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Abstract
The simultaneous consideration of the disturbance attenuation problem and the asynchronous switching problem in the
discrete-time linear switched systems with state delay and persistent dwell time structure is an important issue that has not
been investigated yet to guarantee the finite-timeH∞ performance of these systems. To tackle this problem, this paper presents
an asynchronous finite-time H∞ control scheme for this class of systems through multiple Lyapunov–Krasovskii functional
and persistent dwell time switching signals. To guarantee the finite-time H∞ performance of the whole system, a series
of non-convex conditions together with new conditions for the switching signal have been extracted. Also, the disturbance
attenuation level is obtained. To be able to solve the non-convex problem with common software, the linear matrix inequality
problem has been chosen. Finally, the proposed scheme has been validated through two numerical simulations and the results
show the effectiveness of the proposed scheme.

Keywords Discrete-time delayed switched systems · Asynchronous switching · Finite-time H∞ performance · Multiple
Lyapunov–Krasovskii functional · Persistent dwell time switching signal · Linear matrix inequality

1 Introduction

Switch systems have recently received much attention as
a class of hybrid systems because of their theoretical and
practical significance. They consist of multiple modes with a
sub-system in eachmode and a switching signal that activates
modes at different times. Switched systems can accurately
describe the structural hybrid features of real-world applica-
tion systems. They include a wide range of applications in
power electronics, chemical processes, networked control,
flight control, etc. Also, changing the parameters of a sys-
tem, sudden changes in the environment, occurring faults,
etc. provide the conditions for using the switched models
for different systems (Sun and Ge 2011; Yang et al. 2014;
Hespanha and Morse 1999). In addition to the dynamics
assigned for subsystems, the features of the switching sig-
nals are effective in the closed-loop stability of the switched
system (Lin and Antsaklis 2009). So, some of the important
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Lyapunov functions including switched Lyapunov function,
multiple Lyapunov functions, and common Lyapunov func-
tions are usually used to ensure the stability of the system
under the arbitrary, dwell time, average dwell time, and per-
sistent dwell time switching signals (Lin and Antsaklis 2009;
Shi et al. 2019).

In some past research studies, the stability of discrete-time
delay switched systems has been analyzed without consid-
ering the uncertainties (Park et al. 2017). In some other
works, conditions have been extracted for robust stability
in the presence of uncertainties (Baleghi and Shafiei 2018a;
Kermani and Sakly 2018). Moreover, considering the exoge-
nous disturbances, H∞ stability has been ensured in Wang
et al. (2012), Tian et al. (2015) and Dong et al. 2019). The
stabilization problem for discrete-time delayed switched sys-
tems has been investigated inmany studies. Reference Zhang
et al. (2007) presents a robust stabilization for the delayed
switched systems in the presence of exogenous disturbances.
Considering the polytopic uncertainties together with exoge-
nous disturbances, H∞ performance has been proven in
Zhang et al. (2010). Using the switched Lyapunov func-
tion, the robust stabilization of the delayed switched systems
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considering the norm-bounded uncertainties has been inves-
tigated in Du et al. (2008) and Zhang et al. (2008). Also, for
the nonlinear delayed switched systems considering the para-
metric and norm-bounded uncertainties, robust stabilization
has been proved in Xiang and Wang (2011) and Baleghi and
Shafiei (2018b). The Lyapunov stability procedure considers
the infinite-time response and does not focus on the transient
response (Khalil 2014). However, for some cases with a large
number of state variables, this fact does not work (Yan and
Wu 2019; Zhang et al. 2015). In such systems, the stability
analysis through the Lyapunov theory is not suitable (Amato
et al. 2001). To tackle this problem, a definition of finite-time
stability (FTS) (Weiss and Infante 1967) for nominal sys-
tems has been presented. Moreover, for systems considering
exogenous disturbances, finite-time boundedness (FTB) sta-
bility has been presented in Amato et al. (2001) and Shen
et al. (2015). In the FTB, we are ensured that the variables
of the system do not exceed a prescribed bound consider-
ing the exogenous disturbances of finite duration. In many
recent studies, delayed stochastic switched systems, singu-
lar switched systems, neutral switched systems, constrained
switched systems, and other types of switched systems (Chen
et al. 2016; Xiang et al. 2012a, b; Thanh et al. 2017; Lin
et al. 2017; Gholami and Shafiei 2021; Wang et al. 2016,
2021; Zong et al. 2013; Cui et al. 2022; Mao et al. 2021;
Mao et al. 2022) have been investigated for their responses
in finite-time intervals.

In practical systems, not all switches are necessarily ideal
and do not occur as expected. In other words, we might
expect to have switched to a certain controller but still remain
in the previous state. Therefore, we can encounter asyn-
chronous switching, which may have consequences such as
system instability. Also, the existence of exogenous distur-
bances reduces the control performance. To the best of our
knowledge to date, the development of a finite-time control
scheme to simultaneously encounter asynchronous switching
and the effect of exogenous disturbances in delayed switched
systems has not been investigated. Therefore, guaranteeing
H∞ finite-time performance in the switched systems with
asynchronous and delay structures is considered the first
motivation of this paper. In previous works extended by
multiple Lyapunov–Krasovskii functional (MLKF), the sta-
bility boundary condition imposes a dwell-time limitation
on the switching signal. Therefore, the second motivation is
to simultaneously design the finite-time control scheme and
the switching signal with the PDT structure to reduce the
dwell-time limitation compared to other structures. Accord-
ing to these research motivations, for the first time, we intend
to develop a simultaneous design of H∞ finite-time scheme
and PDT switching signal usingMLKF for the delayed linear
switched systems subjected to asynchronous switching and
exogenous disturbances. The challenges and difficulties in

the proposed simultaneous design using MLKF for delayed
switched systems are as follows:

• The Lyapunov–Krasovskii stability condition must be
converted to an LMI Lyapunov–Krasovskii stability con-
straint. This conversion is complicated despite the state
delay, exogenous disturbance and asynchronous switch-
ing terms. This problem has been solved using appropriate
lemma and change of variables.

• The design of PDT switching signal guaranteeing finite-
time bounded despite the exogenous disturbance and
asynchronous switching terms is complicated. This prob-
lem is solved by specific design of PDT switching signal
compared to other PDT designs.

• The computation of disturbance attenuation level guaran-
teeing non-weighted H∞ finite-time performance despite
the exogenous disturbance and asynchronous switching
terms is complicated. This problem is solved by specific
design of PDT switching signal and new assumptions on
PDT structure.

The remainder of this essay is divided into the following
categories. The topic is presented in Sect. 2, along with a
number of lemmas and presumptions. Section 3 provides the
results of the recommended scheme. The performance of the
suggested scheme is supported by two numerical examples
in Sect. 4, and the conclusion is offered in Sect. 5.

2 Problem formulation

Consider a discrete-time linear delayed switched system as
follows:

x(d + 1) � Mσ (d)x(d) + Dσ (d)x(d − h) + Bσ (d)u(d)

+ Nσ (d)�(d) (1)

x(r ) � θ (r ), r � d0 − h, . . . , d0 (2)

z(d) � Oσ (d)x(d) + Tσ (d)�(d) (3)

where x(d) ∈ Rnx and u(d) ∈ Rnu are the state and the
control input, respectively. The switching signal is revealed
by σ (d) : [0∞) → M � {1, 2, . . . , m}. h and θ (r ) repre-
sents the state delay and function of initial conditions. d is an
unknown constant state delay that has a known upper bound
(h ≤ hM ). Mσ (d), Dσ (d), Bσ (d), Oσ (d), Tσ (d) and Nσ (d) are
known real matrices that have appropriate dimensions. It is
noted that all subsystems are stabilizable and have a common
equilibrium point. Also, there is a discrepancy dsyn between
switching of controllers and the switching of subsystems. It
is assumed that the upper bound of the mismatched intervals
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(
dsyn ≤ dsyn,m

)
is known. Hence, the state feedback control

law is considered as follows:

u(d) � Kσ (d−dsyn)x(d) (4)

Therefore, the switching system (1) is recast for subsystem
i in both the matched and mismatched periods:

x(d + 1) � (Mi + Bi Ki )x(d) + Di x(d − h)

+ Ni�(d), d ∈ T ↓ (5)

x(d + 1) � (Mj + Bj Ki )x(d) + Dj x(d − h)

+ N j�(d), d ∈ T ↑ (6)

where T↓ and T↑ denote matched intervals and mismatched
intervals, respectively.

Assumption 1 For a given constant dI , the exogenous dis-
turbance �(d) is time-varying that satisfies the constraint:

NdI∑

k�0

�(d)T�(d) ≤ ub, ub > 0 (7)

The calculation of the state feedback control law for the
linear delayed switched system described in (1)–(3) with the
aim of guaranteeing finite time H∞ performance is the key
subject of this paper. Hence, the following lemmas and defi-
nitions are needed.

Lemma 1 (Aminsafaee and Shafiei 2019) The following
inequalities are equivalent (Schur complement lemma):

(
V W
WT X

)

> 0 ≡
{
X > 0, V − WX−1WT > 0
V > 0, X − WT V−1W > 0

(8)

where A � AT and C � CT are nonsingular matrices.

Definition 1 (Finite time bounded) (Shi et al. 2018): if, for
a given matrix R > 0, two positive constants k1, k2, with
k1 < k2, a positive integer dI , and a switching signal σ (d),
we have: x(0)T Rx(0) < k1 ⇒ x(d)T Rx(d) < k2, ∀r � 1,
. . . , dI , then the discrete-time linear switched system (1)
with u(d) ≡ 0 subject to an exogenous disturbance �(d) is

described as finite time bonded with regard to (k1, k2, R, dI ,
ub, σ ).

Definition 2 (Finite time H∞ performance) (Shi et al.
2018): if, for a given matrix R > 0, two positive constants
k1, k2, with k1 < k2, a positive integer dI , and a switching
signal σ (d), we have: x(0)T Rx(0) � 0 ⇒ x(d)T Rx(d) <

k2 ∀r � 1, . . . , dI and:

dI∑

d�0

zT (d)z(d) ≤γ 2
dI∑

d�0

�(d)T�(d) (9)

then the discrete-time linear switched system (1)with u(d) ≡
0 subject to an exogenous disturbance �(d) is said to have
finite-time H∞ performance with regard to (0, k2, R, dI ,
ub, σ ).

Definition 3 (PDT switching signal) (Fan et al. 2020): the
PDT structure divides time interval into a number of stages.
Each stage is broken down into a dτ -portion and a dT -portion.
A designated sub-system is activated in the dτ -portion with
the running time at least dτ . The total switching number in the
dT -portion satisfies the equation N

(
dsp+1, dsp+1

) ≤ f dT ,
where f is the maximum switching rate, dτ is persistent
dwell-times, and dT is persistence period.

3 Main results

For the closed-loop switched systemdescribed in (1)–(3), this
section gives the necessary criteria to ensure the finite-time
H∞ performance using MLKF and PDT switching signals.
The following theorem defines the critical findings of this
study.

Theorem 1 Take into account the state feedback control rule
and the discrete-time Lipschitz linear delayed switching sys-
tem in (1)–(3) under Assumptions 1. In addition, constants
for ξs < 0, ξas > 0, μ > 1 and γ > 0 are provided. T , f , and
dsyn,m are also chosen as the PDT structure’s parameters. If
for each subsystem i, there exists matrices Si > 0, Q > 0,
and Ki such that the following inequalities be feasible:
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⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

−M
T
i Si Mi + (1 + ξs)Si − Q − OT

i Oi −M
T
i Si Di −M

T
i Si Ni − OT

i Ti 0
∗ −DT

i Si Di + Q −DT
i Si Ni 0

∗ ∗ −NT
i Si Ni + γ 2 I − T T

i Ti 0
∗
...
∗

∗
...
∗

∗
...
∗

ξs Q
...
∗

· · ·
· · ·
· · ·
· · ·
. . .

· · ·

0
0
0
0
...

ξs Q

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

≥ 0 (10)

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

−M
T
j Si M j + (1 + ξas)Si − Q − OT

j O j −M
T
j Si Md j −M

T
j Si N j − OT

j Tj 0

∗ −DT
j Si D j + Q −DT

j Si E j 0

∗ ∗ −NT
j Si N j + γ 2 I − T T

j Tj 0

∗
...
∗

∗
...
∗

∗
...
∗

ξasQ
...
∗

· · ·
· · ·
· · ·
· · ·
. . .

· · ·

0
0
0
0
...

ξasQ

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

≥ 0,

i �� j , i , j ∈ M (11)

μS j − Si ≥ 0 (12)

where

Mi � Mi + Bi Ki , Mi , j � Mj + Bj Ki (13)

and the PDT switching signal satisfies:

dτ > d∗
τ � max

(
1

f
, −dT +

dI ((dT f + 1) lnμ + (dT f + 1)dsyn,m ln(1 + ξas) − (dT f + 1)dsyn,m ln(1 + ξs ))

ln k2κ2 − ln γ 2ub − (dT f + 1) lnμ − (dT f + 1)dsyn,m ln(1 + ξas) + (dT f + 1)dsyn,m ln(1 + ξs ) − dI ln(1 + ξs )

)

(14)

then for the state feedback control law ui (d) � Ki x(d),
the closed-loop switched system described in (1)–(3) has
finite-time H∞ performance with respect to (0, k2, R,
dI , ub, γ̃ , σ ) against asynchronous switching where γ̃ �
γ

√

μ
( dI
dT +dτ

+1)(dT f +1)
(1 + ξs)dI (

1+ξas
1+ξs

)
( dI
dT +dτ

+1)(dT f +1)dsyn,m ,

and κ2 � mini∈M (λmin(Si )).

Proof The proof of the theory is carried out in three steps.
Step 1: The candidate Lyapunov–Krasovskii functional,

the Lyapunov stability condition in matched intervals and

mismatched intervals, and the stability boundary condition
are considered as follows:

vσ (d)(d) �
2∑

i�1

vi (d), v1(d) � xT (d)Sσ (d)x(d),

v2(d) �
d−1∑

i�d−h

xT (i)Qx(i) (15)

vσ (d+1)(d + 1) − vσ (d)(d)

≤ ξsvσ (d)(d) − zT (d)z(d) + γ 2�(d)T�(d), d ∈ T ↓
(16)

vσ (d+1)(d + 1) − vσ (d)(d)

≤ ξasvσ (d)(d) − zT (d)z(d) + γ 2�(d)T�(d), d ∈ T ↑
(17)
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vσ (d)(x(d)) ≤ μvσ (d−1)(x(d)) (18)

1. Proof of finite-time bounded respected to (0, c2, R, dI ,
ub, γ , σ )

Let dsr+1 and dsr+1 stand for the switching instants that come
following dsr in the r-th stage and the (r + 1)th stage,
respectively. Think about σ (dsr+1 ) � n, σ (dsr ) � m, and

ξ �
{

ξs d ∈ T ↓
ξas d ∈ T ↑ . Thefluctuationof theLyapunov function

between two successive samples in the r-th stage is derived
as follows thanks to the PDT structure illustrated in Fig. 1
and combining (16)–(18):

vn(x(dsr+1 )) ≤ μvσ (dsr+1−1)(x(dsr+1 ))

≤ μ (1 + ξ ) vσ (dsr+1−1)(x(dsr+1 − 1))

+ μγ 2�(dsr+1 − 1)T�(dsr+1 − 1) (19)

According to (19), the difference in the Lyapunov function
between two successive switches at the r-th stage is calcu-
lated as:

vn
(
x
(
dsr+1

))

≤ μ(1 + ξ)dsr+1−dsr+1−1vσ
(
dsr+1−1

)
(
x
(
dsr+1−1

))

+ γ 2�
(
dsr+1 − 1

)T
�

(
dsr+1 − 1

)

+ μ(1 + ξ)γ 2�
(
dsr+1 − 2

)T
�

(
dsr+1 − 2

)

+ · · · + μ(1 + ξ)dsr+1−dsr+1−1γ 2�
(
dsr+1−1

)T
�

(
dsr+1−1

)

(20)

Consider the total number of switching, the total running
time of the matched intervals and the total running time of
the mismatched intervals in a given interval as N , Ts and Tas,
respectively. The fluctuation of the Lyapunov function in the
whole r-th stage total interval is derived as per Definition 3
and utilizing (20):

vn(x(dsr+1 ))

≤ μN (dsr +1, dsr+1 )(1 + ξ )dsr+1−dsr +1vσ (dsr +1) (x(dsr+1))

+

dsr+1∑

e�dsp

μN (e, dsr+1 )(1 + ξ )dsr+1−eγ 2�(e)T�(e)

� μN (dsr +1, dsr+1 )(1 + ξas)
Tas(dsr +1, dsr+1 )

× (1 + ξs)
Ts (dsp+1, dsr+1 )vσ (dsp+1)(x(dsr+1))

+

dsp+1∑

e�dsp

μN (e, dsr+1 )(1 + ξ )dsr+1−eγ 2�(e)T�(e)

≤ μN (dsr , dsr+1 )(1 + ξas)
Tas(dsr , dsr+1 )(1 + ξs)

Ts (dsr , dsr+1 )

× vm(x(dsr )) +

dsp+1∑

e�dsp

μN (e, dsr+1 )(1 + ξ )dsr+1−eγ 2�(e)T�(e)

⇒ vn(x(dsp+1 ))

≤ eN (dsr , dsr+1 ) lnμ+Tas(dsr , dsr+1 ) ln(1+ξas)+Ts (dsr , dsr+1 ) ln(1+ξs )

× vm(x(dsr ))

+

dsp+1∑

e�dsp

μN (e, dse+1 )(1 + ξ )dsr+1−eγ 2�(e)T�(e) (21)

Based on (21), it is concluded that following inequality
holds in interval [d0, d]:

vσ (d)(x(d))

≤ eN (d0, d) lnμ+Tas(d0, d) ln(1+ξas)+Ts (d0, d) ln(1+ξs )

vσ (d0)(x(d0))

+
d∑

e�d0

μN (e, d)(1 + ξ )d−eγ 2�(e)T�(e)

⇒ vσ (d)(x(d)) ≤ eN (d0, d) lnμ+Tas(d0, d) ln(1+ξas)+Ts (d0, d) ln(1+ξs )

vσ (d0)(x(d0)) + μN (d0, d)(1 + ξ )d−d0
k∑

t�k0

γ 2�(e)T�(e)

⇒ vσ (d)(x(d)) ≤ eN (d0, d) lnμ+Tas(d0, d) ln(1+ξas)+Ts (d0, d) ln(1+ξs )

× (vσ (d0)(x(d0)) +
d∑

e�d0

γ 2�(e)T�(e))

⇒ vσ (d)(x(k)) ≤ eN (d0, d) lnμ+Tas(d0, d) ln(1+ξas)+Ts (d0, d) ln(1+ξs )

(vσ (d0)(x(d0)) + γ 2ub) (22)

dTr and dTr are the running times in the—portion and the T -
portion, respectively, and together they make up the overall
running time in the r-th stage. Since dTr ≤ dT and dτr ≥ dτ

are true, and supposing dτ f > 1, it is simple to arrive to
(dτ f −1)(dTr −dT ) ≤ 0. The following results are obtained
when the interval [d0, d] is in the r-th stage:

(
d − d0

dτr + dTr
+ 1

)
(dTr f + 1) ≤

(
d − d0
dT + dτ

+ 1

)
(dT f + 1)

(23)

Additionally, (23) is valid for additional stages. One may
write by adding up the steps between [d0, d]:

N (d0, d) ≤
(
d − d0
dT + dτ

+ 1

)
(dT f + 1), Tas(d0, d)

≤
(
d − d0
dT + dτ

+ 1

)
(dT f + 1)dsyn,m (24)

Substituting (24) into (22), we have:
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vσ (d)(x(d))

≤ e

(
d−d0
dT +dτ

+1
)
(dT f +1) lnμ+

(
d−d0
dT +dτ

+1
)
(dT f +1)dsyn,m ln(1+ξas)+

(
d−d0−

(
d−d0
dT +dτ

+1
)
(dT f +1)dsyn,m

)
ln(1+ξs )(vσ (d0)(x(d0)) + γ 2ub)

⇒ vσ (d)(x(d))

≤ e

(
dI

dT +dτ
+1

)
(dT f +1) lnμ+

(
dI

dT +dτ
+1

)
(dT f +1)dsyn,m ln(1+ξas)+(dI−

(
dI

dT +dτ
+1

)
(dT f +1)dsyn,m ) ln(1+ξs )(vσ (d0)(x(d0)) + γ 2ub)

� e

(
dI

dT +dτ
+1

)
((dT f +1) lnμ+(dT f +1)dsyn,m ln(1+ξas)−(dT f +1)dsyn,m ln(1+ξs ))+dI ln(1+ξs )(vσ (d0)(x(d0)) + γ 2ub) (25)

Considering Si � R− 1
2 Si R− 1

2 , we get:

vσ (d0)(x(d0)) � x(d0)
T Sσ (d0)x(d0)

� x(d0)
T R

1
2 Sσ (d0)R

1
2 x(d0)

≤ max(λmax(Sσ (d0)))x(d0)
T Rx(d0)

≤ c1k1 (26)

vσ (d)(x(d)) � x(d)T Sσ (d)x(d)

� x(d)T R
1
2 Sσ (d)R

1
2 x(d)

≥ min
(
λmin

(
Sσ (d)

))
x(d)T Rx(d)

≥ κ2x(d)
T Rx(d) (27)

Due to (26)–(27) and substituting (14) into (25), we get:

κ2x(d)
T Rx(d)

≤ vσ (d)(x(d)) ⇒ x(d)T Rx(d)

≤ 1

κ2
vσ (d)(x(d))

≤ 1

κ2

( dI
dT +dτ

+1)((dT f +1) lnμ+(dT f +1)dsyn,m ln(1+ξas)−(dT f +1)dsyn,m ln(1+ξs ))+dI ln(1+ξs )

× (vσ (d0)(x(d0)) + γ 2ub)

� 1

κ2
e
( dI
dT +dτ

+1)((dT f +1) lnμ+(dT f +1)dsyn,mn(1+ξas)−(dT f +1)dsyn,m ln(1+ξs ))+dI ln(1+ξs )

× (k1κ1 + γ 2ub)

≤ 1

κ2
eln k2κ2−ln γ 2ub(γ 2ub) � k2 (28)

2. Proof of inequality (9)

Based on (22), the variation of Lyapunov function in inter-
val [k0, k] is as follows:

vσ (d)(x(d)) ≤ eN (d0, d) lnμ+Tas(d0, d) ln(1+ξas)+Ts (d0, d) ln(1+ξs )vσ (d0)(x(d0))

+
d∑

e�d0

μN (e, d)(1 + ξ )d−t (−z(e)T z(e) + γ 2�(e)T�(e))

(29)

Due to vσ (d0)(x(d0)) � 0 and vσ (d)(x(d)) ≥ 0, we have:
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d∑

e�d0

μN (e, d)(1 + ξ )d−e(−z(e)T z(e) + γ 2�(e)T�(e)) ≥ 0

⇒
d∑

e�d0

μN (e, d)(1 + ξ )d−ez(e)T z(e)

≤ γ 2
d∑

e�d0

μN (e, d)(1 + ξ )d−e�(e)T�(e)

⇒
d∑

e�d0

μN (e, d)(1 + ξs )
Ts (d0, d)(1 + ξas)

Tas(d0, d)z(e)T z(e)

≤ γ 2
d∑

e�d0

μN (e, d)(1 + ξs )
Ts (d0, d)(1 + ξas)

Tas(d0, d)�(e)T�(e)

⇒
d∑

e�d0

z(e)T z(e)

≤ γ 2
d∑

e�d0

μN (e, d)(1 + ξs )
d−e

(
1 + ξas

1 + ξs

)Tas(d0, d)

�(e)T�(e) (30)

Substituting (24) in (30), we have:

d∑

e�d0

z(e)T z(e) ≤ γ 2
d∑

e�d0

μ

(
d−e

dT +dτ
+1

)
(dT f +1)

(1 + ξs )
d−e

(
1 + ξas

1 + ξs

)( d−e
dT +dτ

+1)(dT f +1)dsyn,m
�(e)T�(e)

⇒
d∑

e�d0

z(e)T z(e) ≤ γ 2
d∑

e�d0

μ
( dI
dT +dτ

+1)(dT f +1)
(1 + ξs )

dI
(
1 + ξas

1 + ξs

)
(

dI
dT +dτ

+1
)
(dT f +1)dsyn,m

�(e)T�(e)

⇒
d∑

e�d0

z(e)T z(e) ≤ γ 2μ

(
dI

dT +dτ
+1

)
(dT f +1)

(1 + ξs )
dI

(
1 + ξas

1 + ξs

)
(

dI
dT +dτ

+1
)
(dT f +1)dsyn,m d∑

e�d0

�(e)T�(e)

⇒
d∑

e�d0

z(e)T z(e) ≤ γ̃ 2
d∑

t�d0

�(e)T�(e) (31)

where

γ̃ � γ

√√
√
√

μ

(
dI

dT +dτ
+1

)
(dT f +1)

(1 + ξs )dI
(
1 + ξas

1 + ξs

)(
dI

dT +dτ
+1

)
(dT f +1)dsyn,m

(32)

Step 2: The inequalities (16)–(17) are formulated as
non-convex matrix inequality.�v1 is extended along the tra-
jectories of the closed-loop system:

�v1 � (Mσ (d)x(d) + Dσ (d)x(d − h) + Nσ (d)�(d))T Sσ (d)(Mσ (d)x(d) + Dσ (d)x(d − h) + Nσ (d)�(d)) − xT (d)Sσ (k)x(d)

� xT (d)M
T
σ (d)Sσ (d)Mσ (d)x(d) + xT (d)M

T
σ (d)Sσ (d)Dσ (d)x(d − h) + xT (d)M

T
σ (d)Sσ (d)Nσ (d)�(d)

+ xT (d − h)DT
σ (d)Sσ (d)Mσ (d)x(d) + xT (d − h)DT

σ (d)Sσ (d)Dσ (d)x(d − h)Sσ (d)Nσ (d)�(d) + �(d)T NT
σ (d)

× Sσ (d)Mσ (d)x(d) + �(d)T NT
σ (d)Sσ (d)Dσ (d)x(d − h) + �(d)T NT

σ (d)Sσ (d)Nσ (d)�(d) − xT (d)Sσ (d)x(d) (33)

By extending �v2 as follows:

�v2 � x(d)T Qx(d) − x(d − h)T Qx(d − h) (34)

Substituting (33) and (34) into (16):

xT (d)M
T
σ (d)Sσ (d)Mσ (d)x(d) + xT (d)M

T
σ (d)Sσ (d)Dσ (d)x(d − h)

+ xT (d)M
T
σ (d)Sσ (d)Nσ (d)�(d) + xT (d − h)DT

σ (d)

Sσ (d)Mσ (d)x(d) + xT (d − h)DT
σ (d)Sσ (d)Dσ (d)x(d − h)

+ xT (d − h)DT
σ (d)Sσ (d)Nσ (d)�(d) + �(d)T NT

σ (d)Sσ (d)

× Mσ (d)x(d) + �(d)T NT
σ (d)Sσ (d)Dσ (d)x(d − h) + �(d)T NT

σ (d)

Sσ (d)Nσ (d)�(d) − xT (d)Sσ (k)x(d) + x(d)T Qσ (d)x(d)

− x(d − h)T Qσ (d)x(d − h) + x(d)T OT
σ (d)Oσ (d)x(d)

+ �(d)T T T
σ (d)Tσ (d)�(d) + x(d)T OT

σ (d)Tσ (d)�(d)

+ �(d)T T T
σ (d)Oσ (d)x(d) − γ 2�T (d)�(d) − ξs x(d)

T

Sσ (d)x(d) − ξs

d−1∑

i�d−h

x(i)Qσ (k)x(i) ≤ 0 (35)

According to the upper bound of the delay, if (36) holds,
then (35) holds:
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Fig. 1 Two sub-systems for activation of the drinking water supply network (DWSN)

xT (d)M
T
σ (d)Sσ (d)Mσ (d)x(d) + xT (d)M

T
σ (d)Sσ (d)Dσ (d)x(d − h) + xT (d)M

T
σ (d)

Sσ (d)Nσ (d)�(d) + xT (d − h)DT
σ (d)Sσ (d)Mσ (d)x(d) + xT (d − h)DT

σ (d)Sσ (d)Dσ (d)x(d − h)

+ xT (d − h)MT
dσ (d)Sσ (d)Nσ (d)�(d) + �(d)T NT

σ (d)Sσ (d)Mσ (d)x(d) + �(d)T NT
σ (d)Sσ (d)Mdσ (d)

x(d − h) + �(d)T NT
σ (d)Sσ (d)Nσ (d)�(d) − xT (d)Sσ (k)x(d) + x(d)T Qσ (d)x(d)

− x(d − h)T Qσ (d)x(d − h) + x(d)T OT
σ (d)Oσ (d)x(d) + �(d)T T T

σ (d)Tσ (d)�(d)

+ x(d)T OT
σ (d)Tσ (d)�(d) + �(d)T T T

σ (d)Oσ (d)x(d) − γ 2�T (d)�(d) − ξs x(d)
T Sσ (d)x(d)

− ξs

d−1∑

i�d−hM

x(i)Qσ (k)x(i) ≤ 0 (36)

Considering σ (d) � i , (36) is rewritten as:

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

x(d)
x(d − h)

�(d)
x(d − 1)

...
x(d − hM )

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

T⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

−M
T
i Si Mi + (1 + ξs)Si − Q − OT

i Oi −M
T
i Si Di −M

T
i Si Ni − OT

i Ti 0
∗ −DT

i Si Di + Q −DT
i Si Ni 0

∗ ∗ −NT
i Si Ni + γ 2 I − T T

i Ti 0
∗
...
∗

∗
...
∗

∗
...
∗

ξs Q
...
∗

· · ·
· · ·
· · ·
· · ·
. . .

· · ·

0
0
0
0
...

ξs Q

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

x(d)
x(d − h)

�(d)
x(d − 1)

...
x(d − hM )

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

≥ 0 (37)
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inequality (37) holds, if following inequality satisfy:

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

−M
T
i Si Mi + (1 + ξs)Si − Q − OT

i Oi −M
T
i Si Di −M

T
i Si Ni − OT

i Ti 0
∗ −DT

i Si Di + Q −DT
i Si Ni 0

∗ ∗ −NT
i Si Ni + γ 2 I − T T

i Ti 0
∗
...
∗

∗
...
∗

∗
...
∗

ξs Q
...
∗

· · ·
· · ·
· · ·
· · ·
. . .

· · ·

0
0
0
0
...

ξs Q

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

≥ 0 (38)

Remark 1 The inequality (11) is also derived by (17), like
the earlier step.

Step 3: The inequalities (18) are formulated as a non-
convex matrix inequality. According to (18), we have

x(d)T Sσ (d)x(d) +
d−1∑

i�d−h

x(i)Qx(i)

≤ μ x(d)T Sσ (d−1)x(d) + μ

d−1∑

i�d−h

x(i)Qx(i) (39)

It is concluded that if (40) holds, (39) holds:

x(d)T Sσ (d)x(d) ≤ μ x(d)T Sσ (d−1)x(d) ⇒ Sσ (d) ≤ μ Sσ (d−1)

(40)

Considering σ (d) � i and σ (d−1) � j , (12) is confirmed
and Theorem 1 is proved.

Theorem 2 Through Theorem 1, if there exists matrices
ui > 0, w > 0, yi , and xi for each subsystem i such that
the following inequalities be feasible:

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

(1 + ξs)(xTi + xi − ui ) xTi OT
i xTi 0 −xTi OT

j Tj 0

∗ I 0 0 0 0
∗ ∗ w 0 0 0
∗ ∗ ∗ xTi + xi − w 0 0
∗ ∗ ∗ ∗ γ 2 I − T T

i Ti 0
∗ ∗ ∗ ∗ ∗ ξs(xTi + xi − w)
...

...
...

...
...

...
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

0 0 xTi MT
i + yTi BT

i
0 0 0
0 0 0
0 0 xTi DT

i
0 0 NT

i
· · · 0 0
. . .

...
...

· · · ξs(xTi + xi − w) 0
∗ ∗ ui

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

≥ 0, i ∈ M (41)

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

(1 + ξas)(xTi + xi − ui ) xTi OT
j xTi 0 −xTi OT

j Tj 0

∗ I 0 0 0 0
∗ ∗ w 0 0 0
∗ ∗ ∗ xTi + xi − w 0 0
∗ ∗ ∗ ∗ γ 2 I − T T

i Ti 0
∗ ∗ ∗ ∗ ∗ ξas(xTi + xi − w)
...

...
...

...
...

...
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

0 0 xTi MT
j + yTi BT

j

0 0 0
0 0 0
0 0 xTi DT

j

0 0 NT
j

· · · 0 0
. . .

...
...

· · · ξas(xTi + xi − w) 0
∗ ∗ ui

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

≥ 0, i �� j , i , j ∈ M (42)

123



470 Multiscale and Multidisciplinary Modeling, Experiments and Design (2023) 6:461–475

ui − μ−1u j ≥ 0 (43)

Then, for the state feedback control gain Ki � yi x
−1
i and

the PDT switching signal satisfying (14), the closed-loop
switched system described in (1)–(3) has finite-time H∞
performance with respect to (0, c2, R, dI , ub, γ̃ , σ ) against
asynchronous switching.

Proof Firstly, the LMI constraint related to inequality (10)
is proved. Inequality (10) can be rewritten as follows:

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎜
⎝

(1 + ξs )Si − Q − OT
i Oi 0 −OT

i Ti 0 · · · 0
∗ Q 0 0 · · · 0
∗ ∗ γ 2 I − T T

i Ti 0 · · · 0
∗ ∗ ∗ ξs Q · · · 0
...

...
...

...
. . . 0

∗ ∗ ∗ ∗ ∗ ξs Q

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎟
⎠

−

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎝

M
T
i

DT
i

NT
i
0
· · ·
0

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎠

(Si )
(
Mi Di Ni 0 · · · 0

)
≥ 0 (44)

By applying Lemma 1 to the above inequality, we obtain:

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

(1 + ξs )Si − Q − OT
i Oi 0 −OT

i Ti 0 · · · 0 M
T
i

∗ Q 0 0 0 0 DT
i

∗ ∗ γ 2 I − T T
i Ti 0 0 0 NT

i
∗ ∗ ∗ ξs Q · · · 0 0
...

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ · · · ξs Q 0
∗ ∗ ∗ ∗ ∗ ∗ S−1

i

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

≥ 0

(45)

Consider ui � S−1
i ,w � Q−1, and yi � Ki xi , we have:

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

(1 + ξs)u
−1
i − w−1 − OT

i Oi 0 −OT
i Ti 0 · · · 0 M

T
i

∗ w−1 0 0 0 0 DT
i

∗ ∗ γ 2 I − T T
i Ti 0 0 0 NT

i
∗ ∗ ∗ ξsw

−1 · · · 0 0
...

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ · · · ξsw
−1 0

∗ ∗ ∗ ∗ ∗ ∗ ui

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

≥ 0 (46)

Multiplying left and right sides of inequality (40) by
bdiag(xTi , x

T
i , I , x

T
i , . . . , xTi , I ) and bdiag(xi , xi , I , xi ,

. . . , xi , I ), respectively:

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

(1 + ξs)xTi u
−1
i xi − xTi w−1xi − xTi OT

i Oi xi 0 −xTi OT
i Ti 0 · · · 0 xTi M

T
i

∗ xTi w−1xi 0 0 0 0 xTi DT
i

∗ ∗ γ 2 I − T T
i Ti 0 0 0 NT

i
∗ ∗ ∗ ξs xTi w−1xi · · · 0 0
...

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ · · · ξs xTi w−1xi 0
∗ ∗ ∗ ∗ ∗ ∗ ui

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

≥ 0 (47)
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Utilizing Lemma 1 several times, we have:

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

(1 + ξs)xTi u
−1
i xi xTi OT

i xTi 0 −xTi OT
i Ti 0

∗ I 0 0 0 0
∗ ∗ w 0 0 0
∗ ∗ ∗ xTi w−1xi 0 0
∗ ∗ ∗ ∗ γ 2 I − T T

i Ti 0
∗ ∗ ∗ ∗ ∗ ξs xTi w−1xi
...

...
...

...
...

...
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

0 0 xTi MT
i + yTi BT

i
0 0 0
0 0 0
0 0 xTi DT

i
0 0 NT

i
· · · 0 0
. . .

...
...

· · · ξs xTi w−1xi 0
∗ ∗ ui

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

≥ 0 (48)

From the feasibility of (49), it can be concluded that
xTi u

−1
i xi > 0 and xTi w−1xi > 0. Therefore, xi and is

full rank. Developing (ui − xi )T u
−1
i (ui − xi ) ≥ 0 and

(w − xi )Tw−1(w − xi ) ≥ 0:

xTi u
−1
i xi ≥ xi + xTi − ui (49)

xTi w−1xi ≥ xi + xTi − w (50)

According to (49)–(50), it can be inferred that if the
inequality (41) holds, the above inequality also.

Remark 2 The inequality (42) can also be derived by con-
verting the inequality (11) as described above.

Based on inequality (12), mentioned change of variable
and using Lemma 1 twice, we have

Si ≤ μS j ⇒ u−1
i ≤ μu−1

j ⇒ ui − μ−1u j ≥ 0 (51)

Therefore, inequality (51) confirms (43) and Theorem 2
is proved.

Remark 3 It is worth pointing out that we must firstly solve
LMI problem (41)–(43) to gain Pi , which can let us find κ1
and κ2, then switching signal is designed by substituting κ1
and κ2 into (14).

Remark 4 To achieve a feasible solution for the LMI prob-
lem described in (41)–(43), decision parameters (μ, ξs , ξas)
play important roles.

4 Numerical simulations

Through two numerical examples, we examine the perfor-
mance of the suggested approach in this section. MATLAB
simulations have been carried out using the YALMIP toolset.

Example 1 This example examines a drinking water supply
network (DWSN) (Benallouch et al. 2014). Pipes, valves,
reservoirs, water storage, pumps, water collection, water
purification, and consumers are typical components of the
DWSN. A linear discrete-time switching system with two
subsystems that has reservoir volumes as its state vector and
all controlled reservoir inflows as its input vector can be used
to describe the behavior of the DWSN (Fig. 1). Two subsys-
tems are thought of as:

Sub-system 1:

M1 �
(
1 0
0 1

)

, D1 �
(

0.1501 0.0001
−0.1001 −0.1002

)

, B1 �
(
1 0 0
0 1 0

)

,

N1 � [0.1 0.1]T , O1 � I2, T1 � I3, Ts � 0.5min,

hM � 2min, h � 1min (52)

Sub-system 2:

M2 �
(
1 0
0 1

)

, D2 �
(

0.1401 0.0001
−0.0401 −0.0501

)

, B2 �
(
1 0 −1
0 1 1

)

,

N2 � [0.1 0.1]T , O2 � I2, T2 � I3, Ts � 0.5min,

hM � 2min, h � 1min (53)

The goal is for closed-loop system to have the finite time
H∞ performance with respect to (0, 30, I , 30, 3, σ ). The
parameters of the controller and switching signal are selected
as ξs � 0.01, ξas � 0.04, μ � 1.08, dsyn,m � 1min,
dT � 10min and f � 0.5 1

min . By Solving the LMI prob-
lem (41)–(43), we obtain:

S1 �
(

4.7269 −0.0370
−0.0370 4.7269

)

, K1 �
⎛

⎜
⎝

−0.6646 −0.0103
−0.0103 −0.6646

0 0

⎞

⎟
⎠,

S2 �
(
4.6351 0.0213
0.0213 4.6351

)

,

123



472 Multiscale and Multidisciplinary Modeling, Experiments and Design (2023) 6:461–475

0 5 10 15 20 25 30
Time(min)

-0.05

0

0.05

0.1
St
at
es

x1
x2

0 10 20 30
Time(min)

1

1.5

2

Sw
itc

hi
ng

si
gn

al

sub-systems
controllers

Fig. 2 The system states of the drinking water supply network (DWSN)
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Fig. 3 The states trajectory of the drinking water supply network
(DWSN)

K2 �
⎛

⎜
⎝

−0.4793 −0.2113
−0.2122 −0.4746
0.2880 −0.2820

⎞

⎟
⎠,

Q � 10−5

(
0.4356 −0.0008

−0.0008 0.4354

)

(54)

By having S1, S2, and R � I , we obtain κ2 �
mini∈M (λmin(Si )) � 4.6138. Finally, considering γ � 1
and using (14), we obtain d∗

τ � 6.60min. An example of a
switching signal satisfying the design parameters is shown in
Fig. 2. Figure 2 also shows the system states that ultimately
converge to zero and consequently, the specified bound is sat-
isfied. Figure 3 shows the system state trajectory that gives a
better view of the variations in states.

In Fig. 4, the time response of xT x is depicted. From this
graph, it can be deduced that the closed-loop switched sys-
tem satisfies finite time H∞ criteria with specification (0,
30, I , 30, 3, σ ) against asynchronous switching. In fact,
the proposed scheme controls the rate of energy variation in
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Fig. 4 The time response of ‖x‖2
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Fig. 5 The control input of the drinking water supply network (DWSN)

both matched and mismatched time intervals with the pres-
ence of asynchronous switching, allowing xT x to satisfy the
specified bound in the time interval. The control input for the
switched system is shown in Fig. 5.

The comparison between the proposed scheme and control
scheme extended by Gholami and Shafiei (2021) is shown
in Table 1. This table shows that proposed scheme has less
convergence time and less average of ‖x‖. In fact, the control
scheme extended by Gholami and Shafiei (2021) does not
take into account the asynchronous switching phenomena
and considers the switching signal based on the average dwell
time structure that is robust to a smaller class of switching
signal compared to a persistent dwell time structure. These
issues reduce control performance.

Example 2 Think about a model of discretized water pollu-
tion. The intended model depicts, respectively, the concen-
trations of dissolved oxygen and biological oxygen demand
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Table 1 Comparison of proposed scheme and control scheme extended
by Gholami and Shafiei (2021)

Methods Average of ‖x‖ Convergence time of
states (|xi | < 0.02, i
� 1, 2) (min)

Control scheme
extended by
Gholami and
Shafiei (2021)

0.02 5

Proposed scheme 0.008 3

per unit volume at time d. The purpose of this example is to
illustrate how the requirements in Theorem 2 may be used to
create the suggested scheme for this model. There is a switch
between the two subsystems listed below:

Subsystem 1:

M1 �
(

0.8794 0
−0.2773 0.8208

)

, D1 �
(

0.0926 0
0.02294 0.0659

)

,

B1 �
(

0.1126 0
−0.0176 0.1270

)

,

N1 � [0.1 0.1]T , O1 � I2, T1 � I2, hM � 4s,

h � 1s, Ts � 1s (55)

Subsystem 2:

M2 �
(

0.8620 0
−0.1848 0.7730

)

, D2 �
(
0.1257 0
0.0288 0.1606

)

,

B2 �
(

0.1394 0
−0.0148 0.1058

)

,

N2 � [0.1 0.1]T , O2 � I2, T2 � I2, hM � 4s,

h � 1s, Ts � 1s (56)

We would make the closed-loop water pollution system
finite time stable with respect to (0, 20, I , 30, 3, σ ). The
parameters of the controller and switching signal are selected
as ξs � 0.02, ξas � 0.05, μ � 1.05, dsyn,m � 2s, dT � 10s
and f � 0.25Hz. Solving the LMI problem (41)–(43), we
obtain:

S1 �
(

13.4200 −0.2164
−0.2164 13.7033

)

, K1 �
(

−4.5824 1.0925
1.0582 −4.1406

)

,

S2 �
(
13.3287 0.2231
0.2231 13.6123

)

, K2 �
(

−4.1138 0.4719
0.4525 −4.7902

)

,

Q �
(
0.3719 0.0842
0.0842 0.4257

)

(57)
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Fig. 6 The system states of the water pollution system
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Fig. 7 The time response of ‖x‖2

Based on S1, S2, and R � I , we obtain κ1 �
maxi∈M (λmax(Si )) � 13.82 and κ2 � mini∈M (λmin(Si )) �
13.20. Finally, considering γ � 1 and using (12), we obtain
d∗
τ � 6.27. Figures 6, 7 and 8 show the system states, the vari-
ation of Lyapunov function, the time response of ‖x‖2 and
control input of water pollution system. Analysis of these
figures confirms that closed-loop system is finite time sta-
ble with respect to (1, 20, I , 30, 3, σ ), and the required
performance is satisfied.

5 Conclusion

In this study, using multiple Lyapunov–Krasovskii func-
tionals, a finite-time H∞ state feedback strategy against
asynchronous switching was developed in the linear delayed
switched systems with the PDT switching signal. A num-
ber of non-convex constraints as well as additional switching
signal conditionswere extracted to ensure the system’s finite-
timeH∞ criteria. The level of disturbance attenuation is also
measured. The linear matrix inequality problemwas selected
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Fig. 8 The input of the water pollution system

so that the non-convex issue could be solved using standard
tools. Finally, numerical simulations verified the recom-
mended strategy, and the results showed it to be effective.
Future studies will find it difficult to construct a finite-
time H∞ asynchronous output feedback strategy in linear
switched systems.
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