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Abstract
The present research determines the effect of training data sets, correlation, and multicollinearity on the performance and
overfitting of gene expression programming (GEP) and relevance vector machine (RVM) models in predicting the soaked
CBR of fine-grained soil. For this purpose, one hundred and 82 training data sets have been compiled and subdivided into
50%, 60%, 70%, 80%, 90%, and 100%. In addition, 15 testing, 36 validation, and 12 laboratory-tested data sets have been
compiled for trained models. The linear, polynomial, gaussian, and Laplacian kernels have been used to develop each GA and
PSO optimized relevance vector machine (RVM)model, which have been trained by 50–100% training data sets. Thus, SRVM
(single kernel-based) and HRVM (dual kernel-based) models have been developed and trained. The performance of models
has been measured by RMSE, MAE, and R performance indicators. Based on the performance comparison, Model 21 (R �
0.9874) & Model 39 (R � 0.9748) of SRVM, and Model 51 (R � 0.9606) and Model 57 (R � 0.9701) of HRVM have been
identified as better performing RVM models. However, GEP model 62 has performed (R � 0.8847) less than RVM models.
The test performance comparison shows that model 21 has outperformed models 39, 51, 57, and 62 in predicting the soaked
CBR of fine-grained soil. In addition, model 21 (performance � 0.8631) has predicted soaked CBR for the validation data set
better than published models. Finally, the present research concludes that model 21 (GA optimized Laplacian kernel-based
SRVM model) is a robust model that can predict the soaked CBR of fine-grained soil with the least prediction error and high
performance.

Keywords Soaked California bearing ratio · Relevance vector machine · Gene expression programming · Cosine sensitivity
analysis

Abbreviations

AI Artificial intelligence
ANN Artificial neural networks
C Clay content
CBR California bearing ratio
CC Coefficient of curvature
CL Confidence level
CL Inorganic clays of low plasticity
CS Coarse sand
CU Coefficient of uniformity
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D10 Particle size at 10% fine
D30 Particle size at 30% fine
D50 Particle size at 50% fine
D60 Particle size at 60% fine
DCP Dynamic cone penetration
DUW Dry unit weight of soil
FC Fine content
FD Frequency distribution
FS Fine sand
FSI Free swell index
G Gravel content
GA Genetic algorithm
GEP Gene expression programming
GMDH-NN Groupmethod of data handling neural network
HRVM Hybrid/two kernel-based relevance vector

machine
IS Indian Standards
LL Liquid limit
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M Silt content
MAE Mean absolute error
MDD Maximum dry density
MLR Multiple linear regression
NUW Natural unit weight of soil
OC Organic content
OMC Optimum moisture content
OWC Optimum water content
PI Plasticity index
PL Plastic limit
PSO Particle swarm optimization
R Correlation coefficient
R2 Coefficient of determination
RMSE Root mean square error
RVM Relevance vector machine
S Sand content
SPSS Statistical package for the social sciences
SPT-N Standard penetration test number
SRVM Single kernel-based relevance vector machine
St. Dev Standard deviation

1 Introduction

The transportation system is an essential component for
the socio-economic development of a nation (Alam et al.
2020). The highway is an infrastructure facility to connect
the Greenfield development. The most important element
of highway construction is the mechanical properties of
soil and design loads (Reddy et al. 2019). The California
bearing ratio is a soil parameter widely used in designing
flexible pavements in India. The CBR of soil is experi-
mentally determined as per IS 2720 (P-16): 1979 to design
the sub-base and base course. The CBR test determines an
empirical value, which indicates the shear stress in sub-
grade, subbase, and base. Finally, the CBR test gives the
soil’s mechanical strength and bearing value. The soaked
and unsoaked are the types of CBR. The soaked CBR test
involves 96 h of soaking of prepared soil sample on optimum
moisture content, and a 50 mm diameter plunger penetrates
the soil at the rate of 1.25 mm/min (IS 2720: 1979, P-16
2022). Determining unsoaked CBR value is easy and less
time-consuming than soaked CBR. Still, both procedures
are time-consuming, and sometimes, not accurate results
are obtained due to improper maintenance of CBR equip-
ment and sample disturbance (Taskiran, 2010). Therefore,
the prediction models or AI approaches are applied to com-
pute the CBR value for fine-grained soils because of their
complex behaviour (González et al. 2018). Correlation equa-
tions are the most straightforward approach for determining
the CBR of sub-grade materials (Taskiran, 2010). Several

attempts have been made to establish a soaked CBR relation-
ship with index parameters (gravel, sand, fine content, D10,
D30,D50,D60), consistency limits (liquid limit, plastic limit,
plasticity index), compaction parameters (optimummoisture
content, maximum dry density), specific gravity, and com-
paction energy by numerous researchers. The researchers
have derived the regression equations and concluded that the
soil parameters LL, PI, PL, OMC, MDD, FC, MDD, G, S,
M, and C affect the prediction of the CBR (Taskiran, 2010;
Venkatasubramanian et al. 2011; Datta et al. 2011; Harini
HN et al. 2014; Phani Kumar et al. 2015; Janjua et al. 2016;
Pradeep Kumar et al. 2016; Chandrakar et al. 2016; Bourouis
et al. 2016; Reddy et al. 2019). These parameters have been
used as input parameters to construct the high-performance
ANNmodels and compared with MLR, GEP, and OLSmod-
els.

Taskiran (2010) has compared GEP and ANN models
and has reported that the GEP predicts CBR better than
ANN with COD of 0.918. On the other hand, Ajalloeian
et al. (2015) have concluded that the ANN model has per-
formed better than the OLS approach. Vekatasubramanian
et al. (2011) have compared ANN &MLR in predicting soil
CBR and observed that MLR has predicted better than ANN.
In addition, the authors have concluded the large data set can
improve the performance of ANN models. Therefore, many
researchers have used large data sets to develop ANNmodels
and compare them with MLR.

Furthermore, Harini et al. (2014) and Pradeep Kumar
et al. (2016) have concluded that the ANN model has out-
performed theMLRmodel in predicting CBR. Rehman et al.
(2017a; b) has reported that D50 and CU are the most influ-
encing parameters for CBR of granular soil. Rehmanet al.
(2017a; b) have concluded that the combined LL and PI pre-
dict soaked CBR of soil with a performance (R2) of 0.9.
González et al. (2018) have estimated CBR using MLR,
polynomial regression, and radial basis network models. The
authors have suggested that soil can be divided into two
groups based on the gravel content to predict CBR bet-
ter. Ravichandra et al. (2019) have concluded that MDD
is the most influencing parameter in computing the soaked
CBR. The GMDH-NN model predicts CBR of soil better
than the ANN and MLR models (Kurnaz et al. 2019). Alam
et al. (2020) have reported that the Krigging method pre-
dicts CBR of soil better than ANN and GEP approaches. Vu
et al. (2021) has concluded that the random forest model
can predict the CBR of soil with a testing performance
(R2) of 0.92.

In addition, many authors have used the field test data
to predict the CBR of soil. For example, Al-Refeai et al.
(1997) have successfully computed the CBR of fine-grained
soil using gravel content and DCP parameters. Gül et al.
(2021) have estimated the CBR from field measurements,
such as laboratory soil and SPT-N parameters. The study
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of statistical relationships has revealed that the grain size,
stiffness–looseness, DUW, and OMC influence the CBR of
soil. In addition, it has also been observed that the ground
vibration test and SPT predict CBR with high performance.

The literature study shows that the simple linear/ poly-
nomial/ logistic regression analysis, multiple regression
analysis, and artificial neural network approaches can pre-
dict the soaked CBR of fine-grained soil. Furthermore, many
researchers have concluded that the G, S, FC, LL, PL, PI,
OMC, and MDD of fine-grained soil play an important role
in predicting soaked CBR. However, the effect of the corre-
lation coefficient and training data set has not been studied in
predicting soaked CBR of fine-grained soil. In addition, the
hybrid learning approaches (relevance vector machine, least-
square support vector machine, etc.) have not been applied to
predict soaked CBR. Therefore, the following objectives are
mapped for the present research work based on the literature
study.

• Todevelop and train the gene expression programming and
GA/PSO optimized RVM models with 50%, 60%, 70%,
80%, 90%, and 100% of 182 training data sets.

• To study the effect of optimization techniques (GA and
PSO) on the performance of single-kernel-based RVM
(SRVM)models in predicting soaked CBR of fine-grained
soils.

• To evolve dual kernel-based RVM (HRVM) models using
a better-performing kernel (determined from each GA and
PSO optimized SRVM model) and train the proposed
HRVM models using 50%, 60%, 70%, 80%, 90%, and
100% of 182 training data sets.

• To identify the best architectural model for predicting
soaked CBR by mapping a comparative study between
better-performing GA optimized SRVM, PSO optimized
SRVM, GA optimized HRVM, PSO optimized HRVM,
and GEP.

• To determine the effect of the correlation coefficient and
training data set on performance and overfitting of the
developed RVM and GEP models.

• To study the effect of multicollinearity in the training data
sets on the performance and overfitting of the developed
RVM and GEP models.

• To determine the sensitivity of input parameters for soaked
CBR using the cosine amplitude method.

2 Data analysis

This section briefly describes data sources, frequency distri-
bution and histogram, Pearson’s product-moment correlation
coefficient, and statistics of collected data sets.

2.1 Data sources

The collected data set includes gravel, sand, fine content, liq-
uid limit, plastic limit, plasticity index, optimum moisture
content, maximum dry density, and soaked CBR of fine-
grained soil. The soil data sets of soaked CBR have been
collected from various sources, as given in Table 1.

Table 1 shows that the one hundred and eighty-two train-
ing data sets have been collected from different published
research articles to train the RVM and GEP models. In
addition, 15 and 36 data sets have been collected from the
published articles to test and validate the trained AI mod-
els, respectively. Based on the performance comparison, the
best architecture model has been determined to predict the
soaked CBR. Furthermore, the 12 fine-grained soil samples
have been collected from and around Kota, Rajasthan, and
tested in the laboratory to cross-validate the performance and
prediction of the best architecture model.

2.2 Frequency distribution and histogram of data
sets

The gradational parameters, LL, PL, PI,OMC, andMDD, are
the input parameters of models to predict soaked CBR. The
frequency distribution of input parameters of soaked CBR
data sets is shown in Fig. 1a–i.

2.3 Descriptive statistics

The present study has 182 training, 15 testing, 36 valida-
tion, and 12 cross-validation data sets of fine-grained soil.
In addition, the training data sets have been subdivided into
50%, 60%, 70%, 80%, 90%, and 100% of 182 training data
sets. The statistical parameters, minimum, maximum, mean
(average), standard deviation (St. Dev), and confidence level
(CL) at 95% are calculated for 50%, 60%, 70%, 80%, 90%,
and 100% training data sets, as given in Table 2.

2.4 Pearson’s product moment correlation
coefficient

The Pearson’s product-moment correlation coefficient has
calculated the relationship between input and output param-
eters in the present study. The level of relationship in terms
of the correlation coefficient is given in Table 3 (Hair et al.
2010).

Furthermore, the correlation coefficients are calculated for
50%, 60%, 70%, 80%, 90%, and 100% of 182 training data
sets, as shown in Fig. 2a–f.

Figure 2a–f depicts the relationship between input andout-
put parameters of 50%, 60%, 70%, 80%, 90%, and 100% of
182 training data sets. Figure 2 demonstrates the gravel con-
tent very strongly correlates with soaked CBR. On the other
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Table 1 Details of data sources
of soaked CBR S. no. Data type Description Quantity Total

1 Training Ramasubbarao et al. (2013) 25 182

2 Shirur et al. (2014) 20

3 Talukdar (2014) 16

4 Araujo et al. (2016) 75

5 Wilches et al. (2020) 46

6 Testing Teklehaymanot et al. (2021) 15

7 Validation Eltwati (2020), Vukićević (2013), Senol (2002), Edil (2006),
Kulkarni (2017), Ji-Ru (2002), Murmu (2020), Kumar
(2017), Vukićević (2015), Abdelkader (2021), Al-Soudany
(2018), Yin (2022), Negi (2013), Bandyopadhyay (2016),
Shivaramaiah (2020), Kadhim (2022), Azim et al. (2017),
Alhassan (2008), Dabou (2021), Vandana Rao (2018),
Mittal (2021), Amena (2021), Blayi (2020a,; b), Rohith
(2018), Mahdi (2018), Akanbi (2021), Keshav (2018)

36

8 Cross-validation Laboratory testing 12

hand, the fine content very strongly correlateswithmaximum
dry density. The liquid limit of fine-grained soil very strongly
correlates with PL, PI, andOMC. In addition, it has also been
observed that the sand content is strongly correlated with
consistency limits. Still, the compaction parameters (OMC,
MDD, and CBRs) are strongly influenced by gradational
parameters and consistency limits of fine-grained soils. The
plasticity index strongly influences the optimum moisture
content and maximum dry density. In addition, fine con-
tent strongly influences consistency limits, and liquid limit
strongly influences soaked CBR. In addition, the gravel con-
tent moderately correlates with liquid limit, plasticity index,
and optimum moisture content of fine-grained soil. In addi-
tion, the plastic limitmoderately influences soakedCBR.The
correlation coefficient for soaked CBR shows that the sand
content has no relationship with soaked CBR of fine-grained
soil.

Figure 2a demonstrates that the sand content has multi-
collinearity of − 0.6644 and − 0.6700 with fine content and
plastic limit, respectively. On the other hand, the OMC has
multicollinearity with a plastic limit (0.7751) and a plasticity
index (0.7410) of soil. Moreover, the liquid limit and PI have
multicollinearity with soaked CBR. Figure 2b presents that
the gravel content has multicollinearity with PL (− 0.4525)
and PI (− 0.4830). On the other hand, sand content has mul-
ticollinearity with fine content (− 0.6684), LL (− 0.6856),
and PL (− 0.4535) & PI (− 0.6052). Furthermore, FC has
multicollinearity with PL (0.7461), PI (0.7511) and CBRs
(− 0.7788). In addition, the liquid limit has multicollinearity
with PL (0.8111) and OMC (0.8321). Moreover, the soaked
CBR has multicollinearity with liquid limit and OMC.

Figure 2c shows that multicollinearity is present between
sand content and liquid limit (− 0.6892), PL (− 0.6574), and
PI (− 0.5346), and OMC (− 0.5543). Furthermore, maxi-
mum dry density has multicollinearity of − 0.8192 for FC

and− 0.7949 for LL. In addition, optimummoisture content
has multicollinearity with PL (0.6933) and PI (0.7198) of
fine-grained soil. The correlation coefficient for CBRs shows
that CBRs influence because of themulticollinearity between
CBRs and liquid limit (− 0.5690) and OMC (− 0.5978) of
fine-grained soil. Figure 2d illustrates that fine content has
multicollinearitywith gravel (− 0.7336) and sand (− 0.7059)
content. The plastic limit and plasticity index have multi-
collinearity of − 0.4407 and − 0.4614, respectively, with
gravel content. On the other hand, the liquid limit and plas-
tic limit has multicollinearity of − 0.6440 and − 0.6230,
respectively, with sand content. In addition, the plasticity
index (− 0.5032) and OMC (− 0.5335) have multicollinear-
ity with sand content. However, the liquid limit and plastic
limit determine the plasticity index of soil, which develops
a relationship (PI � LL−PL) between plastic limit and plas-
ticity index. Thus, Fig. 2d shows that the plastic limit and
plasticity index has multicollinearity of 0.7020 and 0.7259,
respectively, with the optimum moisture content of fine-
grained soils. In addition, the liquid limit (− 0.5751) and
plasticity index (− 0.5343) contain the multicollinearity for
soaked CBR of fine-grained soil.

Figure 2e depicts that the gravel content has multi-
collinearity with a plastic limit (− 0.4236) and plasticity
index (− 0.4485). Furthermore, liquid limit (− 0.6719), plas-
tic limit (− 0.6444) and, plasticity index (− 0.5359) and
OMC (− 0.5478) have multicollinearity with sand content
present in the fine-grained soils. Figure 2e shows that soaked
CBR of fine-grained soils has multicollinearity with liquid
limit and plasticity index. Figure 2f demonstrates that the
fine content has multicollinearity with gravel (− 0.7067) and
sand (− 0.7222) content. In addition, gravel content has mul-
ticollinearity with a plastic limit (− 0.4128) and a plasticity
index (− 0.4332). On the other hand, the sand content has
multicollinearity with a plastic limit (− 0.5119) and opti-
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(a) FD of gravel content (b) FD of sand content
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Fig. 1 Frequency distribution of input parameters of soaked CBR data sets
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Table 2 Descriptive statistic for training data of soaked CBR

Particulars Min Max Mean St.dev CL Min Max Mean St.dev CL Min Max Mean St.dev CL

50% data sets 60% data sets 70% data sets

G (%) 0.00 68.00 12.75 23.55 4.91 0.00 68.00 11.11 22.06 4.19 0.00 68.00 8.86 20.18 3.54

S (%) 0.54 89.00 29.38 20.71 4.31 0.38 83.00 29.60 19.58 3.72 0.38 89.00 28.01 20.70 3.64

FC (%) 4.00 99.46 57.68 31.51 6.56 7.00 99.62 58.87 29.94 5.68 4.00 99.62 62.57 30.00 5.27

LL (%) 17.00 94.00 40.76 19.65 4.09 15.00 75.90 40.37 18.08 3.43 15.00 94.00 44.50 19.35 3.40

PL (%) 0.00 53.80 22.73 8.94 1.86 12.30 53.80 23.45 7.80 1.48 0.00 54.90 24.53 9.11 1.60

PI (%) 2.00 58.00 18.02 13.53 2.82 1.00 49.00 16.92 12.61 2.39 1.00 58.00 19.97 13.74 2.41

OMC (%) 4.50 44.00 16.39 9.17 1.91 4.50 44.00 16.33 8.42 1.60 4.50 44.00 17.62 8.63 1.52

MDD (g/cc) 1.19 2.30 1.80 0.30 0.06 1.19 2.24 1.76 0.28 0.05 1.19 2.30 1.73 0.28 0.05

CBRs (%) 0.80 81.00 19.05 26.58 5.53 1.00 81.00 17.68 24.61 4.67 0.80 81.00 13.77 21.41 3.76

G (%) 80% Data sets 90% Data sets 100% Data sets

0.00 68.00 11.19 21.42 3.50 0.00 68.00 10.21 20.56 3.17 0.00 68.00 9.79 20.07 2.94

S (%) 0.00 89.00 28.21 20.12 3.29 0.00 89.00 29.15 20.95 3.23 0.00 89.00 28.54 20.16 2.95

FC (%) 4.00 100.00 60.15 30.39 4.97 4.00 100.00 60.18 29.92 4.61 4.00 100.00 61.24 29.17 4.27

LL (%) 15.00 94.00 42.54 19.12 3.13 15.00 94.00 42.99 19.43 3.00 15.00 94.00 42.48 18.72 2.74

PL (%) 0.00 54.90 23.87 8.95 1.46 0.00 54.90 23.88 9.09 1.40 0.00 54.90 23.82 8.74 1.28

PI (%) 1.00 58.00 18.66 13.38 2.19 1.00 58.00 19.11 13.43 2.07 1.00 58.00 18.66 13.06 1.91

OMC (%) 4.50 44.00 17.04 8.47 1.38 4.50 44.00 17.19 8.42 1.30 4.50 44.00 17.01 8.11 1.19

MDD (g/cc) 1.19 2.30 1.75 0.28 0.05 1.19 2.30 1.74 0.28 0.04 1.19 2.30 1.75 0.27 0.04

CBRs (%) 0.80 81.00 15.85 23.07 3.77 0.80 81.00 15.13 22.16 3.42 0.80 81.00 14.28 21.29 3.11

Table 3 Level of relationship vs value of correlation coefficient

Correlation coefficient Level of relationship

±0.81to ±1.00 Very strong/strongest

±0.61 to ±0.80 Strong

±0.41 to ±0.60 Moderate

±0.21 to ±0.40 Weak

±0.00 to ±0.20 No relationship

mum moisture content (− 0.5271). Moreover, the OMC has
multicollinearity of 0.6959 and 0.7308 with plastic limit and
plasticity index, respectively. In addition, it has been found
that the liquid limit and plasticity index influence the predic-
tion of soaked CBR.

3 Methodology used in the present study

The relevance vector machine and gene expression pro-
gramming artificial intelligence approaches have been used
in the present research work to predict soaked CBR of fine-
grained soils.

3.1 Relevance vector machine

A relevance vector machine is a hybrid artificial intelligence
approach, and this approach is an advanced version of the

support vector machine. RVM gives the most promising
results, because it uses a Bayesian inference system (Tip-
ping 2001):

k
(
x, x ′) �

N∑

j�1

1

β j
ϕ
(
x, x j

)
ϕ
(
x ′, x j

)
. (1)

The relevance vector machine models use Linear, Gaus-
sian, Polynomial, and Laplacian kernels in the present study.
The mathematical expression of kernels is

Linear Kernel

K (x) � C + (ai ∗ (x, xi )). (2)

Gaussian Kernel

K
(
x, x ′) � exp

(
x − x ′ 2

2σ 2

)
. (3)

Polynomial Kernel

K (x, y) �
(
xT y + c

)d
. (4)

Laplacian Kernel

K (x, y) � exp

(
x − y

σ

)
(5)
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Fig. 2 Relationship between input and output parameters for different training data sets

Sixty models are developed in the present study to predict
the soaked CBR of fine-grained soil. The model designation

with different percentages of training data sets is given in
Table 4.
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Table 4 Details of RVM models
Model type Linear Polynomial Gaussian Laplacian

SRVM-GA Model 1–6 Model 7–12 Model 13–18 Model 19–24

SRVM-PSO Model 25–30 Model 31–36 Model 37–42 Model 43–48

HRVM-GA Model 49–54 (Laplacian + Gaussian)

HRVM-PSO Modesl 55–60 (Laplacian + Gaussian)

Table 5 Configuration of RVM Models

Hyperparameters sRVM HRVM

Parameter settings

Kernel functions Gaussian, linear, Laplacian, polynomial

Free basis Enable

Max. iterations 1000

Number of kernels Single Two

Optimizer settings

Methods GA & PSO

Target Single Kernel Two Kernels

Ib 2–6 2–5, 10–2, 10–3, 10–3

uB 2–6 2–5, 100, 103, 103

Num. variable 1 4

Max. iterations 100

Kfolds 5

Six RVM models have been constructed by 50%, 60%,
70%, 80%, 90%, and 100% for each Linear, Polynomial,
Gaussian, and Laplacian kernel. Six RVM models of sin-
gle kernel function-based (SRVM) are optimized by GA and
PSO techniques. In addition, the two kernel function-based
(HRVM)models are developed by recognizing themaximum
performance SRVM model in GA and PSO optimization.
In this study, Laplacian and Gaussian kernel function-based
SRVM models have performed better than the other RVM
models. Therefore, HRVM models have been developed
using Laplacian and Gaussian kernels as Kernel1 and Ker-
nel2, respectively. The proposed HRVM models are also
optimized by GA and PSO techniques. The hyperparame-
ters of the proposed RVM models are given in Table 5.

3.2 Gene expression programming

Gene expression programming is an evolutionary algorithm
developed to solve user-defined problems using automatic
generation computer programs (Zhong, 2017), and it con-
sists of mutation and crossover operators (Tenpe, 2020). It
is a genotype–phenotype system encoded in simple linear
chromosomes of fixed length. The general gene structure is
shown in Fig. 3.

Fig. 3 Gene Structure (Tenpe, 2020)

where “–” is the root node, “Rt, + ,−” is the function node
(Head), and “X1, X2, X3, 7” are terminals (tail). The head
length (h) and tail length (t) are computed using Eq. 3.52:

T � (n − 1)h + 1. (6)

The present study has developed six gene expression pro-
gramming models to predict the soaked CBR of fine-grained
soil. The model designation with different percentages of
training data sets is given in Table 6.

The gene expression programming models have been
trained by 50%, 60%, 70%, 80%, 90%, and 100% training
data sets. The hyperparameters of the proposed GEP models
are given in Table 7.

The following equations are derived while training the
GEP models:

Model 61 �((GEP3Rt((OMC ∗ −9.94))

∗GEP3Rt((G−MDD)))

∗(1.0/(((OMC−8.12)/2.0))))

+ MAX((GEP3Rt(FC)

∗GEP3Rt((S−LL))),

GEP3Rt((−58.24−G))) (7)
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Table 6 Details of GEP models
Soil properties Model designation with percentage of training data sets

50% 60% 70% 80% 90% 100%

CBRs Model 61 Model 62 Model 63 Model 64 Model 65 Model 66

Table 7 Configuration of GEP models

Hyperparameters Status

No of chromosomes 30

No of gene 3

Head length 7

Mutation rate 0.00138

One-point combination rate 0.00277

Two-point combination rate 0.00277

Gene combination rate 0.00277

Fitness function RMSE

Mathematical operators + , −, *, /, Exp, Ln, Inverse, X2,
3Rt, Atan, Tanh

Maximum number of
generations

10,000

Model 62 � (((1.0−((G + S)/(G−OMC)))

+ ((OMC + 1.87)/(OMC−6.25)))/2.0)

+ ((G + GEP3Rt(((((2.07 + S)/2.0)

+ (OMC/PL)) + (−2.24−LL))))/2.0) (8)

Model 63 �(1.0/(((AT AN ((1.0−(S/LL)))

+ MI N (GEP3Rt(MDD),

((S + MDD)/2.0)))/2.0)))

+ (MAX((POW (MDD, 2.0) ∗ (1.0/(OMC))),

((6.34−LL)−P I )) ∗ G) (9)

Model 64 �MI N (EX P(EX P(AT AN (MDD))),

MI N (((((S + MDD)/2.0) + MDD)/2.0), FC))

+ (1.0−MI N (MAX ((P I−3.12),

(OMC−P I )), MI N ((G ∗ PL), EX P(MDD))))
(10)

Model 65 �MI N ((G−(((1.0/(FC)) ∗ S)

+ (−3.76 + MDD))),G)

+ (((P I ∗ (EX P(MI N (1.15,−3.35))

∗ (−3.35 ∗ G))) + 4.52)/2.0) (11)

Model 66 �((1.0−GEP3Rt((FC ∗ G)))

−GEP3Rt((Log(LL) ∗ (FC + P I ))))

+ (1.0−(POW (((S + S)

+ PL), 2.0)/((7.96−LL) ∗ POW (OMC, 2.0))))
(12)

3.3 Methodology

The present research predicts soaked CBR of fine-grained
soil using the best architectural AI model. Therefore, a com-
parative study is mapped between adopted AI approaches,
such as relevance vector machines and gene expression
programming. The relevance vector machine models are
developed using single and dual kernel functions, denoted
by SRVM and HRVM. These kernel functions are Linear,
Polynomial, Gaussian, and Laplacian. Each kernel function
develops six SRVM models using 50%, 60%, 70%, 80%,
90% and 100% of 182 training data sets. The genetic algo-
rithms and particle swarm optimization techniques optimize
each SRVM model. The optimized SRVM models have pre-
dicted soaked CBR of 15 testing fine-grained soil data sets.
Thus, four models (one from each kernel function) are the
better-performing models from each GA and PSO identified
and compared to obtain the best kernel function. Two ker-
nel functions (one from GA and one from PSO) have been
identified as the best kernel function and developed the dual
kernel-function-based HRVM models. In the present study,
the Laplacian and Gaussian kernel functions are the best ker-
nel function identified from SRVM models. Therefore, six
HRVM models are developed for 50%, 60%, 70%, 80%,
90%, and 100% of 182 training data sets and optimized by
eachGAand PSO technique. Based on the comparative study
of the performance of HRVM models, one model from each
GA and PSO technique is a better-performing model recog-
nized. Finally, the present study has four better-performing
models: one from SRVM optimized by GA, one from SRVM
optimized by PSO, one from HRVM optimized by GA, and
one from HRVM optimized by GA PSO.

On the other hand, 50%, 60%, 70%, 80%, 90%, and 100%
of 182 training data sets have developed six GEP models.
In addition, a GEP model having maximum performance
is recognized as a better-performing model and compared
with four models obtained from a comparison of RVMmod-
els. Thus, comparing one GEP and four RVM models gives
the best architectural model to predict the soaked CBR of
fine-grained soil. In addition, geotechnical properties of 36
fine-grained soils have been collected from published articles
to compile a validation data set to validate the best architec-
tural models.Moreover, the publishedmodels have predicted
the soaked CBR of fine-grained soil in validation data sets
and compared it with the best architectural model. After val-
idating the best architectural model, the best architectural
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model has predicted the soaked CBR of twelve fine-grained
soil samples tested in the laboratory.

4 Results and discussion

Numerous researchers have applied different AI approaches
to predict the soaked CBR of soil for fine-grained soil.
The present study uses the genetic algorithm and particle
swarm optimized relevance vector machine AI approach to
predict soaked CBR of fine-grained soils. In addition, the
gene expression programming AI approach is also applied to
predict the soaked CBR of fine-grained soil. The best archi-
tectural AI model has been determined by comparing the
performance of developed models. Furthermore, the perfor-
mance of models has been determined in terms of RMSE,
MAE, and R.

4.1 Results of single kernel-based RVM (SRVM)
models optimized by GA

The single kernel-based RVM models have been developed
using Linear, Polynomial, Gaussian, and Laplacian kernel
functions and optimized by a genetic algorithm. RVM mod-
els have been trained by 50%, 60%, 70%, 80%, 90%, and
100% of 182 data sets. Fifteen data sets have tested the capa-
bilities of developed RVM models. The training and testing
performance of the SRVM models is mapped for different
percentages of training data sets, as shown in Fig. 4a–h.

Figure 4 depicts the performance of the developed Linear,
Polynomial, Gaussian, and Laplacian SRVM models (GA
optimized) using 50–100% training data sets. The follow-
ing observations have been mapped from Fig. 4i Model 3
has predicted soaked CBR with the test RMSE of 1.0390,
MAE of 0.8596, and R of 0.8974, (ii) Model 9 has predicted
soaked CBR with test RMSE of 0.5116, MAE of 0.4169,
and R of 0.9701, (iii) Model 15 has predicted soaked CBR
with test RMSE of 0.8909, MAE of 0.7332, and R of 0.9260,
(iv) Model 21 has predicted soaked CBR with test RMSE
of 0.3140, MAE of 0.2418, and R of 0.9874. Models 3, 9,
15, and 21 are developed using Linear, Polynomial, Gaus-
sian, and Laplacian kernels and trained by a 70% training
data set. In the 70% training data set, gravel content is very
strongly correlated, and fine content and MDD are strongly
correlatedwith soakedCBRof fine-grained soils. The soaked
CBR of fine-grained soil is highly influenced by gravel con-
tent (Al-Refeai et al. 1997), fine content (Reddy et al. 2019),
and MDD (Ravichandra et al. 2019). The correlation coeffi-
cient of sand content shows no relationship, and the rest of
the input parameters have a moderate relationship with the
soakedCBRof fine-grained soil. The performance ofModels
3, 9, 15, and 21 has been compared, and it has been observed
thatModel 21 (Laplacian kernel-based) has predicted soaked

CBR with high performance and has been identified as a
better performance model. Furthermore, the overfitting for
single kernel-based RVMmodels optimized by GA has been
calculated, as shown in Fig. 5.

The ratio of test RMSE to training RMSE (overfitting �
Test RMSE/Training RMSE) is known for the overfitting or
overfitting ratio of the model (Tenpe et al. 2020). Figure 5
illustrates the comparison of overfitting of the model in pre-
dicting soaked CBR of fine-grained soil. Figure 5 shows that
Models 3, 9, and 21 have the overfitting of 0.1279, 0.1319,
and 0.2155, respectively, which is comparatively less than
othermodels. On the other hand, theGaussian SRVM(Model
18) model has an overfitting of 0.1686, which is less than
other Gaussian SRVM (optimized by GA). The comparison
of overfitting for models 3, 9, 18, and 21 demonstrates that
model 3 (linear SRVM) has the least overfitting than other
models. Therefore, it can be stated that the linear SRVM
model optimized by the GA technique achieves minimum
overfitting in predicting soakedCBRof fine-grained soil than
nonlinear SRVM models optimized by the GA technique.

4.2 Results of single kernel-based RVMmodels
optimized by PSO

Similarly, single kernel-based RVMmodels have been devel-
oped using Linear, Polynomial, Gaussian, and Laplacian
kernel functions and optimized by the particle swarm opti-
mization technique. Fifteen data sets have tested the capa-
bilities of developed RVM models. The training and testing
performance of the SRVM models is mapped for different
percentages of training data sets, as shown in Fig. 6a–h.

Figure 6 depicts the performance of the developed Linear,
Polynomial, Gaussian, and Laplacian SRVM models (PSO
optimized) using 50–100% training data sets. Models 27, 33,
39, and45 are developedusingLinear, Polynomial,Gaussian,
and Laplacian kernels and trained by a 70% training data set.
The following observations have been mapped from Fig. 6,
(i) Model 27 has predicted soaked CBR with the test RMSE
of 0.8447, MAE of 0.7183, and R of 0.9315, (ii) Model 33
has predicted soaked CBR with test RMSE of 0.9350, MAE
of 0.7585, and R of 0.9026, (iii) Model 39 has predicted
soaked CBR with test RMSE of 0.4747, MAE of 0.3930,
and R of 0.9748, (iv) Model 45 has predicted soaked CBR
with test RMSE of 0.4788, MAE of 0.3553, and R of 0.9696.
Models 27, 33, 39, and 45 are developed using Linear, Poly-
nomial, Gaussian, and Laplacian kernels and trained by a
70% training data set. The input parameters gravel content,
fine content, and maximum dry density very strongly corre-
late with the soaked CBR of fine-grained soil. In addition,
it is found that the fine content strongly correlates with con-
sistency limits, which indirectly enhances the prediction of
soakedCBRof fine-grained soil. Furthermore, the overfitting
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(a) Performance R of Linear SRVM Models (b) RMSE & MAE Performance of Linear SRVM Models
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(c) Performance R of Polynomial SRVM Models (d) RMSE & MAE Performance of Polynomial SRVM Models
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(e) Performance R of Gaussian SRVM Models (f) RMSE & MAE Performance of Gaussian SRVM Models
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(g) Performance R of Laplacian SRVM Models (h) RMSE & MAE Performance of Laplacian SRVM Models
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Fig. 4 Training (TR) and testing (T ) performance of GA optimized SRVM models
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Fig. 5 Overfitting of single
kernel-based RVM models
optimized by GA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

M
od

el
 6

M
od

el
 7

M
od

el
 8

M
od

el
 9

M
od

el
 1

0
M

od
el

 1
1

M
od

el
 1

2
M

od
el

 1
3

M
od

el
 1

4
M

od
el

 1
5

M
od

el
 1

6
M

od
el

 1
7

M
od

el
 1

8
M

od
el

 1
9

M
od

el
 2

0
M

od
el

 2
1

M
od

el
 2

2
M

od
el

 2
3

M
od

el
 2

4

O
ve

rf
itt

in
g

Model Designation

for single kernel-based RVM models optimized by the PSO
technique has been calculated, as shown in Fig. 7.

Figure 7 demonstrates the comparison of overfitting of
SRVM models optimized by the PSO technique. Figure 7
shows that Models 27, 33, 39, and 45 have overfitting of
0.104, 0.2518, 0.1631, and 0.3134, respectively, which is
comparatively the least than other SRVM models optimized
by the PSO technique. The overfitting comparison of models
27, 33, 39, and 45 shows that Model 27 (linear model) has
minimum overfitting in predicting the soaked CBR of fine-
grained soil than nonlinear models (Models 33, 39, and 45).

On the other hand, the performance comparison has been
mapped between GA and PSO optimized SRVM models.
The particle swarm optimization technique has improved the
performance (R) of Model 3 from 0.8974 to 0.9315 (Model
15) and Model 15 from 0.9260 to 0.9784 (Model 39). Model
3 and 15 are linear and Gaussian kernel-based SRVM mod-
els. Therefore, it can be stated that the PSO optimization
technique boosts the performance of linear and Gaussian
kernel-based SRVM models of soaked CBR. However, the
performance of Model 9 has dropped from 0.9701 to 0.9026,
andModel 21 has fallen from0.9874 to 0.9696 using the PSO
technique. Models 9 and 21 are polynomial and Laplacian
kernel-based SRVM models. Therefore, it can be stated that
the PSO optimization technique decreases the performance
of polynomial and Laplacian kernel-based SRVMmodels of
soaked CBR, predicting soaked CBR of fine-grained soil.

Furthermore, genetic algorithm optimized SRVM Model
21 has outperformed the other GA optimized SRVM mod-
els, and PSO optimized SRVM Model 39 has outperformed
the other PSO optimized SRVM models. However, Model

21 and Model 39 has constructed by Laplacian and Gaus-
sian kernel functions. Therefore, the hybrid relevance vector
machine (HRVM)models are developed using Laplacian and
Gaussian kernel as kernel1 and kernel2, respectively, and
optimized by GA and PSO techniques.

4.3 Results of two kernel-based RVMmodels
optimized by GA

HRVM models have also been trained by 50%, 60%, 70%,
80%, 90%, and 100% of 182 data sets and optimized by GA.
Fifteen data sets have tested the ability of developed HRVM
models. The training and testing performance of the HRVM
models is mapped for different percentages of training data
sets, as shown in Fig. 8a, b.

Figure 8 depicts the performance of the developed GA
optimized HRVMmodels using 50–100% training data sets.
From Fig. 8, it has been observed that Model 51 has pre-
dicted soaked CBRwith test RMSE of 0.7381, MAE 0.6094,
and R of 0.9606. Model 51 has been trained by 70% train-
ing data sets. Therefore, Model 51 has outperformed the
GA-optimized Models 3 and 15 and PSO-optimized Mod-
els 27 and 33. Still, Models 9, 21, 39, and 45 have predicted
soaked CBR better than Model 51. Furthermore, the HRVM
(GA Optimized) overfitting has been calculated, as shown in
Fig. 9.

Figure 9 illustrates that Model 51 has an overfitting of
0.2805 in predicting soaked CBR of fine-grained soil, which
is comparatively less than other GA-optimized HRVMmod-
els. However, model 51 has been trained by 70% of 182
training data sets. As the result of the relationship between
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(a) Performance R of Linear SRVM Models (b) RMSE & MAE Performance of Linear SRVM Models
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(c) Performance R of Polynomial SRVM Models (d) RMSE & MAE Performance of Polynomial SRVM Models
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(e) Performance R of Gaussian SRVM Models (f) RMSE & MAE Performance of Gaussian SRVM Models
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(g) Performance R of Laplacian SRVM Models (h) RMSE & MAE Performance of Laplacian SRVM Models
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Fig. 6 Training (TR) and testing (T ) performance of PSO optimized SRVM models
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Fig. 7 Overfitting of single
kernel-based RVM models
optimized by PSO
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soaked CBR and input parameters (gravel content, fine con-
tent, and maximum dry density), model 51 has predicted
soaked CBR of fine-grained soil with the least overfitting.

4.4 Results of two kernel-based RVMmodels
optimized by PSO

Similarly, HRVMmodels (PSOoptimized) have been trained
by50%, 60%, 70%, 80%, 90%, and100%of 182data sets and
optimized by the PSO technique. Fifteen data sets have tested
the capabilities of developed HRVM models. The training
and testing performance of the HRVM models is mapped
for different percentages of training data sets, as shown in
Fig. 10a, b.

Figure 10 depicts the performance of the developed PSO
optimized HRVMmodels using 50–100% training data sets.
From Fig. 10, it has been observed that Model 57 has pre-
dicted soaked CBRwith test RMSE of 0.4761, MAE 0.3895,
and R of 0.9701. On the other hand, model 51 has been
trained by 70% training data sets. Therefore, Model 57 has
outperformed the GA optimized Models 3 & 15 and PSO
optimized Models 27, 33 and 45. Still, Model 9, 21, and 39
have predicted soaked CBR better than Model 57. On the
other hand, the comparison of overfitting of the model, as
shown in Fig. 11, demonstrates that model 57 has predicted
the soaked CBR of fine-grained soil with the least overfitting
than other PSO optimized HRVM models, i.e., 0.2812.

Finally, from the comparison of single and dual kernel
RVM models, the single kernel-based Models 21 (GA opti-

mized), 39 (PSO optimized), and two kernel-based Models
51 (GAoptimized) and 57 (PSOoptimized) have been identi-
fied as better performance RVMmodels in predicting soaked
CBR of fine-grained soils. The results of RVMmodels show
that the high performance and accuracy in predicting soaked
CBR can be achieved by a 70% training data set. The data
set has a very strong correlation with gravel content and a
strong correlation with FC and MDD of soil.

On the other hand, multicollinearity has been observed in
the 70% of 182 training data sets. The multicollinearity is
a statistical parameter affecting the models’ prediction and
performance. 70% of the 182 training data set shows that
the fine content has multicollinearity with gravel and sand
content. However, the sand content is the least influencing
input parameter in predicting soaked CBR of fine-grained
soil. Moreover, the sand content has multicollinearity with
consistency limits and optimum moisture content. Thus, the
effect of consistency limits and optimum moisture content
becomes less in predicting soaked CBR. In addition, it is
found that the maximum dry density has multicollinearity
with fine content and liquid limit. In addition, the optimum
moisture content has multicollinearity with plastic limit and
plasticity index. Instead of the presence of multicollinearity
in the 70% training data set, nonlinear RVMmodels have pre-
dicted the soakedCBRwith a performance ofmore than 0.95,
which shows that the RVMapproach is a robust approach and
it is not getting affected by the presence of multicollinearity
during the prediction of soaked CBR of fine-grained soil.
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Fig. 8 Training (TR) and testing
(T ) performance of GA
optimized HRVM models

(a) Performance R of HRVM Models

(b) RMSE & MAE Performance of HRVM Models
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4.5 Results of gene expression programming

The gene expression programming models have been trained
by 50%, 60%, 70%, 80%, 90%, and 100% of 182 data sets.
Fifteen data sets have tested the capabilities of developed
GEP models. The training and testing performance of the
GEP models is mapped for different percentages of training
data sets, as shown in Fig. 12a, b.

Figure 12 depicts the performance comparison of the
trained and tested GEP models using 50–100% training data
sets. From Fig. 12, it has been observed that Model 62 has
predicted soaked CBR with test RMSE of 1.2148%, MAE
0.9902%, andR of 0.8847.Model 62 has been trained by 60%
training data sets. Therefore, Model 62 has outperformed
the other GEP models in predicting the soaked CBR of soil.
Furthermore, the overfitting is also calculated for the GEP
models, as shown in Fig. 13.
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Fig. 9 Overfitting of dual
kernel-based HRVM models
optimized by GA
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Figure 13 demonstrates that Model 62 has achieved an
overfitting of 0.3063 in predicting soaked CBR of fine-
grained soil, which is comparatively less than other GEP
models. The expression tree of model 62 is shown in Fig. 14.

Figure 14 shows that Model 62 has three genes, i.e.,
Sub-ET1, Sub-ET2, and Sub-ET3, which consists of three
constant values viz. c0 � 2.07, c6 � 6.63, and c7 � − 4.31
and input parameters: d0 � G, d1 � S, d3 � LL, d4 � PL,
d6 � OMC. The fine content and maximum dry density play
a vital role in predicting the soaked CBR of fine-grained soil
(Taskiran 2010; Chandrakar et al. 2016; Bourouis et al. 2016;
Reddy et al. 2019). However, both input parameters aremiss-
ing in the expression tree, indicating the less effectivemodels
for predicting the soaked CBR of fine-grained soil. In addi-
tion, plasticity index and C + S content are absent in Model
62. The GEP models have been tested by the data set of inor-
ganic clays of high plasticity soils. The high plasticity clay
requires the plasticity index to predict soaked CBR (Datta
et al. 2011). Therefore, Model 62 has predicted soaked CBR
lower than experimental values of CH soil.

On the other hand, 60% of 182 training data sets have
trained the model 62. 60% of 182 training data sets have
multicollinearity betweengradational parameters and consis-
tency limits. The gravel content has moderate multicollinear-
ity (0.41<R <0.60) with plastic limit and plasticity index.
The sand content has multicollinearity with FC and liquid
limits, and the expression tree does not have FC as the input
parameter. Therefore, the present multicollinearity between
sand and fine content does not affect the prediction. Still,
the liquid limit has very strong multicollinearity (R >0.8)
with plastic limit and optimum moisture content. Therefore,

model 62 did not performwell compared to the RVMmodels
in the presence of multicollinearity.

4.6 Best architecture model

The test performance of Models 21, 39, 51, 57, and 62 has
been compared to determine the best architecture model for
predicting soaked CBR of soil, as shown in Fig. 15.

Figure 15 illustrates that Model 21 (SRVM optimized by
GA) has predicted soaked CBR of fine-grained soil with
RMSE of 0.3140%, MAE of 0.2418, and R of 0.9874, which
is comparatively less than other better-performing models.
Therefore, the best architectural model for predicting the
soaked CBR of fine-grained soil is Model 21.

Furthermore, the data sets of 36 fine-grained soil speci-
mens have been collected from the published research articles
to validate Model 21. In addition, the published equations/
models have also been used to compute the soakedCBRof 36
fine-grained soil and compared with Model 21. Patel et al.
(2010) derived a multilinear regression equation to predict
soaked CBR of soil using PI, MDD, and OMC:

CBRs � 43.907 − 0.093 ∗ PI

− 0.3081 ∗ OMC − 18.78 ∗ MDD (13)

Harini et al. (2014) also developed a regression model to
predict soakedCBRof soil using liquid limit andfine content:

CBRs � 4.86 − 0.07 ∗ LL + 0.01 ∗ FC (14)
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Fig. 10 Training (TR) and
testing (T ) performance of PSO
optimized HRVM models

(a) Performance R of HRVM Models

(b) RMSE & MAE Performance of HRVM Models
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Pradeep Kumar et al. (2016) proposed a multiple linear
regression equation to predict the soaked CBR of soil using
MDD, OMC, PL, LL, PI, G, S, and FC:

CBRs � 0.6981 ∗ FC + 0.7802 ∗ S + 0.9193 ∗ G

+ 0 ∗ PI + 0.0483 ∗ LL

− 0.2356 ∗ PL + 0.1579 ∗ OMC

+ 7.8239 ∗ MDD − 73.412 (15)

Reddy et al. (2019) also suggested a simple regression
equation to predict the CBR using the plasticity index of
soil:

CBRs � 6.1596 − 0.1024 ∗ PI (16)

Equations 13–16 and model 21 have been used to predict
the soaked CBR of 36 soil specimens collected from pub-
lished articles and results, as shown in Fig. 16.
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Fig. 11 Overfitting of dual
kernel-based HRVM models
optimized by PSO
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Figure 16 depicts the actual vs predicted plot of soaked
CBR of fine-grained soil using Model 21 and Eqs. 13–16.
Figure 16 shows that Model 21, Eqs. 13, 14, 15, and 16 have
predicted soaked CBR with a performance (R) of 0.8631,
0.7743, 0.8437, 0.8133, and 0.7919, respectively. The per-
formance comparison shows that Model 21 has performed
better than published equations/models. Furthermore, 12
fine-grained soil samples have been collected from and
around Kota, Rajasthan, for the laboratory validation of
model 21. The gravel, sand, fine content, liquid limit, plastic
limit, plasticity index, OMC, MDD and soaked CBR have
been determined in the geotechnical laboratory. The predic-
tion vs actual plot for laboratory-tested soil data sets is shown
in Fig. 17.

Figure 17 depicts the actual vs predicted plot of soaked
CBR of 12 fine-grained soil using Model 21. Figure 17
illustrates that Model 21 predicts the soaked CBR for
laboratory-tested soil with RMSE of 0.4237%, MAE of
0.32% and R of 0.8139. The correlation coefficient (R) of
0.8 or more than 0.8 shows a strong relationship between
actual and predicted values (Smith 1986). Therefore, Model
21 can be used to predict the soaked CBR of fine-grained
soil.

5 Sensitivity analysis

In the present study, the non-linear sensitivity analysis has
been performed using the cosine amplitude method. The
sensitivity analysis is performed by Eq. 17 (Ardakani et al.
2019):

SS �
∑n

c�1

(
Xic ∗ X jk

)

√∑n
c�1 X

2
ic

∑n
c�1 X

2
jk

, (17)

where Xic is input parameters G, S, FC, LL, PL, PI, OMC,
and MDD, and X jk is output parameter soaked CBR of fine-
grained soil. The value of SS equal to one shows that the
input parameter highly influences the output parameter. The
sensitivity analysis has been performed for 50%, 60%, 70%,
80%, 90%, and 100% of 182 training data sets in this study,
as shown in Fig. 18.

Figure 18 illustrates the sensitivity analysis for different
percentages of training data sets. However, Model 21 has
been identified as the best architectural model by consider-
ing the test performance in the present study, which is trained
by 70% of 182 training data sets. In addition, model 21 has
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Fig. 12 Training (TR) and
testing (T ) performance of GEP
models

(a) Performance R of GEP Models

(b) RMSE & MAE Performance of GEP Models
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outperformed the published models and equation in predict-
ing soaked CBR of fine-grained soil. Furthermore, Fig. 18
shows that the 70% training data sets including G, S, FC,
LL, PL, PI,OMCandMDDhas sensitivity of 0.9209, 0.5139,
0.2281, 0.3079, 0.3885, 0.1970, 0.2673, and 0.6265, respec-
tively, with soaked CBR of fine-grained soil. In addition, the
sensitivity for consistency limits and compaction parame-

ters has increased with training data sets. The soaked CBR
of fine-grained soil is highly affected by index properties
(Taskiran 2010). Therefore, the proposed AI models in the
present study have achieved high performance and predic-
tion for Model 21 trained by the 70% of the 182 training data
sets.
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Fig. 13 Overfitting of GEP
models
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6 Conclusions

Thepresent studyhas successfully employedgene expression
programming (GEP) and relevance vector machine (opti-
mized by GA and PSO technique) models to predict the
soaked CBR of fine-grained soils. Based on the outcomes
of the study, the following conclusions are mapped.

• The performance comparison of GA and PSO optimized
SRVM models demonstrates that the performance of the
linear and Gaussian SRVM models increases after opti-
mizing the model by the PSO optimization technique. On
the other hand, the performance of polynomial and Lapla-
cian SRVM models decrease after optimizing the models
by the PSO optimization technique.

• From the performance comparison of the SRVM model,
the Laplacian SRVM model (Model 21) and Gaussian
SRVM model (Model 39) have been identified as better-
performing models with a performance of 0.9874 and
0.9748, respectively. Therefore, the dual-kernel-based
HRVM (optimized byGA and PSO)models are developed
using the Laplacian kernel (as kernel1) and Gaussian ker-
nel (as kernel2). The test performance of HRVM models
illustrates that the PSO optimization technique enhances
the performance and predicts the soaked CBR better than
GA-optimized HRVM models.

•

Model 21 has been identified as the best architectural
model for predicting soaked CBR of fine-grained soils by
comparing the performance of Model 21 (0.9874), Model
39 (0.9748), Model 51 (0.9606), Model 57 (0.9701), and
Model 62 (0.8847). In addition, the validation and cross-
validation (laboratory validation) results have confirmed
that Model 21 can predict the soaked CBR better than
published models in the literature.

• The present study demonstrates that the RVM model pre-
dicts soaked CBR better if the input and output parameters
of training data sets have a strong (0.61<R <0.80) to very
strong (0.81<R <1.0) correlation. In addition, the devel-
oped RVM model predicts the soaked CBR with the least
prediction error (RMSE and MAE) and overfitting.

• Based on the performance comparison of GEP models,
Model 62 outperformed the other GEP models with a per-
formance of 0.8847. Model 62 was trained using input
parameters gravel, sand content, OMC, and PL to predict
the soaked CBR. Model 62 did not perform well in the
absence of the maximum dry density and the presence of
multicollinearity in 60% of 182 training data sets.

• Multicollinearity in the training data set affects the per-
formance and overfitting of the GEP model. On the other
hand, the optimized SRVM and HRVM models are less
influenced by multicollinearity.

• The sensitivity analysis confirms that the soaked CBR is
highly influenced by the gravel, sand content, and maxi-
mum dry density of fine-grained soils.
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Fig. 14 Expression tree of Model 62
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Fig. 15 Comparison of test
performance of Models 21, 39,
51 and 62
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Fig. 16 Actual vs predicted plot
for soaked CBR of 36
fine-grained soil specimens
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Fig. 17 Actual vs predicted plot
for soaked CBR of 12
fine-grained soil specimens
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Fig. 18 Sensitivity analysis for
different perentages of training
data sets
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Finally, the present research introduces a robust SRVM
(Laplacian SRVM model optimized by GA optimization)
model to predict the soaked CBR of fine-grained soil.
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