In LSHB, due to the high value
ofR2 and the lower RMSE in training compared to testing; as
a result, it can be seen that there is less dispersion in training
compared to testing, and the difference between the angle of
linear fit and the center line is smaller. On the other hand,
LSCO and LSGN models have similar performance in the
two phases of training and testing. However, considering that
LSGN has the highest RMSE and the lowest R2 in both the

testing and training phases, it can be seen that the scatter of
points in this model is more than the other two models.

Figure 2 compares forecasted and measured CS in two
training and testing phases. The ideal situation is such that
the forecasted andmeasured behaviour is similar. Themodels
performed almost the same in the training phase, but with a
closer look at samples 100–109, it can be seen that LSHB
had a smaller difference with the measured than the other
two models. In addition, it can be seen in the test phase that
LSHB has the most appropriate performance, and LSGN has

123



Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:543–555 553

Fig. 3 Error percentage in the
train and test phase

shown a relatively weak performance. In general, it is able
to be deduced that the models performed more satisfactorily
in the training phase than the test, and the combined LSHB
model had higher accuracy in both phases compared to the
LSCO and LSGN models.

Figure 3 shows the error percentage in the train and test
phases. Asmentioned, 70%of the sampleswere related to the
training section and 30% to the testing section. The LSHB
model recorded the highest error percentage in the training
at almost 3%, which increased to 5.5% as the performance
weakened. In LSCO, the highest percentage of error in train-
ing was equal to 6.2%, which, like LSHB, was obtained by
increasing the error in testing equal to 9.2%. Finally, for
LSGN, the highest error percentage was equal to 9%, the
highest among the models, and the error in the test reached
almost 12%. In general, it can be seen that the LSHB model
had the least error in the two phases of training and testing,
and the other two models were also reliable for forecasting.

Figure 4 shows the box normal for the error percentage
of the presented models. In LSHB, it can be seen that in the
training phase, the average error was 0%, and its normal dis-
tribution was sharp and normal, showing this less dispersion.
In addition, the errors were good in the dispersion test, below
10%. In LSCO, the dispersion of samples has been evident in

Fig. 4 Box-normal for the error percentage of the presented models

both phases, and a flatter normal distribution has been regis-
tered, but despite this, the highest error below 10% has been
obtained. Finally, for LSGN, which had the highest and most
scattered error, only in the test phase was a sample above
10% obtained, which can be called outlier data. The normal
distribution of LSGN is also flatter than the other twomodels
and has a lower frequency close to zero. In general, it can be
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concluded that all three models performed well, but LSHB
recorded the finest output.

4 Conclusion

Due to its durability and workability, high-performance con-
crete (HPC) has performed better than ordinary concrete
in special structures. However, obtaining the values of the
mechanical properties of this type of concrete in a laboratory
has been a time-consuming and energy-consuming task. For
this reason, learning machines have replaced human experi-
ments. This study’s novelty is introducing one of themachine
learning methods, including LSSVR, to forecast HPC com-
pressive strength (CS). In addition, to increase the accuracy
and get the least errors, the corresponding model was com-
bined with three meta-heuristic algorithms and formed a
hybrid model, which the algorithms include Honey Bad-
ger algorithm (HBA), COOT optimization algorithm (COA),
and generalized normal distribution optimization (GNDO).
In addition, in this article, several metrics were used to eval-
uate the performance of the models, including R2, RMSE,
MAE, MAPE, and VAF. In evaluating the models, it was
observed that HBA obtained a better combination with
LSSVR. According to the obtained outputs, it was observed
that in R2, the models obtained close results and did not
differ much from each other. In RMSE, the most appropri-
ate value obtained by LSHB with LSCO and LSGN has a
difference of 62 and 72 per cent and 59 and 69 per cent
recorded in MAE, respectively. The difference is obtained
for MAPE with LSCO � 61.5% and LSGN � 71%. In VAF,
the highest value obtained by LSHB in the training phase had
values close to each other, but in the testing phase, the bet-
ter performance of the models with each other was evident.
In general, it can be concluded that machine learning meth-
ods are reliable for forecasting, and algorithms can increase
the performance of models in terms of accuracy and error
reduction.
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et al (2016) Primjena neuronskih mreža za hidrološko modeliranje
u krškom području 1:1–10
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