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Abstract
Machine learning (ML) has emerged as an excellent technique for predicting thewear properties of solidmaterials. The present
work investigates the wear performance of 0.92% C and 1.57% C hypereutectoid steels under various operating conditions
(sliding speed, normal pressure, and sliding distance). ML algorithms such as random forest (RF), linear regression (LR),
Ada boost (AdaB), gradient boost (GB), gaussian process regression (GPR), k-nearest neighbor (KNN), and support vector
machine (SVM) were applied to the outcomes of the experiments to predict the wear rate. The seven ML algorithms were
ranked in order of prediction accuracy: GB, RF, AdaB, GPR, SVM, KNN, and LR. GB had high-caliber results in R2 (training
and test), MAE, and RMSE out of the applied models. The worn surfaces and debris showed an oxidative wear mechanism
of 0.92% C and an abrasive wear mechanism of 1.57% C. The results might help in the creation of hypereutectoid steels with
measured wear properties; hence it speeds up the development of new operational hypereutectoid steels.
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1 Introduction

Tribology encompasses studying and applying the phenom-
ena and techniques associated with the frictional and sliding
interactions of moving, sliding, and sliding surfaces (Britain
1966; Dowson et al. 1998). Material wear is the phenomenon
of surface deformation in solids that leads to a reduction in
the original size. Sincewear is the predominant failuremech-
anism for these materials, knowing the wear rate in various
operating conditions is crucial (Ashby et al. 1990). Typically,
carbon is the ingredient responsible for changing steel’s char-
acteristics. The strength and hardness of steel improve with
an increase in the carbon content (Gupta 2013). Compared to
conventional steels, hypereutectoid steels excel in strength,
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hardness, and wear resistance. Hypereutectoid steels have
attracted a lot of interest from several engineering fields,
especially in railway applications, because of their excep-
tional mechanical characteristics and wear resistance (Qiao
et al. 2022; Hosmani et al. 2017; Wang et al. 1999; Liu et al.
2011).

Many researchers have studied wear in metals, non-
metals, composites, and hybrid composites under distinct
working environments. Wadsworth (1999) reports that Stan-
ford University developed UHCS hypereutectoid steels with
0.8 to 2% C. Their high carbon content was similar to
Damascus steels and other ancient steels. Sato et al. (2007)
found pro-eutectoid carbides in 1–2 wt.% UHCS. Brittle
but strong, these steels offer exceptional wear resistance. If
pro-eutectoid carbides break at grain boundaries and pro-
duce spheroidized morphologies, the steel is strong, ductile,
and wear-resistant. Sasaki et al. (2006) described cemen-
tite volume fraction relevance. Steel characteristics can be
altered by altering the shape, size, and content of cementite.
Cementite is the hardest particle and increases the wear resis-
tance of steel. Luzginova et al. (2008) studied hypereutectoid
steels with varying chromium concentrations. Gunduza et al.
(2008) studied the wear behavior of forging steels with var-
ied microstructures during dry sliding and found that the
microstructures affect the steels’ wear resistance perfor-
mance.
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Table 1 Hypereutectoid steel
composition (wt. percent) Samples C Si Mn P S Cr Mo Ni

Sample-1 0.92 0.256 0.348 0.002 0.002 1.100 Nil Nil

Sample-2 1.57 0.265 0.549 0.026 0.021 1.350 0.010 0.071

Table 2 describes the parameters of the wear test

Descriptions Value

Normal pressure (MPa) 0.1249, 0.3747, 0.6245, 0.8743

Sliding speed (m/s) 1,3,5,7

Sliding distance (m) 5,000, 7,500, 10,000

Table 3 Parameter settings of ML models

ML model Parameter settings

LR fit_intercept = True, normalize = True

KNN n_neighbors = 4

SVM kernel = ’rbf’, epsilon = 0.75, C = 10,
gamma = 0.22,

GPR random_state = 18

RF max_features = 3, max_depth = 4,
n_estimators = 50,

AdaB random_state = 12, learning_rate = 0.25,
base_estimator = ’deprecated’

GB Loss = ‘squared error’, min_samples_split
= 2

Many studies are required to assess the wear resistance of
tribological materials to be employed under various oper-
ating instances, and these trials may be time-consuming.
Thus, with the objective to reduce the number of tests and
the expense of experimental investigations, there is increased
scope forMLalgorithms that use experimental data to predict
material wear behaviors.

Machine learning (ML) methods have been extensively
studied recently, and their impact can be seen in a wide vari-
ety of disciplines. In their study, Shi et al. (2016) looked at
how the ML approach can be used in the field of materials
engineering as well as the functional sector. Furthermore, we
uncover numerous common themes related to the application
of ML techniques, such as material characteristics (Huli-
palled et al. 2022), crystal structures (Tsutsui et al. 2019), and
phase diagram predictions (Qiao et al. 2021), which greatly
speeds the discovery of newmaterials via a data-drivenmate-
rial research approach. Taking into account the available
data,MLmethods typically display outstanding performance
when tackling the challenging multidimensional exponential
relationship between input and output variables.

For example, usingmachine learningmethods,we are able
to forecast the wear rate of the coated ferroalloy under dif-
ferent conditions of use.When compared to linear regression
and support vector machine, it was found that the Gaussian
process regressionmethodwas themost effective (Altay et al.
2020). Using an artificial neural network, Capitanu et al.
(2019) investigated thewear behavior of plasticmaterial rein-
forced with short glass fiber on the surface of the steel.

Based on the literature survey, no studies have been
noticed on the wear performances of hypereutectoid steels
using the ML approach. Prediction of wear rate is essen-
tial before the failure of steel rail for railway tracks due to
wear. Hence the current study aims to predict the wear rate of
hypereutectoid steels (0.92 wt.% carbon and 1.57 wt.% car-
bon) under dry sliding settings was predicted using machine
learning methods such as LR, KNN, SVM, GPR, RF, AdaB,
and GB.

2 Methodology

This section focuses mainly on the methodology of data col-
lection and designing of ML models that can be used for
regression analysis to predict the wear performance of hyper-
eutectoid steels. Both of these topics will be discussed in
further detail in subsequent sections.

2.1 Data acquisition

Twosamples of hypereutectoid steelswere used in the present
study, one with 0.92 weight percent carbon (C) and the other
with 1.57 weight percent (C), as indicated in Table 1. The
methodology of sample preparation, wear test experimen-
tal details, and microstructures are published in previous
work (Sharanabasappa et al. 2014; 2015a). The two datasets
pertaining to thewear loss of hypereutectoid steelswere com-
piled by conducting 48 wear test trials with a variety of input
parameters, as detailed in Table 2.

2.2 Machine learning algorithm

One of the most important ideas in the field of ML is
called regression analysis, and it is comprised of a group
of different ML techniques that may predict the values of
a continuous output parameter based on the input param-
eters. Before implementing the ML models, the datasets
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Fig. 1 Hypereutectoid steels wear rates a for 0.92 wt.% C, and b for 1.57 wt.% C

Fig. 2 Hypereutectoid steels for 0.92 wt.% C with speed-3 m/s, normal pressure 0.8743 MPa a SEM micrograph, b Wear debris, c EDS

were pre-processed using the standardScaler() fuction from
sklearn.preprocessing module which will normalize each
feature by considering the mean value as zero and the stan-
dard deviation as one. The supervised ML models that are
mentioned below are subjected to regression analysis to pro-
vide predictions regarding the wear rate of hypereutectoid

steels.MLalgorithms are trained using the experimental find-
ings of two hypereutectoid steels (0.92 percent C and 1.57
percent C) with sliding distance, normal pressure, and slid-
ing speed serving as input factors and wear rate serving as an
output parameter. The respectiveMLAlgorithms are scripted
using Python and allowed to divide the dataset into training
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Fig. 3 Hypereutectoid steels for 1.57 wt.% C with speed-3 m/s, normal pressure 0.8743 MPa a SEM micrograph, b Wear debris, c EDS

and test sets in a 70:30 (Specht et al. 1991; Scherbela et al.
2018).

2.2.1 Linear regression

The linear regressionmethod is themost basic type of regres-
sion algorithm for determining the relation between the
dependent variable(s) and the independent variable(s) (Algur
et al. 2021).

2.2.2 K-Nearest Neighbor (KNN)

K-Nearest Neighbors (KNN) is a quasi-method perform-
ing feature-based discriminant analysis by determining the
Euclidean distance (di ) between the training dataset and the
specified test dataset (Wan et al. 2021).

2.2.3 Support vector machine (SVM)

In order to determine the relationship between the output and
the input data, the SVM algorithm uses a regression tech-
nique (Gunn 1997). The linear kernel function is used to find
the best-fitting line through a group of data points scattered
throughout the hyperplane.

2.2.4 Gaussian Process Regression (GPR)

Prediction values and uncertainty estimates can be calcu-
lated using a regression model based on Gaussian processes.
Kernel functions allow for the incorporation of pre-existing
knowledge regarding the shape of functions (Wang and Tao
2015; Daemi et al. 2019).
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Fig. 4 Linear Regression to predict the wear rate of a 0.92% C, and b 1.57% C hypereutectoid steels, c residual of experimental data and prediction,
d R-squared value of training and test data

2.2.5 Random Forest (RF)

The supervised learning method known as RF employs a
plethora of decision trees. The foundational idea behind RF
is to combine several decision trees into a single one to deter-
mine the final output, rather than relying on the results of
individual trees. Ensemble learning, or the act of assimila-
tion of numerous classifiers to address a complicated problem
and boost the model’s performance, is the foundation of this
approach (Aye and Heyns 2017; Breiman 2001).

2.2.6 AdaBoost (AdaB)

The adaptive boosting algorithm is an eminent machine
learning algorithm introduced by Freund and Schapire which
works on the concept of boosting. It is also identified
as an ensemble learning algorithm (James et al. 2013)
which reduces variance and bias under two classifications
namely bagging-based and boosting-based, respectively.
This method is called iteratively until all the features are
classified correctly.

The performance of the stump is calculated by the equa-
tion,

Performance = 1

2
loge

(
1− TE

TE

)
(1)

where TE is a total error which is the sum of all errors that
occurred at each classified sample weight.

2.2.7 Gradient Boost (GB)

Gradient Boosting Machines was developed by Friedman
which trains manymodels in a gradual, additive, and sequen-
tialmanner (Zhao et al. 2019). Its goal is to reduce themodel’s
loss by employing a gradient descent-like approach to add
weak learners. To forecast the outcome, it employs several
additive functions.

Zi = Zi
0 + η

m∑
c=1

fc(Xi ) (2)

123



634 Multiscale and Multidisciplinary Modeling, Experiments and Design (2023) 6:629–641

Fig. 5 K-Nearest Neighbor to predict the wear rate of a 0.92% C, and b 1.57% C hypereutectoid steels, c residual of experimental data and
prediction, d R-squared value of training and test data, e R-squared values with varying neighbor values (k)

where Zi is the prediction for the ith trial, where Xi is the
feature vector, m is the number of estimators and each esti-
mator fc resembles an independent tree structure;Zi

0 is the
initial mean of measured values in the training set; η is the
learning rate (Lee et al. 2020).

Finally, effective ML models were constructed using a k-
fold cross-validation method with a fold value of 10 and
three assessment criteria: R-squared (R2), mean absolute
error (MAE), and root mean square error (RMSE). Table
3 provides the parameter settings used to optimize the ML
model performances.
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Fig. 6 SVM to predict the wear rate of a 0.92% C, and b 1.57% C hypereutectoid steels, c residual of experimental data and prediction, d R-squared
value of training and test data

3 Results and discussion

3.1 Wear rate

Initial wear tests were conducted at normal pressures rang-
ing from 0.1249 to 0.8743 MPa (0.2498 MPa increments)
and sliding speeds ranging from 1 to 7 m/s (2 m/s incre-
ments) across a total of 10,000 m. The volume lost due to
sliding was expressed as a percentage of the total volume
and used to determine the wear rate (mm3/m) (Algur et al.
2017). Normal pressure has been shown to enhance the wear
rate for all specimens (Fig. 1a, b. Sliding speeds between 1
and 3 m/s reduce the wear rate, while speeds above 3 m/s
increase it for all typical pressures. Sliding at 3 m/s increases
normal pressure, and the wear rate is essentially consistent
across all distances. The wear rate will be greater under the
most extreme operating conditions of 7 m/s and 0.8743 MPa
than under the other operating conditions. The critical slid-
ing speed for hypereutectoid steels is thus determined to be
3 m/s.

3.2 Worn surfacemorphology

The formation of the oxide layer starts usually at 3 m/s for
ferrous materials and also starts the work hardening process
at the wearing surface due to the plastic deformation. These
oxide layers and hardened surfaces usually avoid intimate
contact and avoid adhesion breaks during sliding and give a
transitional state from severe tomild wear. In such situations,
free-wear debris particles gather in the grooves of the contact
surface.

Smearing the worn surface is important since it aids in the
changeover. SEM Fig. 2a shows the surface wear for sample
-1 at normal pressure of 0.8743 MPa and a sliding speed of
3 m/s. In this instance, oxide forms on the surface, and the
surface are flattened due to the high normal pressure. Spalling
occurs when cracks reach a certain size, separating consid-
erable amounts of material. Figure 2b shows the typical size
and shape of the debris, and the matching EDS is shown in
Fig. 2c to illustrate the damage to the contacting surfaces.
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Fig. 7 GPR to predict the wear rate of a 0.92%C, and b 1.57%C hypereutectoid steels, c Residual of experimental data and prediction, d R-squared
value of training and test data

Two-body abrasive wear occurs as the asperity welds to
the sliding disc and functions as an abrasive particle over the
worn surface. Figure 3a shows a groove appearing on the
wearing surface caused by the welding asperity, and Fig. 3b
shows a broken type of wear debris caused by the asperity
cutting the specimen. Figure 3c depicts the EDS based on the
data.

3.3 wear rate prediction bymachine learning

We have conducted 48 trials of experiments on each 0.92%
C and 1.57% C hypereutectoid steels samples with 3 varying
input parameters to predict wear rate. These resultswere used
to train ML algorithms. To visualize and analyze the data
for all considered ML Algorithms, graphs are constructed
where the training data and test data are denoted as red and
blue scatter points, and the predicted train data and predicted
test data are denoted as red and blue dashed lines which are
plotted over the hyperplane and the black solid line indicates
the model’s fit line concerning the mathematical equations

behind the ML algorithms for 0.92% C and 1.57% C hyper-
eutectoid steels respectively (Figs. 4a, b, 5, 6, 7, 8, 9 and 10a,
b).

Scatter plots are constructed to visualize and compare the
calculated residual values of hypereutectoid steels from vari-
ousML algorithms, where green colored data points indicate
the residual values of 0.92% C and red color data points for
1.57% C (Figs. 4c, 5, 6, 7, 8, 9 and 10c). Bar charts are also
constructed to show the comparison of predicted R-squared
values of the training dataset and test dataset for both hyper-
eutectoid steels using all the constructed models (Figs. 4d, 5,
6, 7, 8, 9 and 10d).

Linear regression fits the model for deriving a linear
relationship among the input features and output for both
hypereutectoid steels along with prediction accuracy as
shown in Fig. 4a, b. It is perceived that for both 0.92% C
and 1.52% C hypereutectoid steels the most values of train
data and train prediction have noticeably deviated from one
another’s individual data points. From Fig. 4c it is observed
that residual values follow a normal distribution with ran-
domly distributed on either side of the zero line.
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Fig. 8 Random Forest to predict the wear rate of a 0.92%C, and b 1.57%C hypereutectoid steels, c Residual of experimental data and prediction,
d R-squared value of training and test data

In the preferred, case of datasets having linear relation-
ships, the LR technique can produce reasonable estimates
at a minimal computational cost (Kong et al. 2018). When
the results are compared to 1.57% C, the R-squared value of
0.92% C hypereutectoid steel is lower (Fig. 4). This could
be attributed to a rise in carbon content, which raises the
material’s hardness (Sharanabasappa et al. 2015b).

Figure 5a, b illustrate the predicted wear rate against the
experimentally measured data for both hypereutectoid steels
using the KNN algorithm. Changes in the K value can vary
the predictive performance of the KNN method. It generates
various conditional probabilities concerning changes in the
K value during the prediction phase. Figure 5e illustrates the
variations in R2 training and test values for both hypereu-
tectoid steels concerning the changes in K value. The KNN
performance is particularly subtle to the choice of K and a
larger K value does not always imply a higher prediction
accuracy, for example, in the case of 0.92 percent C, the pre-
diction accuracy appears to be worse. This means that the
best K value will vary depending on the materials used and
the number of datasets used (Ahmad et al. 2017).

The SVM kernel function was used to estimate the wear
rate of hypereutectoid steels and compare it to the measured
values, as shown in Fig. 6a, b. From Fig. 6d, the accuracy of
the SVMalgorithm ismore for 1.57%Chypereutectoid steels
when utilizing the polynomial kernel function. This could be
attributed to an increase in carbon content, which increases
the hardness of the material.

Wear rates predicted by the GPR algorithm and exper-
imental data for two hypereutectoid steels are shown in
Fig. 7a, b, respectively. By comparing the results of GPR
with LR, KNN, and SVM algorithms (Figs. 4, 5, and 6),
GPR is producing better predictions. Possibly this is because
of the nonparametric nature of the GPR method.

Figure 8a, b individually illustrate hypereutectoid steels’
predicted wear rate using the RF algorithm. This data reveals
that the RandomForest algorithm outperforms the LR,KNN,
SVM, GPR, and AdaB algorithms in terms of experiment
prediction accuracy (Figs. 4, 5, 6, 7, and 9).

Figure 9a, b, individually illustrates the predictedwear rate
of hypereutectoid steels using the AdaB algorithm. Accord-
ing to these results, the Ada Boost algorithm achieves higher
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Fig. 9 ADA Boost to predict the wear rate of a 0.92%C, and b 1.57%C hypereutectoid steels, c residual of experimental data and prediction,
d R-squared value of training and test data

prediction accuracy than the LR, KNN, SVM, andGPR algo-
rithms (Figs. 4, 5, 6, and 7).

Figure 10a, b, shows the predicted wear rate of hypereu-
tectoid steels by means of the Gradient Boost algorithm. The
predicted wear rate based on the Gradient Boost algorithm
is the best fit for both hypereutectoid steels compared to the
other methods used in this investigation (Figs. 4, 5, 6, 7, 8, 9
and 10).

Based on the data from Figs. 4, 5, 6, 7, 8, 9 and 10, Table
4 compares the accuracy of the seven ML algorithms in pre-
dicting wear rates. The LR algorithm has traditionally been
used to determinewhether or not an input–output relationship
is linear. The MAE and RMSE values for 0.92% C/1.57% C
are 0.528/0.508 and 0.661/0.599 respectively (Table 4).

The wear rate prediction accuracy of the KNN method is
greater than the LR approach (Fig. 5 and Table 4). In contrast
to the LR method, the KNN method makes no assumptions
regarding the data input and is less susceptible to outliers,
resulting in higher prediction accuracy.

The SVM approach is superior to the LR and KNN mod-
els for predicting quasi-data as it can handle more than two

predictor variables (Table 4). The SVM algorithm has a rel-
atively poor chance that some data may be omitted from the
test set (Krishnan et al. 2018).

TheGPRmodel’s prediction ofwear rate is better thanLR,
KNN, and SVM because the training datasets are assumed to
follow a normal distributionwith a knownmean and standard
deviation (Smola et al. 2004). In addition, the GPR method
is a nonparametric process unaffected by constraints in the
structure of the dataset hence providing reliable predictions
of wear rate for the existing datasets.

The ADA Boost algorithm predicts a better wear rate as
compared to the output of the LR, KNN, GPR, and SVM
models because the weights of instances are assigned based
on the error of the most recent forecast.

The RF algorithm has the higher prediction accuracy of
the wear rate of hypereutectoid steels among the LR, KNN,
SVM,GPR, andAdaBML algorithms, as illustrated in Fig. 8
andTable 4. This is due to the reduced overfitting tendency by
creating random subsets of the features and the tree diversity
is built.
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Fig. 10 Gradient Boost to predict the wear rate of a 0.92% C, and b 1.57% C hypereutectoid steels, c residual of experimental data and prediction,
d R-squared value of training and test data

Table 4 Performance of ML
algorithms R2-training R2-test MAE RMSE

0.92% C 1.57%C 0.92%C 1.57%C 0.92%C 1.57%C 0.92%C 1.57%C

LR 0.845 0.874 0.750 0.819 0.528 0.508 0.661 0.599

KNN 0.887 0.917 0.780 0.891 0.555 0.415 0.681 0.519

SVM 0.921 0.942 0.868 0.923 0.307 0.252 0.454 0.369

GPR 0.933 0.955 0.867 0.947 0.362 0.249 0.466 0.306

RF 0.967 0.989 0.932 0.985 0.237 0.164 0.294 0.207

AdaB 0.938 0.966 0.924 0.957 0.313 0.253 0.378 0.320

GB 0.999 1.000 0.972 0.991 0.077 0.065 0.108 0.091

The GB algorithm has the highest prediction accuracy of
wear rate of 0.92% C and 1.57% C hypereutectoid steels
among all seven ML algorithms, as illustrated in Fig. 10 and
Table 4. The outcome in the GB approach is determined not
by a single decision tree, but rather by a collection of trees.

4 Conclusion

In the present work, seven ML algorithms are applied to the
dataset of empirically measured rate of wear of hypereutec-
toid steels (0.92% C and 1.57% C) with the input parameters
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(sliding speed, normal pressure, and sliding distance). The
effectiveness of the algorithms is discussed and ranked in
order of prediction accuracy: GB, RF, AdaB, GPR, SVM,
KNN, and LR. The Gradient Boost algorithm predicts the
wear rate of hypereutectoid steels with maximum accuracy,
withR2 test being 0.972 and 0.991 for 0.92%C and 1.57%C,
respectively. The GB accomplishes this by gradually, addi-
tively, and sequentially training many models to reduce the
loss functions of a model by including weak learners in a
gradient descent technique. These results also prove that ML
models with hyperparameter settings are efficient enough to
work well on small datasets with higher prediction accura-
cies. Worn-out surfaces and debris show an Oxidative wear
mechanism for specimen 1 (0.92 wt.% C) and an abrasive
Wear mechanism for specimen—2 (1.57 wt.% C). These
findings could aid future studies in predicting the wear rate
of hypereutectoid steel materials, perhaps speeding up the
development of new functional steel with controlled wear
behavior.
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