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Abstract
Designing a robust Hoo observer to estimate the state of charge (SoC) of lithium batteries for various applications, including
microgrids, is the principal goal of the present article. Battery dynamic models always have uncertainties that reduce the
performance of many model-based estimators. This paper presents a robust nonlinear Hoo estimator for battery charge level
estimation, in which the impact of measurement disturbances and model uncertainties on the estimation output is minimized.
To design the desired estimator, an optimal LMI problem has been used so that the optimal value of the estimator parameters is
extracted and its performance is at its best. Using the proposed method, the impact of model uncertainties and disturbances on
the estimation output has been reduced.Moreover, the design of the estimator has been converted into an optimal LMI problem
to extract the best values for the estimator parameters to increase its performance. The suggested approach performance for the
SoC estimation is validated through a series of simulations and software-in-the-loop tests. The results confirm the effective
performance of the suggested approach in the SoC estimation. The outcomes indicated that the suggested method could
provide better accuracy than the ampere-hour method by 0.25% and reduce the speed of convergence to the real value by 6 s.

Keywords Battery · State of charge · Estimation · Hoo · Robust

1 Introduction

With the growth of renewable energy development, the need
to use rechargeable batteries as energy storage systems is
increasing day by day. Lead-acid batteries are one of the
common types of batteries in these systems (Dhundhara et al.
2018). Today, lithium batteries are a very suitable alterna-
tive to lead-acid batteries in energy storage systems (ESSs)
because of their advantages over acid batteries (2022). A
longer life span, better depth of discharge, constant output
voltage, less weight, and less volume are among these advan-
tages. One of the most important challenges when working
with lithium-ion batteries is the precise estimation of their
SoC because the SoC, as the main function, affects many
other functions in the battery management systems (BMS).
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For this reason, SoC estimation using different methods
has been an attractive topic for researchers in current years.
Since the battery SoC is related to the chemical processes
inside the battery, this parameter is notmeasurable directly by
any sensor. For this purpose, it is necessary to use appropriate
estimators (Wang et al. 2021; Cui et al. 2022a; Chen et al.
2021).

The impedance measurement method (Meng et al. 2017)
and ampere-hour counting (Liu et al. 2019) approach are
the most popular approaches to estimating the SoC. They
are very simple and have a very low cost compared to other
methods. The accuracy of these methods is much lower than
others. They are also very sensitive to environmental condi-
tions.

Kalman filter is a recursive mathematical method for the
estimation of the parameters of a system with specific and
accurate state space dynamics (Shrivastava et al. 2019). One
of the advantages of this filter is the ability of the state
estimation by considering noise in the system dynamics or
measurement. In other words, this filter can estimate the state
variables of the model despite the presence of measurement
and process noise. For this purpose, for SoC estimation in
lithium-ion batteries, one of the conventional techniques is to
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use the Kalman filter (Sun et al. 2011). The standard Kalman
filter (Yu et al. 2015) can be considered a suitable approach
to estimate the SoC using the linear dynamics of the battery.
Still, since the battery has nonlinear dynamics, the nonlin-
ear types of KF, such as the Extended KF (EKF) (Lee et al.
2007; Jiang et al. 2021) and the Unscented KF (UKF) (Sun
et al. 2011; Lian et al. 2022), are suitable options. EKF has
a little error in estimating the state of charge because of the
linearization in its algorithm, and UKF has a heavier com-
putation load. One of the disadvantages of Kalman filters is
that a precise dynamic model of the batteries is required in
these filters, so the uncertainties that arise due to the inaccu-
racy in identifying the battery model and the changes in the
environmental conditions of the laboratory test decrease the
precision of the estimation.

In order to resolve the problem of model uncertainties in
batteries, robust estimators are very suitable options. Slid-
ing mode estimators (Chen et al. 2022; Wang et al. 2022)
are the most commonly used observers for SoC estimations.
Sliding-based filters have a chattering phenomenon in their
performance, reducing the estimation accuracy. To tackle this
problem, adaptive types of sliding mode observers (Liao and
Chen 2022) are used. For this purpose, intersection methods
such as fuzzy systems (Cui et al. 2022b) and neural networks
(Cui et al. 2022b) are used to adapt the main filter to reduce
the chattering. Besides, these robust filters are not able for
SoC estimation in the presence of measurement noises.

Intelligent systems and artificial intelligence (Cui et al.
2022a), including neural networks (Fan et al. 2022), are other
practical approaches to estimating theSoCof lithium-ion bat-
teries. In addition, fuzzy systems (Yang et al. 2022) are also
used to estimate the charge level directly or as an additional
method. One of the disadvantages of fuzzy systems is that
they alone do not have good accuracy, and to increase their
accuracy. There is a need for optimization. In addition, we
need reliable and sufficient knowledge to set rules in fuzzy
systems.Recently, data-basedmethods (Khaleghi et al. 2022)
such as machine learning (Jafari et al. 2022), deep learn-
ing (Tian et al. 2022), and reinforcement learning (Lv et al.
2022) are also used for SoC estimation. But the main disad-
vantage of these approaches, along with neural networks, is
the need for a complete and reliable data set to train these
intelligent systems. Meng et al. (2019) and Shrivastava et al.
(2022, 2023) completely cover the technological advance-
ment of lithium-ion battery states estimation methods for
electric vehicle applications and co-estimation of lithium-
ion battery state of charge, the energy state, the power state,
maximum available energy, and maximum available capac-
ity.

In this paper, a robust nonlinear Hoo filter is utilized for
SoC estimation. The principal objective of designing this
estimator is to reduce the effects of disturbances in mea-
surements and model uncertainties on the estimation output.

On the other hand, by solving an optimal LMI problem, the
optimal parameters for this estimator are always extracted to
optimize its performance. Therefore, the main novelties of
this paper are presented below.

• As it is clear from the literature review, the proposed
robust methods in battery SOC estimation have many dis-
advantages. For example, the methods on the basis of
the robust Kalman filter can estimate the uncertainty to
some extent, but the process of adjusting their covariance
matrices is time-consuming. In addition, in practical appli-
cations, there may be color noise that causes the algorithm
to diverge. On the other hand, methods based on sliding
mode have chattering. Although these methods are com-
bined with fuzzy systems or neural networks to remove
chattering, their training process is time-consuming. To
solve these problems, in this article, a robust method based
on reducing the disturbance level is presented, which can
effectively diminish the impacts of disturbances and uncer-
tainties on the estimation error. In addition, unlike other
methods, the proposed method has few calculations and is
easily implemented.

• The observer design problem becomes an LMI feasibility
problem. By solving this problem, the best values for the
estimator parameters are obtained.

2 Battery modeling

An important issue in SoC estimation is selecting an accurate
model for the battery cell. For industrial applications, espe-
cially EV applications, the equivalent circuit model (ECM)
utilized here is a commonly used choice for battery model-
ing. Like Spagnol et al. (2011), this article uses an ECM for
the battery modeling.

In Fig. 1, Cn represents both the battery’s nominal capac-
ity and the total energy stored inside. I stands for battery
discharge, while Vt stands for the terminal voltage. The bat-
tery voltage or battery charge estimate, which ranges from 0
to100%, is indicatedby theVOC-dependent voltage source.η
presents the Coulomb coefficient, which is chosen to be as
much as 1 in Eq. 1. By combining Fig. 1 and the Kirchhoff
voltage law, we get

V � Voc(Soc) − Vp1 − Vp2 − I Rin + � (1)

where Vpe and Vpc indicate the electrochemical and concen-
tration polarization potentials across Cpe and Cpc, �uncertain,
�f2, �f3, and �f4 are model errors added to characteristics
of the circuit in order to monitor circuit performance in the
case of an error. The SoC is derived, polarized, and also the
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Fig.1 Battery model

Fig. 2 OCV-SoC curve of Li-battery

resulting relationship is gained:

SȯC � −(
I

C
) + � f2 (2)

V̇p1 � − Vp1

Rp1Cp1
+

I

Cp1
+ � f3 (3)

V̇p2 � − Vpc

Rp2Cp2
+

I

Cp2
+ � f4 (4)

Figure 2 demonstrates that the Voc-SoC curve is nonlin-
ear, but taking into account the red dots signed on the fig,
Voc is able to be defined as a linear function of SoC in the
determined areas, and next,

Voc(Soc) � kSoc + ϒ (5)

in which v and k have variations in different SoCs. Now,
if the rate of discharge flow is supposed to be constant, the
aforementioned equations are able to be presented like so:

V̇ � −k(
I

C
) +

Vpe

Rp1Cp1
− I

Cp1
+

Vpc

Rp2Cp2
− I

Cp2
+ � f1

(6)

By resolving Eq. 2 in terms of current (I) and placing it
in Eq. 3, Eqs. 3 to 6 are recomputed like, which is present as

follows, and the battery state space model is obtained:

V̇ � −n1V + n1Voc(SoC) − n3Vp1 − n4Vp2 − m1 I + �

ṠoC � n2Vt − n2Voc(SoC) + n2Vp1 + n2Vp2 + � f2

V̇p1 − n4Vp1 + m2 I + � f3

V̇p2 − n3Vp2 + m3 I + � f4 (7)

In these equations, the coefficients are described as fol-
lows:

n1 � (1/Rp1Cp1) + (1/Rp2Cp2);
n2 � (1/RinC);
n3 � (1/Rp2Cp2);
n4 � (1/Rp1Cp1);
m1 � (k/C) + (Rin/Rp1Cp1) + (1/Cp1) + (Rin/Rp2Cp2)

(1/Cp2);
m2 � (1/Cp1).
If we regard the outputs as y (t) and the circuit inputs as u

(t), the state space equation is gained as

ẋ(t) � Ax(t) + Bu(t) + � f (x , u, t) (8)

y(t) � Cx(t) (9)

These are the values for matrices X, A, B, and C:

A =

⎡
⎢⎢⎢⎣

- n1 n1 - n3 - n4
n2 - n2 n2 n2
0 0 - n4 0
0 0 0 - n3

⎤
⎥⎥⎥⎦ B =

∣∣∣∣∣∣∣∣∣

- m1

0
m2

m3

∣∣∣∣∣∣∣∣∣
C �

[
1 0 0 0

]

x(t) �
[
Vt Voc(SoC) Vp1 Vp2

]T

y(t) � Cx(t)

(10)

In the modeling of the battery, the ECM parameters are
considered to be fixed, and the nonlinear OCV-SOC curve,
shown in Fig. 2, is linearized to build up Eq. (10).

In addition, �f (x, u, t) is an unknown function that
presents uncertainties of the matched model, including the
parameter value inaccuracies and linearizing error for Fig. 2,
and it is able to be considered that

� f (x , u, t) � �ξ (x , t) (11)

In which� denotes the uncertainties input matrix. In addi-
tion, ξ (x,t) is an unknown but limited function:

|ξ (x , t)| ≤ ψ ∇x ∈ R4, t ≥ 0 (12)
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Fig. 3 Test bench

Table 1 Important characteristics of the battery

Elements

Capacity 2.4 Ah

Standard charge current 0.5 A

Cutoff voltage 3.6 V

Operating temperature—20–45 deg

Max charge voltage 4.1 V

As a result, the battery complete model can be expressed
like

ẋ(t) � AX (t) + Bu(t) + �ξ (x , t) (13)

To study more details of the battery modeling method,
refer to Chen et al. (2022). The parameters in ECM are
detectable through experiments. In this regard, Fig. 3 depicts
an experimental test setup which has been structured. The
components of this test bench are described as follows. A
2.4 Ah LFPO4 battery has been tested. Table 1 lists a number
of the key features of the battery. A programmable resistant
load is used for battery discharging. A DSP is utilized for
justifying the load value when the battery is discharging. An
internal A/D converter is utilized for the voltage and current
measuring. An RS232 serial port is utilized for the connec-
tion.

On the basis of the methods presented in Meng et al.
(2023), the battery model parameters are extracted. Table
1 shows these parameters with their values (Table 2).

The best technique to confirm the battery model identifi-
cation is to compare the voltage from the simulated battery
model with its actual measured value. This comparison is
shown in Fig. 4. This figure shows that the recognized model
has a terminal voltage error of less than 0.04V, demonstrating
that the identification accuracy is acceptable.

Table 2 Battery model parameters

Elements

Cp2 1381

Cp1 43

C 8640

Rp2 38

Rp1 2.5

Rin 90

Fig. 4 Verification of the model identification

3 Proposed observer formulation

The below dynamic model is considered for the system:

ẋ � Ax + Bu + f (x) + Ew

y � Cx
(14)

in which x ∈ Rnx , u ∈ Rnu , and y ∈ Rnz are the system
state, the system input, and the system output, respectively.
It is considered that themodel uncertainty is a local Lipschitz
function, which is given as f (x) in relations. The bounded
disturbance is contained in w ∈ Rnw a function considered
an unknown input.

A Luenberger observer is suggested to estimate SoC as

˙̂x � Ax̂ + Bu + f (x̂) + L(y − ŷ)

ŷ � Cx̂
(15)

in which x̂ and ŷ are x and y estimations. In addition, e �
x − x̂ is the estimation error that is presented as

ė � (A − LC)e + f̃ (x) + Ew

f̃ (x) � f (x) − f (x̂)
(16)

Regarding the Lipschitz property f (x), we will have

∥∥∥ f (x) − f̂ (x)
∥∥∥ ≤ α

∥∥F(x − x̂)
∥∥ (17)

The below lemmas will be useful to obtain the theorem.
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Lemma 1 For real matrices H , F and ε > 0:

HT F + FT H ≤ εHT H + ε−1FT F (18)

In this paper, the main objective is minimizing the dis-
turbance influence in the estimation error for the suggested
observer so that the L2 norm from disturbance to the esti-
mation error of the observer is limited by γ the following
form:

∞∫

0

eT e ≤ γ 2

∞∫

0

wTw (19)

where γ denotes disturbance attenuation level.

Theorem 1 assumes the system (1). If there exist matri-
ces P > 0 Y and scalar μ > 0 in a way that the below
optimization be feasible:

min
P , Y , μ

γ

(
(AT P − CT Y T + PA − YC + 1

σmax(F)
μαF2F + ασmax(F)P + I PE

∗ −γ 2 I

)
< 0

P ≤ μI

(20)

Then, a robust observer formed as (3) with L � P−1Y
exists in a way that L2 the norm from disturbance to the
observer estimation error is limited by a minimum value γ .

Proof By assuming the candidate Lyapunov function and
stability condition as follows, we will have

V (e) � eT Pe, P > 0 (21)

V̇ (e) ≤ −eT e + γwTw (22)

The derivative V (e) can be computed in the following
form:

V̇ (e) � ėT Pe + eT Pė � ((A − LC)e

+ f̃ (x) + Ew)T Pe + eT P((A − LC)e

+ f̃ (x) + Ew) � eT ((A − LC)T P + P(A − LC))e

+ f̃ (x)Pe + eT P f̃ (x) + wT ET Pe + eT PEw (23)

Substituting (23) into (22), we will have
eT ((A − LC)T P + P(A − LC))e + f̃ (x)T Pe + eT P f̃ (x)

+ wT ET Pe + eT PEw + eT e − γwTw ≤ 0 (24)

Using Lemma 1 (17) and considering P ≤ μI , we get

(25)

f̃ (x)T Pe + eT P f̃ (x) ≤ ε f̃ (x)T P f̃ (x) + ε−1eT Pe

≤ εμα2eT FT Fe + ε−1eT Pe

Substituting (25) into (24), we will have

(26)

eT ((A − LC)T P + P(A − LC))e

+ εμα2eT FT Fe + ε−1eT Pe + wT ET Pe

+ eT PEw + eT e − γwTw ≤ 0

(26) is rewritten as follows:

(
e
w

)T(
(AT P − CT LT P + PA − PLC + εμα2FT F + ε−1P + I PE

∗ −γ 2 I

)(
e
w

)
< 0 (27)

It is concluded that if (28) holds, (27) holds:

(
(AT P − CT LT P + PA − PLC + εμα2FT F + ε−1P + I PE

∗ −γ 2 I

)
< 0 (28)

Using the change of variable Y � PL , we have

(
(AT P − CT Y T + PA − YC + εμα2F2F + ε−1P + I PE

∗ −γ 2 I

)
< 0

(29)

According to (25), we have
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(30)

f̃ (x)Pe + eT P f̃ (x) ≤ ε f̃ (x)T P f̃ (x) + ε−1eT Pe

≤ εμeTα2FT Fe + ε−1eT Pe

≤ eT (εμα2FT F + ε−1μI )e

≤ eT (εμα2λmax(F
T F) + ε−1μ)e

The optimal value of (30) can be computed as follows:

f (ε) � εμα2λmax(F
T F) + ε−1μ � εμα2σ 2

max(F) + ε−1μ

⇒ f ′(ε) � μα2σ 2
max(F) − ε−2μ � 0

⇒ εopt � 1

ασmax(F)
(31)

By substituting (31) into (29), we have

(
(AT P − CT Y T + PA − YC + 1

σmax(F)
μαF2F + ασmax(F)P + I PE

∗ −γ 2 I

)
< 0 (32)

(32) confirms (20), and the proof of Theorem 1 is com-
pleted.

Remark 1 The necessary state to (32) be solvable is that (33)
must be negative definite:

(33)

� � AT P − CT Y T + PA − YC

+
1

σmax(F)
μαF2F + ασmax(F)P + I

That, in turn, means that A − LC must be stable and
1

σmax(F)
μαF2F + ασmax(F)P + I should be as small as pos-

sible. The necessary condition for A− LC to be stable is that
A − LC should be detectable.

Remark 2 Excluding α and F, other parameters are com-
puted by resolving the suggested conditions by LMI con-
straints (20). α and F must have small values achieving
negative definite �. A Lipschitz matrix will be suggested
instead of the utilization of a Lipschitz fixed value in (17),
resulting in a problem that has lower conservatism.

4 Results and discussion

4.1 Simulation results

For validation of the suggested approach, a complete series of
simulations have been performed in MATLAB version 2020
software, and the results are presented in this section. In these
simulations, a nonlinear dynamic model has been used, as
presented in the second section. The desired computer sys-
tem to perform these simulations has hardware specifications

as follows. Intel® Core ™ i7-3537U CPU at 2.00 GHz pro-
cessor and12GBofmemory. In these simulations, the current
battery model input is in the form of a pulse current with a
magnification of 5 amps, a period of 500 s and a bandwidth
of 30%.

In practical applications in lithium battery management
systems, accurate estimation of battery charge level can be
used in charge control of battery packs in high-scale applica-
tions. However, due to the nonlinear relationship among open
circuit voltage and charge level, it is difficult to use charge
level estimation and design proper charge control. Shrivas-
tava et al. (2022) have presented a new and practical method
to control the charging of lithium batteries. In this article, the
charge level of the battery is estimated by the Kalman filter,

and it is used to control the charge of the batteries using the
optimal MPC method. The method presented in this article
to estimate the battery charge level can also be used in bat-
tery charge control methods like the method presented in this
reference.

Figure 5 shows the output voltage estimation as one of the
state variables next to its actual value. As it is clear from this
figure, the suggested estimator can estimate the output volt-
age with acceptable accuracy and an overshoot of less than
0.5 v. In addition, the proposed method has a high estimation
speed to reach convergence in less than 8 s.

Figure 6 also shows the estimation of the battery SoC.
This figure also confirms the previous figure in a way. In
other words, the proposed estimator has been able for SoC
estimation with an acceptable accuracy of 0.3% better than
the Ah-counting method. In the second part of this figure,
it is also clear that the estimation error using the suggested
approach is less than 0.3% of the Ah-counting approach. In
addition, the suggested approach for SoC estimation has an
acceptable speed and converges in less than 7 s.

In these simulations, instead of using a real battery, a sim-
ulated battery model has always been used. Therefore, the
estimated voltage for two RC loops in the circuit model of
the battery is shown in Figs. 7 and 8. In these figures, the
estimated voltages and their correct value, which is extracted
from the simulated batterymodel, are compared. As it is clear
from this figure, the suggested approach has very high accu-
racy and has been able to estimate these voltages with an
overshoot of fewer than 2e-3 V.
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Fig. 5 Terminal voltage estimation and its error

Fig. 6 SoC estimation and its error

4.2 Software-in-the-loop (SIL) results

For validation of the suggested approach efficiency using
practical data according to Fig. 9, a series of laboratory tests
have been performed. According to this procedure, the volt-
age and current data measured in practical tests were applied
to the simulated model of the suggested approach and the
resultswere extracted. The performance outcomes of the sug-
gested approach are as well compared with the Ah-counting
method in Fig. 9. As it is clear from this figure, the sug-
gested approach can estimate the battery charge level with
an accuracy of 0.25% compared to the Ah-counting method.
Besides, the convergence speed of the suggested approach is
also very acceptable compared to the Ah-counting method,
so this method converged in less than 6 s.

5 Conclusion

For solving the defects in Kalman filters as well as filters
based on sliding mode, this paper presented a robust Hoo
filter for SoC estimation in lithium-ion batteries. This filter
can minimize the effects of measurement disturbances and
model uncertainties on the estimation output. In other words,
this estimator does not have theweakness ofKalman filters in
being unable to cope with model uncertainty, nor do sliding
filters have the problem of a chattering phenomenon. Dur-
ing the design of this filter, this optimal LMI problem has
been used to extract the parameters of the filter in their most
optimal state and bring the estimation performance to the
best possible state. Using the proposed method, the effect of
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Fig. 7 Vp1 estimation

Fig. 8 Vp2 estimation

model uncertainties and disturbances on the estimation out-
put has been reduced. Moreover, the design of the estimator
has been converted into an optimal LMI problem to extract
the best values for the estimator parameters to increase its per-
formance. The outcomes indicated that the proposed method
could provide better accuracy than the ampere-hour method
by 0.25% and reduce the speed of convergence to the real
value by 6 s.

Simulation and practical results confirm the effectiveness
of this estimator for the SoC estimation.
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