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Abstract
The deterministic slope stability analysis does not consider uncertainties that originate due to various factors such as spatial
variability in properties of soil, mechanical and human measurement errors, etc. In this study, a probabilistic slope stability
analysis (PSSA) is performed, considering effective cohesion, effective angle of internal friction and unit weight of soil as
spatially variable parameters subjected to pore pressure and seismic loadings. Furthermore, the cross-correlation between
the soil parameters is taken into consideration while performing PSSA using Monte Carlo and Subset Simulation methods
with UPSS 3.0 module, developed in an MS-Excel spreadsheet environment. Detailed discussions have been presented on
the choice of cross-correlation coefficients between soil parameters, namely effective cohesion, effective angle of internal
friction and unit weight. The results of PSSA are represented in the form of complementary cumulative distribution function
(CCDF) plots, and these plots are helpful for determining the condition in which failure occurs. It is observed that when
spatial variability of correlated soil parameters is considered along with seismic and pore pressure loadings, the chances of
slope failure increases. Furthermore, the probabilistic output response is also plotted in the form of major and minor principal
stresses observed on the failure/slip surface of the slope at the moment when the failure is initiated.

Keywords Limit equilibrium method · Probabilistic slope stability analysis · Correlated soil parameters · Monte Carlo
simulation · Subset simulation

1 Introduction

Earthen embankments are important engineering structures
for managing water, such as storing and supplying water
for irrigation, generating hydroelectric power, protecting the
community during floods, etc. (Liang et al. 1999). The sta-
bility of an embankment is majorly affected by external
loadings such as pore-pressure loading and seismic loading
(Johari et al. 2015a, b). Thus, geotechnical engineers need
to ensure that an embankment is safe against all types of
loading against all possible failure modes, including slope
failure. The stability of the slope can be analysed with
various techniques such as the limit equilibrium method
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(Fellenius 1936; Bishop 1955; Janbu 1954, 1968; Morgen-
stern and Price 1965; Spencer 1967; Sarma 1973), finite
element method (Griffiths and Lane 1999) and finite differ-
ence method (Soren et al. 2014). It is a common knowledge
that the properties of soil vary from one location to another
in both horizontal and vertical directions (Hamrouni et al.
2022). The soil properties, such as effective cohesion

(
c′),

effective angle of internal friction
(
ϕ′), and unit weight (γ )

are correlated with each other. The experimental results sug-
gest that c′−ϕ′ is negatively cross-correlated, whereas ϕ′−γ

and c′−γ are positively cross-correlated. If there is consid-
erable variation in the soil properties, it cannot be said for
sure that an embankment is safe against slope failure even
when the deterministic estimation of the factor of safety
(FS) is more than 1.0. Thus, for safe and economic stabil-
ity estimates of embankments, it is necessary to account for
the various uncertainties arising due to geological anoma-
lies, human errors, assumptions, and spatial variation in soil
parameters that can adversely affect the stability of the slope
of the embankment (Ramly et al. 2002; Guo et al. 2019;
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Johari et al. 2019; Hamrouni et al. 2021). Usually, the soil
parameters (c′, ϕ′ and γ ) are considered as random variables
while performing probabilistic analysis of geotechnical prob-
lems.However, while conducting probabilistic slope stability
analysis (PSSA) using pseudo-static approach, the horizon-
tal seismic coefficient (kh) was also considered as a random
variable by a few researchers (Guo et al. 2019; Johari et al.
2015a, b). The parameter kh was considered to be exponen-
tially distributed by Johari et al. (2015a, b), while conducting
stochastic seismic slope stability analysis of natural andman-
made slopes. On the other hand, Hamrouni et al. (2019)
considered kh as lognormally distributed while investigating
the ultimate dynamic bearing capacity of shallow strip foun-
dations. The other parameters i.e., c′, ϕ′ and γ were assumed
to follow both normal and lognormal distributions, and the
stochastic responses were investigated for each case.

The concept of probability was first incorporated with
LEM to perform the slope stability analysis (Alonso 1976;
Tang et al. 1976; Harr 1977). Approximatemethods like first-
order reliabilitymethod (FORM)and second-order reliability
method (SORM) have been used by several researchers to
perform probabilistic slope stability analysis (Low and Tang
1997; Griffiths et al. 2007). In both methods, non-normal
variables are converted into standard normal variables with
mean (μ) and variance (σ ) equal to 0.0 and 1.0. A marker
called the reliability index (β) is determined on the limit state
failure surface (Shinozuka 1983; Madsen et al. 1986) that
indicates the safety level of the system under consideration.
The SORMmethod is better than FORMbecause it gives bet-
ter accuracy by simulating the real field problem considering
the limit state failure surface as quadratic (Zhao and Ono
1999; Huang et al. 2018). A random variable approach is a
probabilistic approach which is used to quantify the uncer-
tainties of soil properties as input variables to perform the
slope stability analysis. In the random variable approach, the
input soil parameters are assumed to have the same value
within the domain, even though it has been chosen randomly
from given probability distribution (Mbarka et al. 2010). The
investigators did not consider spatial variation of soil proper-
ties in this approach. The jointly distributed random variable
(JDRV) method is another analytical probabilistic method in
which probability density functions (PDF) of independent
input variables are mathematically defined and linked with
statistical relationships (Johari and Javadi 2012; Johari and
Khodaparast 2013; Johari et al 2013, 2015a, b, 2018). In
JDRV method, the probability of failure

(
Pf

)
is computed

by integrating the expressions of PDF over the entire domain.
Random finite element method (RFEM), proposed by Fen-
ton and Griffiths (2008), is an excellent choice for carrying
out probabilistic analysis of any engineering structure. In this
method, the finite element method (FEM) is associated with
randomfield theory to simulate and analyse actual field prob-
lems, and finally, the probability of failure is computed with

the help ofMonte Carlo Simulation (MCS)method (Griffiths
et al. 2015, 2016; Hamade andMitri 2013; Huang et al. 2017;
Zhu et al. 2019). The probabilistic analysis of any system
using MCS involves analysing the system repeatedly with
all possible combinations of the input variables and report-
ing Pf by counting how many times the system has failed
during such trials. However, MCS often fails to produce fail-
ure samples leading to theoretically impossible prediction of
Pf � 0.0. Some researchers also used an advanced version of
MCS, i.e., Subset Simulation (SS), to perform probabilistic
slope stability analysis (Au et al. 2010; Wang et al. 2011).
SS has higher precision, and accuracy and requires smaller
samples to perform probabilistic analysis than MCS.

Previously, the researchers did not consider the effect
of cross-correlation between different parameters and spa-
tial variation of parameters together with the application of
seismic and pore pressure loading to execute probabilistic
slope stability analysis with MCS and SS techniques. In
this work, firstly, a deterministic approach is developed for
slope stability analysis by considering the seismic and pore-
pressure loading with modified ordinary method of slices
according to these external loading. Amongst various avail-
able methods for dynamic analysis such as pseudo-static
method (Seed 1979; Siyahi 1998), Newmark’s sliding block
approach (Newmark 1965), experimental methods based on
shake table and centrifuges (Hong et al. 2011; Martakis et al.
2017), the pseudo-static approach is a very popular method
where the effects of dynamic earthquake loading can be eas-
ily simulated by subjecting the embankment to an equivalent
horizontal static load in a limit equilibrium analysis frame-
work (Johari et al. 2015a, b). The ordinary method of slices
is combined with pseudo-static method to perform slope
stability with seismic loading. The soil properties such as
effective cohesion

(
c′), effective angle of internal friction(

ϕ′) and unit weight (γ ) are considered as spatially random
variables. Furthermore, the dependencies of the soil param-
eters (i.e., c′, ϕ′ and γ ) on each other is also taken into
account by considering the correlation between these param-
eters. Random fields of related soil parameters i.e., c′, ϕ′
and γ are developed considering cross-correlation between
these variables as well as their spatial variation usingMarkov
correlation function. The soil parameters c′, ϕ′ and γ are
lognormally distributed within the embankment domain in
the present study. The UPSS 3.0 module developed in MS-
Excel spreadsheet environment by eminent researchers (Au
and Wang 2014) for executing probabilistic seismic slope
stability analysis by MCS and SS techniques has been used
to conduct the probabilistic slope stability analysis (PSSA).
The results prove that the pore pressure and seismic load-
ing severely impact an earthen embankment’s stability. It is
noticed that the cross-correlation and spatial correlation of
different soil parameters have a major impact on the stability
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of slope. There has been very limited study on the proba-
bilistic response of an earthen embankment considering the
cross-correlation of the involved soil parameters as well as
the spatial variation of these parameters. In this context, the
current study provides important insight in the response of
the embankmentwhere the cross-correlation between the soil
parameters and their spatial variation has been taken into con-
sideration. It is noticed that SS is a very accurate and precise
method for performing probabilistic analysis with a smaller
number of samples. The probabilistic response of the slope
is investigated at the precise moment when the failure initi-
ates by plotting graphs between major and minor effective
principal stresses developed on the slip surface of slope.

2 Methodology

This section briefly describes the theories involved in prob-
abilistic slope stability analysis of an embankment. In this
work, the factor of safety (FS) against slope failure is
determined by ordinary method of slices in presence of
self-weight, seismic and pore-pressure loading. The strength
parameters such as c′, ϕ′ and γ are considered as spatially
random variables which are also cross-correlated to each
other. The probabilistic slope stability is finally performed
with MCS and SS techniques considering the spatial vari-
ation of these cross-correlated random variables within the
embankment domain.

2.1 Deterministic slope stability analysis

The deterministic response of the embankment is determined
using the ordinary method of slices based on limit equilib-
rium method in the presence of seismic and pore-pressure
loadings. The pore-pressure loading is simulated by consid-
ering different values of pore-pressure ratio (ru) considering
saturated embankment. The seismic forces are expressed in
terms of seismic coefficient (kh) and weight as per pseudo-
static method. In this approach the critical failure surface is
considered as circular failure surface and the failure surface
is divided into several numbers of vertical slices. The free-
body diagram of ith slice is shown in Fig. 1 with all forces
acting on it. The forces acting on the ith slice are resisting
and driving forces.

It is necessary to evaluate the resisting and drivingmoment
for the entire failure mass by summing the respective quanti-
ties for all the slices in which the failure mass is subdivided.
These are:

(1)

Total resisting moment (MR)

�
i�n∑

i�1

(
c′
i li + (N − khWi sin βi − ui ) tan φ′) r

Fig. 1 Free body diagram of ith slice

Total driving moment(MD) �
i�n∑

i�1

(Wi sin βi + khWi cosβi )r (2)

The normal component of weight of ith slice (N ) and
the pore-water pressure (u) are computed using Eq. (3) and
Eq. (4), respectively, which are given below:

N � W cosβi (3)

u � ruγ h. (4)

When the seismic and pore-pressure loadings are con-
sidered simultaneously, the embankment’s slope stability is
expressed in terms of safety factor (FS), which is determined
by taking the ratio of resisting moment (MR) and driving
moment (MD). The final expression of factor of safety (FS)

against slope failure is shown in Eq. (5) (Kramer 1996).

FS �

i�n∑

i�1

(
c′
i li + (Wi cosβi − khWi sin βi − ruγi hi ) tan ϕ′

i

)

i�n∑

i�1
(Wi sin βi + khWi cosβi )

,

(5)

where c′
i � effective cohesion of soil in ith slice, ϕi ′ � effec-

tive angle of internal friction in ith slice, γi � unit weight
in ith slice, li � length of ith slice, bi � width of ith slice,
Wi � weight of ith lice, βi � base angle of ith slice, hi �
mid-height of ith slice, kh � horizontal seismic coefficient,
ru � pore pressure ratio.

An MS-Excel spreadsheet called deterministic model
(D.M.) worksheet is developed to determine the FS of slope
of earthen embankment using the above equations.
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2.2 Probabilistic slope stability analysis

To conduct the probabilistic analysis of the embankment
against slope failure, it is necessary to generate random fields
of the related variables. For the present analysis, the variables
of interest are c′, ϕ′, and γ . In the following section, the ran-
dom field generation procedure considering the correlation
between the soil strength parameters and their spatial varia-
tion is discussed in a brief manner.

2.2.1 Cross-correlation between soil parameters

It is well known that the input strength parameters such as
c′, ϕ′, and γ are cross-correlated with each other. Various
researchers (Nguyen and Chowdhary 1985; Javankhoshdel
and Bathurst 2015) investigated the effects of correla-
tion between strength parameters while determining Pf of
the slope. These correlations are quantified by the cross-
correlation coefficient (ρ). Drained triaxial tests proves that
negative correlations exist between c′ and ϕ′(Lumb 1970;
Yucemen et al. 1973; Cherubini 1997, 2000; Forrest and
Orr 2010; Hata et al. 2012). The negative cross-correlation
between c′ and ϕ′ indicates that when the values of c′
increases the values of ϕ′ decreases. According to many
researchers (Chowdhury and Xu 1993; Low and Tang 1997;
Sivakumar Babu and Srivastava 2007), a positive cross-
correlation occurs between (ϕ′ and γ ) and (c′ and γ ). The
maximum possible range of cross-correlation coefficient
is −1.0 < ρ < 1.0(Javankhoshdel and Bathurst 2015).
It is necessary to consider all possible combinations of
cross-correlation coefficient ρ between the related random
parameters, and the ρ value for which Pf of the system is
highest shouldbe foundout. In the presentwork, the influence
of cross-correlation between different strength parameters
on probability of failure of slope is analysed. The detailed
procedure of computing cross-correlation between different
strength parameters are discussed below:

ρ1 � cross-correlation coefficient between c′ and ϕ′.
ρ2 � cross-correlation between c′ and γ .
ρ3 � cross-correlation between ϕ′ and γ .

The strength parameters c′, ϕ′, and γ are correlated and
normally distributed random variables. In this case, the
cross-correlation coefficient between these parameters can
be expressed as below:

ρ1 � cvarc′,ϕ′

σc′σϕ′
(6)

cvarc′,ϕ′ � ρ1σc′σϕ′ , (7)

where cvarc′,ϕ′ � covariance between c′ and ϕ′, σc′ � stan-
dard deviation of c′, σϕ′ � standard deviation of ϕ′

In this work, there are three random strength parameters
which are considered to be correlated to each other. There-
fore, the covariance between these random parameters is
expressed in terms of covariance matrix with 3 × 3 elements
which is expressed in Eq. (8).

� �
⎡

⎢
⎣

σ 2
c′ ρ1σc′σϕ′ ρ1σc′σγ ′

ρ1σϕ′σc′ σ 2
ϕ′ ρ2σϕ′σy′

ρ2σγ ′σc′ ρ3σγ ′σϕ′ σ 2
γ ′

⎤

⎥
⎦. (8)

The correlated random variables are expressed using the
relationship expressed below

X � σ Z + μ, (9)

where X � random variable, σ � standard deviation, Z stan-
dard variable, μ � mean.

Now, the correlated randomvariable canbe computedwith
the help of Eq. (8) and Eq. (9) which is expressed below in
Eqs. (10–12).

c′ � σc′ Z1 + μc′ (10)

ϕ′ � ρ1σϕ′ Z1 + σϕ′
√
1 − ρ2

1 Z2 + μϕ′ (11)

(12)

γ � ρ2σγ Z1 +
σγ ′ (ρ3 − ρ1ρ2)√

1 − ρ2
1

Z2

+ σγ

√

1 − ρ2
2 +

(ρ3 − ρ1ρ2)2

1 − ρ2
1

Z3 + μγ ,

whereσc′ � standard deviation of c′,σϕ′ � standard deviation
of ϕ′, σγ � standard deviation of γ , μc′ � mean of c′,μϕ′ �
mean of ϕ′, μγ � mean of γ

2.2.2 Spatial variability of soil parameters

The soil strength parameters c′, ϕ′, and γ are spatial vari-
able within the embankment domain. The random values of
strength parameters at different locations within the domain
are required for probabilistic analysis. Firstly, the embank-
ment domain is divided into n layers. TheMarkov correlation
function is used to illustrate the spatial correlation (ξ)

between one location and another location, which can be
expressed as below.

ξ
(
Zi , Z j

) � exp

{−2

θ

∣∣Zi − Z j
∣∣
}
. (13)

If n locations are selectedwithin the embankment domain,
then the spatial correlation between all n locations with each
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other is expressed in the form of spatial correlation matrix
[ξ ] using the Eq. (13). The spatial correlation matrix [ξ ] is
developed in such a way that satisfies the relationship given
below:

[ξ ] � [L][L]T , (14)

where [ξ ]� spatial correlationmatrix, [L]� lower triangular
matrix of [ξ ].

The lower triangular matrix [L] of spatial correlation
matrix [ξ ] is computed using Cholesky factorisation of the
spatial correlation matrix [ξ ]. For n locations within the
embankment domain, “n” numbers of uniform i.i.d (inde-
pendent and identically distributed) random variables are
generated between 0 and 1 by using the built-in function
“RAND()” in MS Excel. These n uniform i.i.d. are con-
verted into standard Gaussian variables {X} by using another
built-in function, “NORMINV()”. The values of probabil-
ity distribution function of these Gaussian variables are
computed by the function “NORMDIST()”. The correlation
for strength parameters is simulated by taking the prod-
uct of [L]{X}. The product [L]{X} is a vector composed
of correlated Gaussian distribution variables. In this way,
lognormally distributed random values of the soil strength
parameters can be created at different locations within the
embankment domain using the following equations.

ln c′ � μln c′ + σln c′[L]{X} (15)

ln ϕ′ � μln ϕ′ + σln ϕ′ [L]{X} (16)

ln γ � μln γ + σln γ [L]{X}, (17)

where,ln c′ � lognormal distribution effective cohesion, ln ϕ′
� lognormal distribution of effective angle of internal fric-
tion, ln γ � lognormal distribution of unit weight, μln c′ �
Mean of ln c′,σln c′ � Standard deviation of ln c′, μln ϕ′ �
Mean of ln ϕ′, σln ϕ′ � Standard deviation of ln ϕ′, μln γ �
Mean of ln γ ,σln γ � Standard deviation of ln γ .

The cross-correlated random values of c′, ϕ′, and γ

obtained from Eqs. (10–12) are further used in Eqs. (15–17)
to generate random fields of soil strength parameters. In this
way, spatially distributed random fields of c′, ϕ′, and γ can
be generated which are also cross-correlated with each other.
Now, the target random values of strength parameters at
selected location within the domain is computed with the
help of equations given below.

c′ � exp
{
ln c′} (18)

ϕ′ � exp
{
ln ϕ′} (19)

γ � exp{ln γ }. (20)

The overall procedure of computing random values of
strength parameters at different location within the embank-
ment domain is simulated in aMS-Excel spreadsheet usually
called as Uncertainty Model (UM) worksheet. The DM
and UM worksheet are interlinked together by setting the
cell references for nominal values of strength parameters
in the DM worksheet with the cell references of the ran-
dom values of strength parameters in UM worksheet. After
interlinking of the DM and UM worksheets, the probabilis-
tic slope stability analysis is performed with MCS and SS
techniques using the UPSS 3.0 module, which is a suite of
Excel Visual Basic application (VBA) designed as an Excel
Add-in. The UPSS-3.0 was originally developed by Au and
Wang (2014). Additional Excel functions are enhanced with
“Add-in” for implementing direct Monte Carlo and Subset
Simulation procedures, and compiled as an independent file
with an extension of “. Xla” in Excel (Au and Wang 2014;
Shekhar et al. 2022). After installation, the “UPSS 3.0 Add-
in” launches with Excel by default, and then “Add-in” can
be used similarly to Excel’s built-in functionalities. More
details about UPSS-3.0 Add-in can be found in an excellent
description given by Au and Wang (2014).

MonteCarlo simulation (MCS) MCS is an efficient technique
for execution of computer-based simulations of probabilistic
analysis of any stochastic system where N fields are gen-
erated considering random variations of input variables to
determine the system response. The probability of failure
is expressed simply by computing the ratio of the num-
ber of trials in which the system response has exceeded a
threshold limit to the total number of trial runs. The required
input data for executing PSSA with MCS are the number of
runs, number of samples per run (N ), random variables {X}
and the system response

(
y � 1

/
FS

)
. N number of sys-

tem responses (y1, y2, . . . , yN ) are generated as an output
variable in MCS worksheet. The random values of strength
parameters and FS values are also recorded at different loca-
tions with help of this analysis. A MCS chart is generated
after performing probabilistic analysis by MCS technique.
MCS chart is basically a CCDF plot between the probability
of system and various threshold values of system response.
The probability of failure is the probability of the system
when the threshold value of system response is just greater
than 1.0.

Subset simulation (SS) Subset simulation is an enhanced
version of MCS based on Bayes theorem, which can com-
pute the probability of failure

(
Pf

)
lower than 0.001 (Wang

et al. 2011). SS technique requires fewer samples than MCS
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to determine the probability of failure with the desired accu-
racy level. Markov Chain Monte Carlo (MCMC) technique
is used to generate random samples as per specified probabil-
ity distribution function (PDF). More details of the MCMC
algorithm can be found in the works (Au and Wang 2014).
The event with the low failure probability is known to be
expressed using a series of intermediate failure probabilities
in the circumstances with higher conditional failure proba-
bility. In this method, probability of failure

(
Pf

)
is computed

as follows:

Pf � P(Y > y1)P(Y > y2|Y > y1) × . . . × P(Y > yn |Y > yN−1),
(21)

where Y � Event, and y1, y2, ...., yN � threshold values of
system response.

PSSA using subset simulation is executed by “UPSS 3.0
ADD-IN”, with given general inputs such as number of runs,
number of samples per level (N ), conditional probability
(p0), number of simulation levels (m), random variables
{X}, probability distribution function (PDF) and driving vari-
able

(
Y � 1

/
FS

)
. While performing probabilistic analysis

using SS, the variable (y1) is the same as the conditional
probability of failure (p0). N number of threshold values of
system response

(
y � 1

/
FS

)
are generated as the output of

this analysis corresponds to a particular conditional proba-
bility value, and 0.10 is the appropriate value of conditional
probability (p0) is because SS achieves the highest precision
and accuracy in computing Pf of the system. Au and Wang
(2014) also recommended the value p0 is 0.10 (Au et al.
2010; Wang et al. 2011; Au and Wang 2014).

2.2.3 Probabilistic major andminor principal stress

It would be interesting to observe the probabilistic response
of the embankment when the failure is initiated. For this
purpose, the authors chose to report the variation of effec-
tive major principal stress

(
σ ′
1

)
and effective minor principal

stress
(
σ ′
3

)
that develops on the slip surface of the embank-

ment. Slip surface represents the failure plane, the normal
stress

(
σ ′) and shear stress

(
τ ′) generated at the base of

the slices should lie on the Mohr–Coulomb failure envelope.
Figure 3 shows aMohr–Coulomb failure envelope where the
straight-line envelope touches theMohr’s circle atM

(
σ ′, τ ′).

The centre of the Mohr’s circle is at C. Effective major prin-
cipal stress

(
σ ′
1

) � OH, effective minor principal stress
(
σ ′
3

)

�OQ, effective normal stress
(
σ ′) �ON, and effective shear

stress
(
τ ′) � MN are represented on Mohr circle in Fig. 2.

Themajor andminor effective principal stress is computed
in terms of σ ′ and τ ′. Since, �QMN is a right-angle triangle
(refer to Fig. 2), and therefore, we have � QMN � 45

◦ − ϕ′
2 .

Table 1 Properties of soil of earthen embankment

Soil properties Embankment Foundation

Effective cohesion
(
c′) in kPa 15 45

Effective angle of friction
(
ϕ′) in ◦ 20 24

Unit weight
(
γ ′) in kN

/
m3 19 20

Therefore,

QN

MN
� tan

(
45

◦ − ϕ′

2

)
(22)

QN � MN tan

(
45

◦ − ϕ′

2

)
� τ ′ tan

(
45

◦ − ϕ′

2

)
(23)

OQ � ON − QN (24)

σ ′
3 � σ ′ − τ ′ tan

(
45

◦ − ϕ′

2

)
. (25)

Once theminor principal stress
(
σ ′
3

)
is foundout, themajor

principal stress
(
σ ′
1

)
can be obtained from the well-known

relationship (Das 2010):

σ ′
1 � σ ′

3Nϕ′ + 2c′√Nϕ′ , (26)

where Nϕ′ � flow value � tan2
(
45

◦
+ ϕ′

2

)

3 Results and discussion

Figure 3 shows a 12.0 m high saturated earthen embankment
with 8.0 m crest width and 68.0 m base width having 2.50
H:1.0 V upstream and downstream slope rested on a 12.0 m
depth foundation. The dimensions of the embankment aswell
as the centre of rotation “O”(xc, yc) and radius (rc) of critical
slip circle are also displayed in the figure. The mean values
of spatially variable soil strength parameters i.e., effective
cohesion

(
c′), effective angle of friction

(
ϕ′) and unit weight

(γ ) are shown in Table 1. The influence of spatial variation of
cross-correlated soil parameters c′,ϕ′ and γ with the effects
of various types of loading such as pore pressure and seismic
loading on the stability of the embankment is considered.

The slope stability analysis of the earthen embankment
is performed using ordinary method of slices based on limit
equilibriummethod.Theprobabilistic slope stability analysis
(PSSA) is performed by creating spatially variable ran-
dom fields of the related strength parameters

(
c′, ϕ′, and γ

)

which are also correlated to each other using Eqs. (14–17).
The seismic loading on the embankment is simulated using
pseudo-static method where horizontal seismic coefficient
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Fig. 2 Mohr–Coulomb failure
envelope

Fig. 3 Dimension of earthen
embankment

(kh) has been varied from 0.0, 0.05, 0.10, 0.15–0.20. Melo
and Sharma (2004) presented an excellent treatise on the
topic of choosing kh for seismic slope stability analysis
following Pseudo-static method. Pseudo-static method was
originally proposed by Terzaghi (1950) for conducting seis-
mic slope stability analysis, and it still remains very popular
among the practising engineers and researchers because of
themethods simplicity and robustness in assessing the stabil-
ity of the slope under earthquake loadings. Table 2 shows the
various kh values used by the researchers in the past. It can
be seen that kh � 0.05–0.20 have been used to represent mild
to violent, destructive earthquakes based on this information,
kh value considered in the present study are 0.0, 0.05, 0.10,
0.15 and 0.20.

The pore pressure loading is generated by considering dif-
ferent values of pore pressure ratio (ru) � 0.0, 0.25 and 0.50,
respectively. It is necessary to understand that in the present
analysis, the pore pressure loading is simulated by constant
ru values (refer to Eq. 4). However, ru is also dependent on γ

which is considered to be a random parameter in the present
analysis. Ideally, the correlation between c′, ϕ′, γ and ru
should be considered and all these four parameters should
be treated as random variables. However, it should also be
appreciated that the specification of pore pressure ratio ru is a
simple way to consider the effect of pore water pressure for a
fully saturated embankment domain when the exact location
of phreatic surface within the embankment is unknown. In

Table 2 Recommended horizontal seismic coefficients (kh). Source:
Melo and Sharma (2004)

Horizontal seismic
coefficient (kh)

Description

0.05–0.15 In the United States

0.12–0.25 In Japan

0.10 “Severe
earthquakes”

Terzaghi (1950)

0.20 “Violent,
destructive”
earthquakes

0.50 “Catastrophic”
earthquakes

0.10–0.20 Seed (1979), FS ≥ 1.15

0.10 Major
Earthquake,
FS > 1.0

Corps of Engineers
(1982)

0.15 Great Earthquake,
FS > 1.0

1/2 to 1/3 of PHA Marcuson and Franklin (1983),
FS > 1.0

1/2 of PHA Hynes-Griffin and Franklin (1984),
FS > 1.0

FS � factor of safety, PHA peak horizontal acceleration, in g’s
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Fig. 4 Deterministic model worksheet

Fig. 5 Covariance matrix [�], Correlation matrix [ξ ] and the lower matrix [L] for the embankment domain

order to simplify the analysis procedure, the pore pressure
loading is imposed through constant ru values.

Figure 4 shows the deterministic model (DM) worksheet
that performs slope analysis of an embankment following
the ordinary slice method. The various input parameters i.e.
height of slope (H), centre of critical slip circle (xc, yc),
radius of critical slip circle (rc), effective cohesion

(
c′), effec-

tive angle of internal friction
(
ϕ′), and unit weight (γ ) are

considered to compute FS of slope. The strength parame-
ters of the embankment’s soil i.e., c′, ϕ′ and unit weight γ

are arranged along the depth of the embankment that is sub-
divided into 12 layers of 1.0m depth each. The slope analysis
procedure is shown in detail in Fig. 3 where various terms
are: TLx � top left x co-ordinate of slice, TLy � top left y
co-ordinate of slice, BLx � bottom left x co-ordinate of slice,
BLy � bottom left y co-ordinate of slice, TRx � top right x
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Fig. 6 Uncertainty modelling (UM) worksheet

co-ordinate of slice, TRy � top right y co-ordinate of slice,
BRx � bottom right x co-ordinate of slice, BRy � bottom
right y co-ordinate of slice. The driving moment (MD) and
resisting moment (MR) are then computed to determine FS
of slope.

The covariance matrix [�] for cross-correlated c′,ϕ′ and
γ with input values μC ′ , μϕ′ ,μγ ,ρ1,ρ2,ρ3,υc′ ,υϕ′ and υγ is
calculated using Eq. (8). The earthen embankment is subdi-
vided into 12 layers of 1.0 m depth horizontally and 2.0 m is
taken as the correlation length (θ) to develop the correlation
matrix [ξ ] using Eq. (13). The developed correlation matrix
[ξ ] is a 13 × 13 matrix. The lower triangular matrix [L] is
computed using Cholesky decomposition of the correlation
matrix [ξ ] using MATLAB. The correlation matrix helps to
find the spatial correlation of random variables c′, ϕ′ and γ

within the embankment domain. Both correlation matrix [ξ ]
and the corresponding lower triangular matrix [L] are shown
in Fig. 5. Also, the covariance matrix [�] is also shown in
Fig. 5 for different choices of υc′ , υϕ′ and υγ .

Figure 6 shows the uncertainty modelling (U.M.) work-
sheet which demonstrates the spatial distribution of cross-
correlated random variables c′, ϕ′ and γ within the embank-
ment domain. To develop the U.M. worksheet, values ofμC ′ ,
μϕ′ , μγ , ρ1, ρ2, ρ3, υc′ , υϕ′ and υγ are given as input param-
eter. Initially, the soil strength parameters are considered
normally distributed and the three-standard normal i.i.d.Z1,
Z2 and Z3 are recorded in the cells D9:F9, respectively.
Then, the cross-correlated random values of c′, ϕ′ and γ

Table 3 Coefficients of variation in properties of soils

Properties of
soil

Type of soil Coefficient of
variation (%)

References

Effective
cohesion(
c′)

Sands and
clays

10–70 Sahin and
Cheung
(2011)

Effective
angle of

friction
(
ϕ′)

Sands 3–12 Duncan
(2000)

Unit weight
(γ )

Sands and
clays

3–7 Duncan
(2000)

are recorded in cell J7, J8 and J9, respectively, using Eqs.
(10–12). The generated values of uniform I.I.D., std. normal
i.i.d.{X}, probability density function (p{X}) are recorded in
cells “D13:P13”, “D14:P14”, and “D15:P15”, respectively,
in the U.M. worksheet on the selected locations. The lognor-
mal distribution of randomvariables c′,ϕ′ and γ are recorded
in cells “D17:P17”, “D18:P18” and “D19:P19”. The lognor-
mally distributed random variables are then converted into
normally distributed random variables c′, ϕ′ and γ in cells
“D21:P21”, “D22:P22”and “D23:P23”, respectively, at the
selected locations within the embankment domain. The rec-
ommended range of variations for different soil parameters
are shown in Table 3 (Branco et al. 2014). Probabilistic anal-
yses are carried out considering different values of coefficient
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Fig. 7 Probabilistic modelling (PM) worksheet

of variation υc′ � 0.25 and 0.50 respectively. Similarly, the
values of υϕ′ � 0.05 and 0.10 and υγ � 0.05 have been used
in the present analyses.

The DM and UM worksheet are interlinked together
by setting the cells “D8:P8”, “D9:P9” and “D10:P10” for
mean values of c′, ϕ′ and γ in the DM worksheet with the
cells “D21:P21”, “D22:P22” and “D23:P23” for the ran-
dom values of strength parameters in the UM worksheet.
The resulting worksheet contains the random values of c′, ϕ′
and γ in cells “D8:P8”, “D9:P9” and “D10:P10” as shown
in Fig. 7. In this worksheet, the probabilistic value of FS of
the slope of earthen embankment and the system response(
y � 1

/
FS

)
are recorded in cells “P4” and “Q4”, respec-

tively. The outcomes of PSSA usingMCS and SS techniques
are presented next.

3.1 Choice of cross-correlation coefficients

In this study, the probabilistic slope stability analysis is per-
formed considering that the strength parameters c′, ϕ′ and γ

are correlated to each other. Here, ρ1 is the cross-correlation
coefficient between c′ and ϕ′, ρ2 is the cross-correlation
between c′ and γ and ρ3 is the cross-correlation between

c′ and γ . The inter-dependencies between these parameters
have been considered to generate the cross-correlated val-
ues of c′, ϕ′ and γ using Eq. (10–12). The cross-correlation
coefficients vary between− 1.0 and 1.0. SivakumarBabu and
Srivastava (2007) considered the range of correlation coef-
ficient from −0.7 < ρ < 0.7 for the soil parameters c′ and
ϕ′. Javankhoshdel and Bathurst (2015) studied the influence
of different combinations of ρ1, ρ2 and ρ3 on slope sta-
bility analysis while representing the correlated behaviours
of c′, ϕ′ and γ . Javankhoshdel and Bathurst (2015) con-
sidered the maximum range of cross-correlation coefficient
−0.5 < ρ < 0.5 and stated that maximum Pf occurs for
the combination of cross-correlation coefficients ρ1 � 0.5,
ρ2 � ρ3 � −0.5. Drained triaxial tests proves that negative
correlations exist between c′ and ϕ′(Lumb 1970; Yucemen
et al. 1973; Cherubini 1997, 2000; Forrest and Orr 2010;
Hata et al. 2012). The negative cross-correlation between
c′ and ϕ′ indicates that when the values of c′ increases,
the values of ϕ′ decreases. According to many researchers
(Chowdhury and Xu 1993; Low and Tang 1997; Sivaku-
mar Babu and Srivastava 2007), a positive cross-correlation
behaviour exists between (ϕ′ and γ ) and (c′ and γ ). Based
on the experimental results, it can be inferred that ρ1 should
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Fig. 8 Effect of different combinations of ρ1, ρ2 and ρ3 on Pf when ru � 0.25, kh � 0.10, υc′ � 0.25,υϕ′ � 0.05 and υγ � 0.05

be negative whereas ρ2 and ρ3 should be positive. Though
Javankhoshdel and Bathurst (2015) checked probability of
failure of clayey soil slopes for both positive and negative
values of ρ1, they also mentioned that positive ρ1 values
were considered out of academic interest only. In the present
work, positive ρ1 values and negative ρ2 and ρ3 have not
been considered as theses correlation trends are not sup-
ported by physical data. In the present work, the considered
ranges of the ρ1, ρ2 and ρ3 values are −1.0 < ρ1 < 0.0,
0.0 > ρ2 > 1.0 and 0.0 > ρ3 > 1.0 respectively. Fol-
lowing the works of Sivakumar Babu and Srivastava (2007),
the combinations of ρ1, ρ2 and ρ3 values have been consid-
ered are (i) ρ1 � −0.7, ρ2 � ρ3 � 0.7 (ii) ρ1 � −0.5,
ρ2 � ρ3 � 0.5 (iii) ρ1 � −0.3, ρ2 � ρ3 � 0.3 and (iv)
ρ1 � −0.1, ρ2 � ρ3 � 0.1. It is checked for which ρ1,
ρ2 and ρ3 combination, the maximum Pf of the soil slope
occurs, and that value is used for running the subsequent
probabilistic slope stability analyses.

Figure 8 shows the plot between Pf (%) and y � 1
/
FS to

analyse the effect of different combination ofρ1,ρ2 andρ3 on
Pf of slope when ru � 0.25, kh � 0.10, υc′ � 0.25,υϕ′ �
0.05 and υγ � 0.05. The Pf is reported when the system
response

(
y � 1

/
FS

)
is just greater than 1.0. When ρ1 �

−0.1, ρ2 � ρ3 � 0.1 is considered,Pf is 11.446%. When
ρ1 � −0.3, ρ2 � ρ3 � 0.3; the Pf is 9.246%. If ρ1 � −0.5,
ρ2 � ρ3 � 0.5, the Pf is 7.818%, and the Pf is 6.336%
when ρ1 � −0.7, ρ2 � ρ3 � 0.7. These data show when
Pf < 50%, the probability of failure of the slope increases
when the value ρ1 increases. Similar observations have also
beenmadeby Javankhoshdel andBathurst (2015) for a clayey
slope.

Figure 9 shows the curve plotted between Pf (%) and
y � 1

/
FS for analyse the effect of different combina-

tion of ρ1, ρ2 and ρ3 on Pf (%) of slope when ru � 0.25,
kh � 0.20,υc′ � 0.50, υϕ′ � 0.10 and υγ � 0.05. The
Pf (%) is reported when the system response

(
y � 1

/
FS

)

is just greater than 1.0. When ρ1 � −0.1, ρ2 � ρ3 � 0.1 is
considered, the Pf of the slope is 73.176%. For ρ1 � −0.3,
ρ2 � ρ3 � 0.3, the Pf is 75.838%. If ρ1 � −0.5,
ρ2 � ρ3 � 0.5, the corresponding Pf is 76.67%, and when
ρ1 � −0.7, ρ2 � ρ3 � 0.7, the value of Pf is 77.378%. It
is noticed that Pf of the slope of the embankment increases
when the value ρ1 decreases. These findings also corrobo-
rate the observations made by Javankhoshdel and Bathurst
(2015).

Table 4 shows the effect of different combinations of ρ1,
ρ2 and ρ3 on Pf of slope for different cases considered in the
analysis. It is noticed that when the Pf is less than 50%, then
the Pf increases with increase in the value of ρ1. Further-
more, when the Pf is greater than 50%, the Pf of the slope
decreases with increase in the value of ρ1. Therefore, it is
concluded that the combination ρ1 � −0.1, ρ2 � ρ3 � 0.1
should be used as this combination of ρ1, ρ2 and ρ3 values
yielding maximum Pf in case of Pf < 50%. On the other
hand, and the combination ρ1 � −0.7, ρ2 � ρ3 � 0.7
should be used for further analyses when Pf > 50%, as
this combination results in maximum Pf of the slope under
consideration. Similar observations have also been made by
previous researchers (Griffiths et al. 2009; Javankhoshdel and
Bathurst 2015) for a clayey slope.
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Fig. 9 Effect of different combinations of ρ1, ρ2 and ρ3 on Pf when ru � 0.25, kh � 0.20,υc′ � 0.50, υϕ′ � 0.10 and υγ � 0.05

3.2 Monte Carlo simulation results

The uncertainty propagation of slope failure analysis by
Monte Carlo simulation is performed next with N � 50,000
samples. The system response variable

(
y � 1

/
FS

)
is cho-

sen from the PM worksheet, whereas the random variables
are chosen from cells “D13:P13” of the UM sheet. The prob-
ability P(Y > y) of the system (Y ) greater than the threshold
value of the system response (y) can be obtained after run-
ning MCS analysis. The values of P(Y > y),y and FS are
recorded in column A, B and C of Fig. 10. Furthermore, the
random values of c′ are recorded from column “D to P”, ran-
dom values of ϕ′ are recorded in column “Q and AC” and
the random values of γ are recorded in column “AD to AP”
within the embankment domain in this worksheet.

Table 5 shows the variation of Pf (%) with number of
samples for MCS analysis for the two cases namely, Case 1:
ru � 0.25, kh � 0.10, υc′ � 0.25, υϕ′ � 0.05, υγ � 0.05
and Case 2: ru � 0.25, kh � 0.20, υc′ � 0.50, υϕ′ � 0.10,
υγ � 0.05, respectively.When the number of samples is less,
there are some variations of Pf noticed; but when the number
of samples is greater than 30,000 then there is convergence in
the reported Pf (%). Therefore, 50,000 samples are enough
to performMCS analysis for the present study. Au andWang
(2014) have recommended thatwhen thePf is very small then
for increase the accuracy of the analysis, MCS is performed
with a large number of samples or the analysis is performed
with subset simulation.

3.3 CCDF perspective for evaluation of Pf

Theprobabilistic slope analysis is carried out considering dif-
ferent pore pressure and seismic loading scenarios. Figure 11
presents theCCDFplot between P(Y > y) vs.y � 1

/
FS for

kh values (i.e., 0.00, 0.05, 0.10, 0.15, 0.20) at ru � 0.0. Simi-
larly, Figs. 12, 13 show theCCDF plot between P(Y > y) vs.

y � 1
/
FS for other ru values (i.e., 0.25 and 0.50). Also, dif-

ferent combinations of coefficient of variation (υ) for c′, ϕ′
and γ are further used in the analysis. The various combina-
tions of

(
υc′ , υϕ′and υγ

)
considered for stability analysis of

the embankment are (0.25, 0.05, 0.05) and (0.50, 0.10, 0.05),
respectively. Since, the system response is y � 1

/
FS, the

slope failure occurs when y > 1.0. The probability of failure(
Pf

)
of the embankment is the probability when y > 1.0

i.e., P(Y > 1.0). The results presented in Figs. 12, 13 reflect
increased chances of slope failure when coefficient of varia-
tions of c′, ϕ′ and γ of the soil of embankment rises. From
the results, it is clear that the probability of failure

(
Pf

)
of

the embankment steadily increases when higher pore water
pressure loading is considered. The trend of the CCDF plot
shows that Pf increases when COV increases along with
the increase in the pore-water pressure ratio. It can be further
noticed that the CCDF plot developed after performingMCS
analysis gives the P(Y > y) up to 0.00002.

InMCSmethod, the Pf is computed by taking the ratio of
number of failed sample and total number of samples. Table
6 represents the Pf with MCS technique for all the cases
which are considered for analysis.

Figure 14 shows the histogram plot of all 50,000 samples
for the analysis case ru � 0.25,kh � 0.10, υc′ � 0.25,
υϕ′ � 0.05 and υγ � 0.05 from MCS analysis. The
histogram clearly displays the number of samples having
FS < 1.0 which are failed samples. It is clearly notice that
5723 samples are failed out of 50,000 samples during PSSA
with MCS technique. This plot has been provided only for
the purpose of illustration. Similarly, histogram plots can be
shown for other analysis cases.

3.4 Subset simulation results

Next, PSSA is performed with Subset Simulation (SS) tech-
nique. The UPSS-3.0 module written in Visual Basic code

123



Multiscale and Multidisciplinary Modeling, Experiments and Design (2024) 7:191–215 203

Table 4 The effects of
cross-correlation coefficients on
probability of failure of the
embankment

Loading on embankment Coefficient of variation Cross-correlation coefficient Pf (%)

ru kh υc′ υϕ′ υγ ρ1 ρ2 � ρ3

0.0 0.0 0.25 0.05 0.05 − 0.1 0.1 0.000

− 0.3 0.3 0.000

− 0.5 0.5 0.000

− 0.7 0.7 0.000

0.50 0.10 0.05 − 0.1 0.1 1.042

− 0.3 0.3 0.454

− 0.5 0.5 0.140

− 0.7 0.7 0.050

0.05 0.25 0.05 0.05 − 0.1 0.1 0.104

− 0.3 0.3 0.061

− 0.5 0.5 0.050

− 0.7 0.7 0.044

0.50 0.10 0.05 − 0.1 0.1 3.630

− 0.3 0.3 2.230

− 0.5 0.5 1.190

− 0.7 0.7 0.340

0.10 0.25 0.05 0.05 − 0.1 0.1 0.710

− 0.3 0.3 0.374

− 0.5 0.5 0.216

− 0.7 0.7 0.050

0.50 0.10 0.05 − 0.1 0.1 10.340

− 0.3 0.3 8.590

− 0.5 0.5 6.690

− 0.7 0.7 5.010

0.15 0.25 0.05 0.05 − 0.1 0.1 6.000

− 0.3 0.3 4.562

− 0.5 0.5 2.968

− 0.7 0.7 1.878

0.50 0.10 0.05 − 0.1 0.1 21.06

− 0.3 0.3 20.05

− 0.5 0.5 17.74

− 0.7 0.7 16.68

0.20 0.25 0.05 0.05 − 0.1 0.1 26.496

− 0.3 0.3 24.560

− 0.5 0.5 22.960

− 0.7 0.7 22.720

0.50 0.10 0.05 − 0.1 0.1 39.880

− 0.3 0.3 37.657

− 0.5 0.5 36.542

− 0.7 0.7 35.103

0.25 0.0 0.25 0.05 0.05 − 0.1 0.1 0.104

− 0.3 0.3 0.090

− 0.5 0.5 0.020
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Table 4 (continued)
Loading on embankment Coefficient of variation Cross-correlation coefficient Pf (%)

ru kh υc′ υϕ′ υγ ρ1 ρ2 � ρ3

− 0.7 0.7 0.000

0.50 0.10 0.05 − 0.1 0.1 6.880

− 0.3 0.3 4.267

− 0.5 0.5 3.065

− 0.7 0.7 1.712

0.05 0.25 0.05 0.05 − 0.1 0.1 1.440

− 0.3 0.3 1.148

− 0.5 0.5 1.121

− 0.7 0.7 0.424

0.50 0.10 0.05 − 0.1 0.1 14.186

− 0.3 0.3 12.520

− 0.5 0.5 9.720

− 0.7 0.7 9.300

0.10 0.25 0.05 0.05 − 0.1 0.1 11.446

− 0.3 0.3 9.246

− 0.5 0.5 7.818

− 0.7 0.7 6.336

0.50 0.10 0.05 − 0.1 0.1 26.720

− 0.3 0.3 25.480

− 0.5 0.5 24.600

− 0.7 0.7 23.050

0.15 0.25 0.05 0.05 − 0.1 0.1 38.660

− 0.3 0.3 37.390

− 0.5 0.5 36.340

− 0.7 0.7 35.762

0.50 0.10 0.05 − 0.1 0.1 43.978

− 0.3 0.3 43.889

− 0.5 0.5 42.810

− 0.7 0.7 42.000

0.20 0.25 0.05 0.05 − 0.1 0.1 61.730

− 0.3 0.3 63.040

− 0.5 0.5 63.210

− 0.7 0.7 64.000

0.50 0.10 0.05 − 0.1 0.1 73.176

− 0.3 0.3 75.838

− 0.5 0.5 76.670

− 0.7 0.7 77.378

0.50 0.0 0.25 0.05 0.05 − 0.1 0.1 4.116

− 0.3 0.3 3.781

− 0.5 0.5 2.850

− 0.7 0.7 2.190

0.50 0.10 0.05 − 0.1 0.1 20.460
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Table 4 (continued)
Loading on embankment Coefficient of variation Cross-correlation coefficient Pf (%)

ru kh υc′ υϕ′ υγ ρ1 ρ2 � ρ3

− 0.3 0.3 18.470

− 0.5 0.5 17.870

− 0.7 0.7 17.520

0.05 0.25 0.05 0.05 − 0.1 0.1 21.150

− 0.3 0.3 19.510

− 0.5 0.5 19.400

− 0.7 0.7 18.800

0.50 0.10 0.05 − 0.1 0.1 35.910

− 0.3 0.3 35.180

− 0.5 0.5 34.540

− 0.7 0.7 34.470

0.10 0.25 0.05 0.05 − 0.1 0.1 55.290

− 0.3 0.3 56.000

− 0.5 0.5 57.750

− 0.7 0.7 59.490

0.50 0.10 0.05 − 0.1 0.1 58.180

− 0.3 0.3 58.490

− 0.5 0.5 59.560

− 0.7 0.7 60.430

0.15 0.25 0.05 0.05 − 0.1 0.1 76.760

− 0.3 0.3 78.250

− 0.5 0.5 80.430

− 0.7 0.7 83.160

0.50 0.10 0.05 − 0.1 0.1 85.240

− 0.3 0.3 87.500

− 0.5 0.5 89.740

− 0.7 0.7 90.200

0.20 0.25 0.05 0.05 − 0.1 0.1 92.210

− 0.3 0.3 94.620

− 0.5 0.5 97.990

− 0.7 0.7 98.200

0.50 0.10 0.05 − 0.1 0.1 98.330

− 0.3 0.3 99.200

− 0.5 0.5 99.500

− 0.7 0.7 99.648

is used to run the SS analysis. It is necessary to specify the
number of samples per level (N), number of simulation level
(m), conditional probability (p0). The system response vari-
able y � 1

/
FS, random values of standard normal i.i.ds

{X}, probability density function of {X} i.e., P{X} are cho-
sen in the UM worksheet. Au and Wang (2014) suggested
that the conditional probability p0 � 0.10 is a good choice
for most problems, and the same value is used in the current
work. The developed worksheet with SS analysis is shown

in Fig. 15. The probability P(Y > y) of system (Y ) greater
than threshold value of system response (y) can be obtained
after performing SS analysis. These values of P(Y > y), y
and FS are recorded in column A, B and C of Fig. 16. Fur-
thermore, the random values of c′ are recorded from column
“D to P”, random values of ϕ′ are recorded in column “Q to
AC” and the random values of γ are recorded in column “AD
to AP” within the embankment domain in this worksheet.
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Fig. 10 PSSA using Monte Carlo simulation

Table 5 Variation of Pf (%) with number of samples for MCS analysis

Number of samples 5000 1000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

Pf (%) for Case 1 10.94 10.93 11.24 11.58 11.27 10.66 11.01 11.21 11.26 11.44

Pf (%) for Case 2 77.40 78.14 77.39 77.03 77.56 77.73 77.95 77.65 77.38 77.37

Fig. 11 CCDF plot of P(Y > y) vs. y when ru � 0.00 from MCS analysis
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Fig. 12 CCDF plot of P(Y > y) vs.y when ru � 0.25 after MCS analysis

Fig. 13 CCDF plot of P(Y > y) vs.y when ru � 0.50 from MCS analysis

The probabilistic slope analysis is carried out consider-
ing different pore pressure and seismic loading scenarios.
Figure 16 presents the CCDF plot between P(Y > y)
vs.y � 1

/
FS for various kh values (i.e., 0.00, 0.05, 0.10,

0.15, 0.20) at ru � 0.0. Similarly, Figs. 18, 19 show theCCDF
plot between P(Y > y) vs. y � 1

/
FS for other ru values

(i.e., 0.25 and 0.50). Also, different combinations of coeffi-
cient of variation (υ) for c′, ϕ′ and γ are further used in the
analysis. The various combinations of

(
υc′ , υϕ′and υγ

)
con-

sidered for stability analysis of the embankment are (0.25,
0.05, 0.05) and (0.50, 0.10, 0.05), respectively. Since, the
system response is y � 1

/
FS, slope failure occurs when

y > 1.0. The probability of failure
(
Pf

)
of the embankment

is the probability when y > 1.0 i.e., P(Y > 1.0). The results
presented in Figs. 16, 17, 18 reflect increased chances of

slope failure when coefficient of variations of c′, ϕ′ and γ of
the soil of embankment rises. From the results, it is clear that
the probability of failure

(
Pf

)
of the embankment steadily

increases when higher static seismic loading is considered.
The trend of the CCDF plot shows that Pf increases when
COV increases along with the increase in seismic loading.
It can be further noticed that the CCDF plot developed after
performing SS analysis gives the P(Y > y) up to 0.00001.

Table 7 shows the Pf of the embankment fromSSanalyses
for different loading cases as well as the failed sampled data.
SS analysis is run for m � 3 simulation levels. Thus, three
bins of conditional samples are generated denoted by B1 �
{Y ≤ y1}, B2 � {y1 < Y ≤ y2} and B3 � {Y > y3}.The
number of samples considered in these bins are denoted by
N1, N2, and N3, respectively. Here, N1 � N2 � (1− 0.1)N
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Table 6 Pf estimation from
failed sample data for MCS
analyses

Loading on
embankment

Coefficient of
variation

Total number of
samples

Number of failed
samples

Pf (%)

ru kh υc′ υϕ′ υγ

0.0 0.00 0.25 0.05 0.05 50,000 0 0.000

0.50 0.10 0.05 50,000 521 1.042

0.05 0.25 0.05 0.05 50,000 52 0.104

0.50 0.10 0.05 50,000 1815 3.630

0.10 0.25 0.05 0.05 50,000 355 0.710

0.50 0.10 0.05 50,000 5170 10.340

0.15 0.25 0.05 0.05 50,000 3000 6.000

0.50 0.10 0.05 50,000 10,530 21.060

0.20 0.25 0.05 0.05 50,000 13,248 26.496

0.50 0.10 0.05 50,000 19,940 39.880

0.25 0.00 0.25 0.05 0.05 50,000 52 0.104

0.50 0.10 0.05 50,000 3440 6.880

0.05 0.25 0.05 0.05 50,000 720 1.440

0.50 0.10 0.05 50,000 7093 14.189

0.10 0.25 0.05 0.05 50,000 5723 11.446

0.50 0.10 0.05 50,000 13,360 26.720

0.15 0.25 0.05 0.05 50,000 19,330 38.660

0.50 0.10 0.05 50,000 21,989 43.978

0.20 0.25 0.05 0.05 50,000 32,000 64.000

0.50 0.10 0.05 50,000 38,685 77.370

0.50 0.00 0.25 0.05 0.05 50,000 2058 4.116

0.50 0.10 0.05 50,000 10,230 20.460

0.05 0.25 0.05 0.05 50,000 10,575 21.150

0.50 0.10 0.05 50,000 17,955 35.910

0.10 0.25 0.05 0.05 50,000 29,745 59.490

0.50 0.10 0.05 50,000 30,215 60.430

0.15 0.25 0.05 0.05 50,000 41,580 83.160

0.50 0.10 0.05 50,000 45,100 90.200

0.20 0.25 0.05 0.05 50,000 49,100 98.200

0.50 0.10 0.05 50,000 49,824 99.648

and N3 � N , where N is the number of samples at each level.
The number of failed samples in these bins are denoted by
N1 f , N2 f and N3 f respectively. The probability of failure(
Pf

)
for SS analysis can be calculated using the equation:

Pf �
∑

P(F |Bi )P(Bi ), (27)

where the probabilities of failure of bins of conditional sam-
ples at each simulation level i can be expressed as P(F |Bi ) �
Ni f
Ni

. Here, Bi are the bins of conditional samples at each sim-
ulation level and the probabilities of failure of these bins
are expressed as P(Bi ). Here,P(B1) ≈ 1 − 0.1 � 0.9,
P(B2) ≈ 0.1 − 0.12 � 0.09 and P(B3) ≈ 0.12 � 0.01
where p0 � 0.1 is the conditional probability.

In Table 7, the Pf values listed in the last column have
been calculatedusingEq. (27). For example,when ru � 0.25,
kh � 0.15, υc′ � 0.25, υϕ′ � 0.05, υγ � 0.05, it is seen that
N1 � N2 � 450 and N3 � 500. Furthermore,N1 f � 145,N2 f

� 450 and N3 f � 500. Therefore,Pf (%) �
(
0.9 × 145

450

)
+

(
0.09 × 450

450

)
+

(
0.01 × 500

500

)
� 39.00%. In this way, the Pf

values for all loading situations are determined and shown in
Table 7.

Figure 19 shows the histograms obtained from SS for the
analysis case ru � 0.25,kh � 0.10,υc′ � 0.25,υϕ′ � 0.05, and
υγ � 0.05. In the SS technique, the analysis is performed in
three simulation levels. Therefore, the histograms are plotted
for all the three levels. Figure 19a shows that the histogram
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Fig. 14 FS Histogram obtained from MCS for ru � 0.25, kh � 0.10, υc′ � 0.25, υϕ′ � 0.05, υγ � 0.05

Fig. 15 PSSA using subset simulation

for 450 samples in level 1. The histogram plot shows the
frequency of all 450 samples having different FS values. It
is clearly seen that 8 samples have failed in level 1, because
these eight samples have values FS < 1.0. Figure 19b shows
the histogram of 450 samples having different FS values in
level 2. It is clearly seen that all 450 samples have failed
because FS values for all samples are less than 1.0. Likewise,
Fig. 19c shows the histogram plot for 500 samples generated

in simulation level 3. Here also, all 500 samples are seen to
have failed as FS < 1.0.

3.5 Time estimates of PSSA usingMCS and SS

In the present study, PSSA has been performed with both
MCS and SS technique. It is noticed that in the present
study, 50,000 samples are used to perform the MCS and
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Fig. 16 CCDF plot of P(Y > y) vs.y when ru � 0.00 after SS analysis

Fig. 17 CCDF plot of P(Y > y) vs.y when ru � 0.25 after SS analysis

only 1400 samples are used in three simulation levels to
achieve the accuracy to determine the Pf of slope of the
embankment with desired level of accuracy. It is self-evident
that SS requires less time than MCS, because SS technique
requires significantly less number of samples in compari-
son to required number of samples in MCS technique. It is
also noticed that when the number of samples increases, the
required time also increases in MCS. MCS and SS analysis
time for all cases are shown in Table 8. It is noticed that the
minimum analysis time occurs in the case ru � 0.0, kh �
0.20, υc′ � 0.50, υϕ′ � 0.10, υγ � 0.05. In this case MCS
analysis time is 307.45 s, whereas SS analysis time is 9.20 s.
Themaximum analysis time occurs in the case ru � 0.0, kh �
0.0, υc′ � 0.25, υϕ′ � 0.05, υγ � 0.05. In this case, 492.15 s
and SS analysis time is 19.12 s. From the Table 7, it is clearly

observed that SS analysis time is very less than MCS analy-
sis. Therefore, it is concluded that that SS is a more efficient
technique for performing probabilistic analysis than MCS.

3.6 Probabilistic variation of�′
1 and�′

3
along the slip surface

After the probabilistic slope stability analysis of the embank-
ment is carried out, it would be interesting to investigate the
behaviour of probabilistic output variables. For this purpose,
themajor andminor principal stresses (σ ′

1 and σ ′
3) developing

along the slip surface of the failure mass are plotted for the
cases: ru � 0.25, kh � 0.10, υc′ � 0.25, υϕ′ � 0.05, υγ � 0.05
and ru � 0.25, kh � 0.20, υc′ � 0.50, υϕ′ � 0.10, υγ � 0.05
when the slope has just failed i.e., when y � 1

/
FS > 1.0.
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Fig. 18 CCDF plot of P(Y > y) vs.y when ru � 0.50 after SS analysis

For these cases, the probabilistic slope stability is performed
with SS technique using the random values of the input vari-
ables (c′,ϕ′ and γ ) and the variation of σ ′

1 vs. σ
′
3 along the slip

surface is shown in Fig. 20. A best-fit line is also drawn rep-
resenting the failure envelope in terms of σ ′

1 and σ ′
3. Though

the plots are made only for the two cases to illustrate the
response of probabilistic output parameters, the same exer-
cise can be carried out for all other analyses cases. These
plots are helpful in reflecting the effects of spatial random-
ness of cohesion and angle of internal friction on the failure
envelope.

4 Conclusions

The present study is primarily concerned with probabilistic
slope stability analysis of an earthen embankment consider-
ing spatially variable cross-correlated soil parameters, i.e.,
effective cohesion

(
c′), effective angle of internal friction(

ϕ′) and unit weight (γ ). Previous researchers did not con-
sider the cross-correlation and spatial correlation together
for performing probabilistic slope stability analysis with
MCS and SS. In this study, PSSA of embankment has been
performed by considering the cross-correlation and spatial
variation of random variables with MCS and SS technique
when seismic and pore pressure loading act simultaneously.
A detailed study on the probabilistic behaviour of earthen
embankment considering spatial variationof cross-correlated
soil parameters with pore pressure and earthquake loadings
was long overdue, and the issue is addressed in this study.
The probabilistic analysis is performed with MCS and SS
techniques using the UPSS 3.0 module developed in an MS-
Excel spreadsheet platform by Au and Wang (2014). The

following conclusions are drawn based on results obtained
from the analyses:

1. The analysis shows that the cross-correlation between
random variables and spatial distribution of random vari-
ables highly impact the stability of embankment. There-
fore, it is necessary to consider both cross-correlation
and spatial correlation simultaneously during probabilis-
tic analysis.

2. It is found that when Pf < 50%, Pf increases with
increase in cross-correlation coefficient of c′ and ϕ′ and
Pf decreases with increase in cross-correlation coeffi-
cient of c′ and ϕ′ when Pf > 50%.

3. It is observed that the higher number of samples move
towards the failure region with increase in υc′ , υϕ′ and υγ

as they introduce higher uncertainty in the system. In this
study, two different combinations of coefficient of varia-
tion in c′, ϕ′ and γ � (0.25, 0.05, 0.05), and (0.50, 0.10,
0.05) are considered in the slope stability analysis. It is
further noticed that Pf increases with increase in υc′ , υϕ′
and υγ resulting in reduced stability of the embankment.

4. The analysis shows that Pf of earthen embankment
increases with an increase in horizontal seismic coef-
ficient (kh) and pore pressure ratio (ru). The CCDF plots
show that when kh and ru values are increased, the CCDF
plots shift towards right indicating a movement of the
samples towards the failure region. The CCDF plots help
us to precisely locate the conditionwhen the failure is ini-
tiated by observing the first random field corresponding
to the system response

(
y > 1

/
FS

)
.

5. The most critical condition for the stability of earthen
embankment when ru � 0.50,kh � 0.20, υc′ � 0.50,
υϕ′ � 0.10, υγ � 0.05 are considered in the slope sta-
bility analysis. In this case, Pf � 99.80% is reported.
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Table 7 Pf estimation from failed samples data for SS analyses

Loading on embankment Coefficient of variation Level 1 Level 2 Level 3 Pf (%)

ru kh υc′ υϕ′ υγ N1 N1 f N2 N2 f N3 N3 f

0.0 0.00 0.25 0.05 0.05 450 0 450 0 500 1 0.002

0.50 0.10 0.05 450 0 450 11 500 500 1.22

0.05 0.25 0.05 0.05 450 0 450 0 500 100 0.20

0.50 0.10 0.05 450 0 450 148 500 500 3.96

0.10 0.25 0.05 0.05 450 0 450 0 500 460 0.92

0.50 0.10 0.05 450 6 450 450 500 500 11.20

0.15 0.25 0.05 0.05 450 0 450 253 500 500 6.06

0.50 0.10 0.05 450 72 450 450 500 500 24.40

0.20 0.25 0.05 0.05 450 97 450 450 500 500 29.40

0.50 0.10 0.05 450 171 450 450 500 500 44.20

0.25 0.00 0.25 0.05 0.05 450 0 450 0 500 85 0.17

0.50 0.10 0.05 450 0 450 344 500 500 7.88

0.05 0.25 0.05 0.05 450 0 450 23 500 500 1.46

0.50 0.10 0.05 450 27 450 450 500 500 15.40

0.10 0.25 0.05 0.05 450 8 450 450 500 500 11.60

0.50 0.10 0.05 450 87 450 450 500 500 27.40

0.15 0.25 0.05 0.05 450 145 450 450 500 500 39.00

0.50 0.10 0.05 450 178 450 450 500 500 45.60

0.20 0.25 0.05 0.05 450 271 450 450 500 500 64.20

0.50 0.10 0.05 450 346 450 450 500 500 79.20

0.50 0.00 0.25 0.05 0.05 450 0 450 176 500 500 4.52

0.50 0.10 0.05 450 55 450 450 500 500 20.90

0.05 0.25 0.05 0.05 450 56 450 450 500 500 21.20

0.50 0.10 0.05 450 136 450 450 500 500 37.20

0.10 0.25 0.05 0.05 450 257 450 450 500 500 61.40

0.50 0.10 0.05 450 258 450 450 500 500 61.60

0.15 0.25 0.05 0.05 450 376 450 450 500 500 85.20

0.50 0.10 0.05 450 402 450 450 500 500 90.40

0.20 0.25 0.05 0.05 450 441 450 450 500 500 98.20

0.50 0.10 0.05 450 449 450 450 500 500 99.80

Fig. 19 Histograms of FS values from SS analysis with ru � 0.25, kh � 0.10, υc′ � 0.25, υϕ′ � 0.05,υγ � 0.05 for a level 1, b level 2 and c level 3
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Table 8 MCS and SS analyses
time Loading on embankment Coefficient of variation Analysis time in

second

ru kh υc′ υϕ′ υγ MCS SS

0.0 0.00 0.25 0.05 0.05 492.15 19.12

0.50 0.10 0.05 410.23 12.15

0.05 0.25 0.05 0.05 477.35 18.00

0.50 0.10 0.05 393.10 11.05

0.10 0.25 0.05 0.05 453.05 17.27

0.50 0.10 0.05 339.34 10.00

0.15 0.25 0.05 0.05 412.00 12.08

0.50 0.10 0.05 314.36 9.50

0.20 0.25 0.05 0.05 388.17 11.15

0.50 0.10 0.05 307.45 9.20

0.25 0.00 0.25 0.05 0.05 408.05 14.18

0.50 0.10 0.05 345.06 11.53

0.05 0.25 0.05 0.05 396.00 13.00

0.50 0.10 0.05 342.16 11.30

0.10 0.25 0.05 0.05 367.45 11.50

0.50 0.10 0.05 340.00 10.50

0.15 0.25 0.05 0.05 350.35 10.50

0.50 0.10 0.05 335.17 10.00

0.20 0.25 0.05 0.05 360.05 11.26

0.50 0.10 0.05 368.57 11.40

0.50 0.00 0.25 0.05 0.05 383.10 11.50

0.50 0.10 0.05 358.05 11.20

0.05 0.25 0.05 0.05 377.25 11.42

0.50 0.10 0.05 340.33 11.00

0.10 0.25 0.05 0.05 412.24 16.10

0.50 0.10 0.05 435.00 17.00

0.15 0.25 0.05 0.05 418.28 16.20

0.50 0.10 0.05 452.29 17.19

0.20 0.25 0.05 0.05 427.00 16.50

0.50 0.10 0.05 467.15 17.20

6. The CCDF plot shows that MCS computes the value of
P(Y > y) up to 10−4 level but SS is able to compute the
value of P(Y > y) up to 10−5 level. Here, it is found that
MCS fails to generate the failure sample in case ru � 0.0,
kh � 0.0, υc′ � 0.25, υϕ′ � 0.05, υγ � 0.05 and
report Pf � 0.0 which is unrealistic but SS generates
failure samples in this case and report the Pf � 0.002%.
Therefore, it is concluded that SS is the more suitable
technique for the probabilistic analysis for system with
low Pf values.

7. The SS analysis time is very less compared toMCS anal-
ysis time. Therefore, SS is deemed as a more efficient
technique than MCS for probabilistic analysis.

8. The probabilistic response of output parameters is shown
in terms of major and minor effective principal stresses
(σ ′

1 and σ ′
3) that develop along the slip surface, and the

plots display the nature of variation of these parame-
ters due to spatial randomness of the corresponding soil
parameters.

9. Some researchers have treated kh as a random vari-
able following exponential and lognormal distributions
(Johari et al. 2015a, b; Hamrouni et al. 2021). It would be
interesting to investigate the performance ofMCS and SS
simulation in probabilistic slope stability analysis consid-
ering both pore pressure ratio (ru) and horizontal seismic
coefficient (kh) as spatially distributed random variables.
In future, the authors will communicate the results of
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Fig. 20 Variations of σ ′
1 vs.σ

′
3 along the slip surface

MCS and SS analysis treating ru and kh as random vari-
able in addition to cohesion, angle of internal friction and
unit weight of soil.
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