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Abstract

Continuous urge for generation of complex intricate features on harder and tougher materials with close dimensional tolerance
and superior surface quality has led to the development of non-traditional machining (NTM) processes. Unlike the conventional
machining processes, the NTM processes employ energy in various forms or their combinations for removal of material from
the workpiece. As these processes are quite capital-intensive, their performance needs to be optimized. In this direction,
applications of various multi-criteria decision making (MCDM) techniques have already become popular. This paper provides
a comprehensive review of the present literature on the applications of MCDM techniques for parametric optimization of NTM
processes. Among all the NTM processes, electrochemical machining (ECM), electrical discharge machining (EDM), wire
electrical discharge machining (WEDM), abrasive water jet machining (AWJM), laser beam machining (LBM), ultrasonic
machining (USM), and plasma arc machining (PAM) are considered in this paper due to their widespread acceptance in
modern manufacturing industries. The essence of all the reviewed articles would help the process engineers in identifying
the most suitable experimental design plan, work material, process parameters and responses, MCDM tools, criteria weight
measurement techniques, and hybrid models for parametric optimization of NTM processes. Future directions are also included
to explore the feasibility of newer MCDM tools to have more pragmatic solutions.
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General regression neural network

Grey wolf optimizer

Heat affected zone

Kerf width

Laser beam machining

Multi-attributive border approximation area
comparison

Measurement alternatives and ranking
according to compromise solution
Multi-criteria decision making

Metal matrix composite

Multi-objective genetic algorithm
Multi-objective optimization on the basis of
ratio analysis

Material removal rate

Multiple response signal-to-noise
Non-traditional machining

Orthogonal array

Overcut

Operational competitiveness rating analysis
Plasma arc machining

Principal component analysis

Preference ranking organization method for
enrichment evaluation

Preference selection index

Average surface roughness

Kurtosis of surface roughness distribution
Radial overcut

Range of value

Root-mean-square roughness

Skewness of surface roughness distribution
Mean width of profile elements

Ten-point surface roughness

Simple additive weighting

Standard deviation

Superiority inferiority ranking

Surface roughness

Stainless steel

Support vector machine
Teaching—learning-based optimization
TOmada de Decisao Interativa Multicriterio
Technique for order of preference by simi-
larity to ideal solution

Tool wear rate

Ultrasonic machining

Utility theory

VlseKriterijumska Optimizacija I Kompro-
misno Resenje

Weighted aggregated sum product assess-
ment

Wire electrical discharge machining

Water jet machining

Weighted principal component analysis

WPM Weighted product method
WSM Weighted sum method
WSN Weighted signal-to-noise

1 Introduction

In conventional machining processes, material is usually
removed by shearing action where the shear force is provided
by a single- or multi-point cutting tool kept in contact with
the workpiece. In those processes, tool material is required
to be harder than the workpiece for smooth cutting action.
But, there are certain machining situations wherein the con-
ventional machining processes cannot be able to deliver the
required degree of dimensional accuracy or sometimes they
cannot even machine certain materials. For example, long
holes with small diameters are difficult to generate by the
conventional drilling operation because of a potential buck-
ling due to high slenderness ratio of the drill bit (Youssef
and El-Hofy 2020). It is also a well-known fact that an
increase in work material hardness reduces the economic
cutting capability of the conventional machining processes.
The advanced engineering materials, like ferrous alloys, tita-
nium, nickel, aluminum, cobalt and their alloys, Nimonics,
ceramics, composites, etc. possess some typical mechanical
properties, such as high strength-to-weight ratio, excessive
hardness, high toughness, high strength temperature resis-
tance, etc. which make them unsuitable to be machined by
the conventional material removal processes (El-Hofy 2005).
These materials have already found wide-ranging applica-
tions in diverse technologically advanced industries, like
aerospace, nuclear, defence, automobile, etc. To fulfill such
requirements, newer material removal processes have been
developed in the form of NTM processes which can be com-
mercially utilized to machine different hard-to-cut materials.
Unlike the conventional machining processes, they employ
energy in the form of thermal, chemical, electrical, mechan-
ical or a combination of them to remove material from the
workpiece (Pandey and Shan 1980). In these processes, the
tool does not make any direct contact with the workpiece
and mechanism of material removal is not necessarily shear-
ing. They are favored because of their capability to provide
excellent surface finish with higher dimensional accuracy,
minimum tool wear, and possibility of automation, minia-
turization, etc. They are now being successfully employed
to machine and fabricate micro as well as nano-components
(Bhattacharyya and Doloi 2020). But, these processes also
have some disadvantages, like higher initial setup cost and
energy consumption, requirement of skilled manpower, low
MRR, not suitable for bulk production, etc.
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Intoday’s highly competitive manufacturing environment,
process optimization plays a key role in reducing manu-
facturing cost, achieving better product quality, enhancing
process performance with reduction of human error, and
promoting consistent operation. It also helps in reducing
the operator’s/machinist’s involvement and dependency of
the data handbooks in identifying the optimal set of pro-
cess parameters. Lack of awareness of the optimal intermix
of various process parameters may lead to several machin-
ing inconsistencies. As the machining processes involve
multiple conflicting objectives (like maximization of MRR
and minimization of SR, maximization of machining rate
and minimization of energy consumption, etc.), it is always
preferred to deploy multi-objective optimization techniques
which can identify the most suitable combinations of the pro-
cess parameters resulting in simultaneous optimization of the
responses under consideration.

Like other machining processes, in NTM processes,
attainment of the desired response values is also significantly
influenced by the proper setting or tuning of the consid-
ered input parameters. An improperly selected parametric
combination may lead to consequences, like short circuit,
workpiece deformation, damage of tool, etc. Bhattacharyya
and Sorkhel (1999) pointed out that in an ECM process, the
target values of MRR and OC could only be achieved at
an optimal combination of electrolyte concentration, applied
voltage, inter-electrode gap and electrolyte flow rate. On the
other hand, Muthuramalingam and Mohan (2015) studied the
effects of pulse shape and discharge energy on attaining the
most desirable values of MRR, SR, and EWR in an EDM
process. Many of the NTM processes are capital-intensive,
consume high specific energy, have extremely low MRR,
and high tooling and operating cost. Hence, for efficient
deployment of these processes and explore their maximum
machining performance, careful selection of the correspond-
ing input parameters has become essential. Involvement of
large number of input parameters and conflicting responses,
and their possible interactions also make parametric opti-
mization of the NTM processes more complex.

The MCDM techniques are those mathematical tools
which help in identifying the best alternative from a set
of feasible solutions in the presence of conflicting crite-
ria. They have already become popular among the decision
making community due to their simplicity and uncompli-
cated computational steps. Application of any of the MCDM
techniques requires a decision matrix having a set of alterna-
tives and evaluation criteria. An experimental design plan
with different parametric combinations and responses for
any of the machining processes closely resembles a deci-
sion matrix. Thus, MCDM techniques have appeared to be
viable tools in solving parametric optimization problems of
diverse machining processes (Sidhu et al. 2018; Asjad and
Talib 2018). The present literature is flooded with successful

applications of different MCDM techniques in determining
the optimal intermixes of various NTM process parameters
leading to better response values. In this paper, more than 200
research articles (most of them have been published during
the last 10 years) on parametric optimization of ECM, EDM,
WEDM, AWIM, LBM, PAM, and USM processes (due to
their wide acceptability in modern-day manufacturing indus-
tries) using MCDM tools are critically analyzed in succinct
tabular forms. Special attention is provided on identification
of the experimental design plan deployed, material machined,
process parameters and responses considered, and MCDM
tool employed. Attempts are also put forward to extract infor-
mation with respect to integration of those MCDM tools with
other mathematical techniques (criteria weight measurement,
fuzzy theory, etc.). This review paper would be an asset to
the machinists as well as researchers for optimization of
NTM processes. The essence of this paper would help the
process engineers/machine operators in first searching out
the most suitable design plan before any real-time exper-
iment based on the number of NTM parameters and their
operating levels. It would guide in selecting the appropriate
work material to be machined focusing on the requirements
of the present-day manufacturing industries. For each NTM
process, the most significant input parameters affecting the
responses under consideration can be identified and the rel-
evant quality characteristics of the machined components
can be shortlisted fulfilling the requirements of all the stake-
holders. It would help in providing guidance with respect to
employment of suitable techniques for quantitatively estimat-
ing the importance of the responses and optimization of the
NTM processes. This paper is structured as follows: Section 2
briefly describes the working principles of some of the NTM
processes adopted by the past researchers for their parametric
optimization. Section 3 presents a concise review of the most
popular MCDM techniques. Reviews on the applications of
different MCDM methods for parametric optimization of the
considered NTM processes are presented in succinct tabular
forms in Sect. 4. Outcomes of this review paper are summa-
rized in Sect. 5 and conclusions are drawn in Sect. 6 along
with the future directions.

2 Classification of NTM processes

As already mentioned, the NTM processes employ differ-
ent energies in their direct forms or their combinations for
material removal. Thus, it is always advisable to classify
them based on the source of energy, i.e. mechanical, thermal,
chemical and electrochemical, and hybrid, as shown in Fig. 1.
Mechanical processes involve erosion of work material using
ahigh velocity stream of fluid or abrasive particles. In thermal
processes, electrical energy is converted into thermal energy
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Non-traditional machining processes

* Abrasive jet machining (AJM)
= Ultrasonic machining (USM)
Mechanical = Water jet machining (WJM)

= Abrasive flow machining (AFM)
= Magnetic abrasive finishing (MAF)

= Electrical discharge machining (EDM)
= Wire electrical discharge machining (WEDM)
Ther@——) = Electron beam machining (EBM)
= Laser beam machining (LBM)
= Ion beam machining (IBM)
= Chemical machining (CHM)
Chemical and = Electrochemical machining (ECM)
Electrochemical = Photo chemical machining (PCM)

= Biochemical machining (BM)

= Electr ical discharge (ECDM)
= Abrasive water jet machining (AWJM)

= Electrochemical grinding (ECG)
v L + N <

Hybrid ——————>

hining (LA-JECM)

Fig. 1 Classification of NTM processes

which is responsible for material removal from the work-
piece by vaporization or fusion. Chemical processes utilize
chemicals to act as etchants for material removal while other
portions of the workpiece are covered by a suitable mask,
whereas, electrochemical dissolution of the workpiece leads
to material removal in ECM processes. In hybrid processes,
two or more NTM processes are synergically combined with
an aim to achieve better machining performance than their
constituent processes. For example, AJM and WIM pro-
cesses are combined together to develop AWIM process
where a water jet mixed with abrasive particles is injected
at an extremely high speed on to the workpiece surface lead-
ing to material removal due to mechanical actions of both
water and abrasives.

2.1 ECM process

The basic principle of material removal in ECM is same as
the process of electrolysis. Here, the tool acts as a cathode
and the workpiece acts as an anode. Low voltage high current
DC flows through them through an electrolyte solution which
flows between the inter-electrode gap (Yuan et al. 2021).
Material removal takes place as a result of anode losing ions
which are carried away by the pressurized electrolyte. During
the machining operation, the tool is guided towards the work-
piece without touching it. Due to electrolytic action, material
is dissolved from the workpiece with the tool forming the
desired shape on the workpiece surface. The machined fea-
ture would be an exact mirror image of the tool. This process
is widely employed in aerospace, automotive and medical
equipment industries because of its high level of accuracy.
The main benefit of this process is high MRR as well as pre-
cision machining of only electrically conductive materials.
During ECM, the workpiece is not subjected to any kind of
thermal and mechanical stresses which is considered as one
of the deciding factors to choose ECM over the other NTM
processes.
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2.2 EDM process

The material removal mechanism of EDM process is based
on the principle of thermo-electric phenomenon where the
electrical energy is converted into thermal energy. A series
of sparks is thus generated yielding high temperature result-
ing in melting and vaporization of the work material (Ho
and Newman 2003). The evaporated metal and some por-
tion of the molten material are then flushed away from the
machining zone by a dielectric fluid. In this process, both
the tool and the workpiece should be electrically conduc-
tive, and a minimum gap needs to be maintained between
them. It is one of the most popular NTM processes being
widely employed by the aerospace, automotive, mold, and
tool and die making industries. This process is mainly uti-
lized to machine hard conductive materials which are quite
difficult to machine using the conventional machining pro-
cesses with high dimensional accuracy and excellent surface
finish (Hasgalik and Caydag 2007).

2.3 WEDM process

The working principle of WEDM process is quite similar to
that of EDM process with respect to material removal mech-
anism. In this process, a thin strand of wire, typically made
of brass, is continuously fed through the workpiece which
is entirely submerged in a dielectric fluid (Xu 2012). The
wire is automatically supplied from a spool, and is guided by
two wire guides held at the top and bottom of the workpiece
to keep the wire in tension. The movements of these guides
are regulated by a computer numerical control mechanism.
Unlike EDM, in WEDM process, the wire acts as an elec-
trode and the material removal takes place due to generation
of sparks. The dielectric fluid used in WEDM helps to rinse
out the debris from the machining zone. This process can cut
materials as thick as 300 mm, and is capable of generating
intricate geometries on diverse hard and difficult-to-machine
materials, like MMCs, carbides, ceramics, etc. (Alduroobi
etal. 2020). Due to high precision in cutting, it is widely used
in tool and die making, aerospace, and automotive industries
(Shivade and Shinde 2014).

2.4 AWJM process

The AWJM is one of the hybrid machining processes, com-
bining the material removal principles of both AJM and WIM
processes. It is a cold machining process in which abrasives
are proportionately mixed with water to perform the mate-
rial removal operation by plastic deformation, erosion, and
fracture of the workpiece. In this process, the available pres-
sure energy of water is transformed into kinetic energy by
allowing it to pass through a small nozzle to perform the
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required machining operation. Some portion of the impul-
sive force of water is also transferred as kinetic energy to the
abrasive particles, thereby rapidly increasing their velocity
to help in material removal (Muthuramalingam et al. 2018).
Besides being a carrier for the abrasives, water also acts as a
cooling agent and flushes away the eroded particles from the
machining zone. It also prevents the abrasives from spread-
ing away after exit from the nozzle. Besides machining SS,
MMCs, titanium, Inconel, brass, etc., it is extremely suitable
for non-conductive materials, which have found large appli-
cations in automotive, nuclear, aerospace, oil, medical, and
construction industries (Azmir et al. 2009).

2.5 LBM process

In LBM process, material removal takes place using ther-
mal energy through melting, vaporization, and degradation
of chemical bonds of the work material. A high energy den-
sity laser beam (e.g. CO;, Nd:YAG, etc.) is focused on the
workpiece surface in a very narrow area by a lens which
is subsequently absorbed by the work material to be trans-
formed into a molten, vaporized or chemically changed state
due to impingement of photons into the workpiece. A flow
of high pressure assist gas jet then helps to eject the trans-
formed material from the machining zone (Meijer 2004). Due
to its various unique characteristics, like no tool wear, no
built-up edge formation, no residual stress, no vibration, etc.,
laser cutting process is capable of machining a wide range
of engineering materials (metals and non-metals), having
high brittleness, and low thermal diffusivity and conductiv-
ity properties. This process is being effectively employed
for cutting, drilling, marking, welding, grooving, and micro-
machining operations (Shivakoti et al. 2021).

2.6 PAM process

This NTM process was primarily developed in the mid 1950s
to cut SS and aluminum alloys. Plasma is the fourth and
the most highly energized state of matter (Xu et al. 2002).
In this process, an inert gas is blown with high speed out
from a nozzle and at the same time, electric arc is generated
through the gas to the workpiece surface leading to formation
of plasma. The high-temperature plasma arc has sufficient
energy to melt or vaporize the surface being cut and move
very fast to flow the molten metal away from the cutting zone
(Patel et al. 2018). As compared to LBM process, PAM has
a larger spot size, making it suitable in the milling process.
It has the advantages to cut non-conductive materials, less
maintenance cost and can be easily automated. It has been
extremely popular in shipbuilding and process technology
industries.

2.7 USM process

It is an example of mechanical type of NTM process, mainly
employed to machine hard and brittle materials. The mate-
rial removal process consists of a shaped tool, high frequency
mechanical vibrator, and abrasive slurry. The tool is prepared
according to the preferred shape to be generated on the work-
piece surface (Thoe et al. 1998). The tool is mounted on a
tool cone which usually vibrates with a frequency of 20 kHz
and amplitude of 0.013-0.1 mm on the work surface. The
material is removed from the workpiece through hammer-
ing of abrasive particles on the work surface with the help
of the vibrating tool. As the tool vibrates in the downward
stoke, it hits the abrasive particles which as a result attain
kinetic energy and strike the workpiece surface with higher
force sufficient enough for material erosion and removal. Due
to erosion of material in small quantities, it has very low
MRR (Kumar 2013), but it is capable of generating intricate
holes/cavities on brittle and hard materials with excellent
surface finish.

3 MCDM techniques

In this section, for description of the MCDM techniques
mainly applied by the past researchers for parametric opti-
mization of different NTM processes, the decision problem
is stated as an m x n matrix, called the decision/evaluation
matrix, where m and n denote the number of alternatives and
number of criteria, respectively. In manufacturing environ-
ment, the design plan deployed for conducting the experi-
ments resembles a typical decision matrix, with each row
representing an alternative experimental trial (combination of
different settings of the input parameters) and each column
symbolizing a criterion (response/process output). Almost
all the MCDM methods have two common initial steps, i.e.
(a) normalization of the decision matrix to assure that all
of its elements are on a non-dimensional and similar scale,
and (b) development of the corresponding weighted normal-
ized decision matrix. This weight normalized decision matrix
is formulated after multiplying the elements of the normal-
ized decision matrix by the criteria weights. Thus, the weight
(relative importance) assigned to each criterion under consid-
eration plays an importantrole in arriving at the final decision.
However, it should be noted that some MCDM methods have
in-built criteria weight calculation step, while for most of
the MCDM techniques, criteria weights are externally pro-
vided. After these two steps, each MCDM method adopts its
inherent algorithm to compute a ‘performance score’, which
is essentially a non-dimensional number that allows unbi-
ased comparison of the candidate alternatives on a single
scale. Based on the considered algorithm and operational
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Table 1 Features of some MCDM methods commonly employed for parametric optimization of NTM processes

MCDM Type Weight Number of Terminology for Performance score
allocation steps performance score type

WPM (Miller and Starr Elementary External 3 Preference score Maximization
1969)

WSM (also called SAW) Elementary External 3 Preference score Maximization
(Miller and Starr 1969)

WASPAS (Zavadskas etal.  Elementary External 6 Joint generalized Maximization
2012; Chakraborty and criterion
Zavadskas 2014)

AHP (Saaty 1980) Pair-wise comparison In-built Preference score Maximization

MOORA (Brauers et al. Elementary External Assessment value Maximization
2008)

TOPSIS (Behzadian et al. Distance-based External 7 Closeness coefficient Maximization
2012)

VIKOR (Opricovic and Distance-based External 5 Q Minimization
Tzeng 2004)

PROMOTHEE (Brans and ~ Outranking External 7 Multi-criteria Maximization
Vincke 1985) preference index

COPRAS (Kaklauskas Unique synthesizing External 7 Performance index Maximization
et al. 2000)

OCRA (Parkan and Wu Unique synthesizing External 5 Performance rating Maximization
1997)

ARAS (Zavadskas and Unique synthesizing External 5 Optimality function Maximization
Turskis 2010)

EDAS (Keshavarz et al. Distance-based External 7 Appraisal score Maximization
2015)

PSI (Maniya and Bhatt Unique synthesizing In-built 7 Preference selection Maximization
2010) index

TODIM (Gomes and Dominance-based External 5 Dominance degree Maximization
Rangel 2009)

ROV (Madic¢ et al. 2016) Elementary External Average utility function = Maximization

SIR (Xu 2001) Dominance-based External Net flow values Maximization

Modified similarity index Distance-based External Performance index Maximization
(Safari et al. 2013)

GRA (Sreenivasulu and Unique synthesizing In-built 7 Grey relational grade Maximization
Rao 2013)

MABAC (Pamucar and Distance-based External 6 Si Maximization
Cirovié 2015)

MARCOS (Stevic et al. Unique synthesizing External 7 Utility function Maximization
2020)

CoCoSo (Yazdani et al. Unique synthesizing External 5 ki Maximization
2019)

CODAS (Ghorabaee et al. Distance-based External 8 Assessment score Maximization
2016)

procedure, the MCDM methods can be broadly catego-
rized as elemental approaches, pair-wise comparison-based
approaches, unique synthesizing approaches, distance-based
approaches, dominance-based approaches and outranking
approaches. Elementary methods aim in reducing the intri-
cate decision making problem into singular basis for selection
of an alternative. In pair-wise comparison approaches, all
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the criteria are first pair-wise compared to evaluate their
weights. Thereafter, the alternatives are pair-wise compared
with respect to each of the criteria to estimate their relative
performance. The relative performance of the alternatives
and criteria weights are finally aggregated together to rank
the alternatives. Unique synthesizing approaches employ
some special mathematical and analytical techniques in the
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modeling and execution phase. Distance-based approaches
depend on ideal, anti-ideal, and reference points to derive
a preference order of the alternatives. In dominance-based
approaches, the degree by which one alternative dominates
another alternative or is being dominated by other alter-
native with respect to a particular criterion is calculated.
These dominance degrees are aggregated together to aid in
final ranking of the alternatives. The outranking approaches
employ a series of pair-wise comparisons of the alternatives
with respect to each criterion to frame an outranking relation
indicating the degree of dominance of one alternative over
the other. Most of the MCDM methods seek to maximize this
performance score, i.e. a higher value corresponds to a better
solution. However, a very few MCDM methods, like VIKOR
work on the minimization philosophy, where a lower value
of the performance score corresponds to a better solution.
It is worthwhile to mention here that the term ‘performance
score’ is considered in a more generic way and the actual
terminology for each method is explained in Table 1.

It has already been mentioned that assignment of relative
weights to the criteria (responses in case of NTM processes)
significantly influences the solution of any of the MCDM
methods with respect to the ranking of the alternatives. These
weights can be allotted to the responses in different ways,
e.g. equal, subjective, objective or combination of subjec-
tive and objective weights. To ease out the calculation steps
involved in MCDM, the decision makers usually prefer to
assign equal importance to all the criteria. The AHP is a
popular subjective method of weight calculation based on
pair-wise comparison of criteria. But, it is occasionally influ-
enced by the judgments of the decision makers, has a strict
hierarchical structure (the criteria are independent) and suf-
fers from the problem of rank reversal. The past researchers
also employed entropy, SDV, and CRITIC methods as effec-
tive objective tools while assigning relative importance to
different responses during experiments. All these methods
estimate the criteria weights based on randomness of the
data itself. Entropy method (Kumar et al. 2021) calculates
the weights using the information content in the criteria val-
ues of the alternatives. This uncertain information (entropy)
is computed using probability theory. If a criterion has the
same value for each of the alternatives, it would not pro-
vide any information to differentiate the alternatives. On the
other hand, a criterion with varying values for the alter-
natives has high information content, being more capable
in comparing the alternatives. The SDV method estimates
the standard deviation for each criterion and its normalized
value is treated as the criterion weight. On the other hand,
in CRITIC method (Diakoulaki et al. 1995), criteria weights
depend on the standard deviations of the normalized criteria
values and correlation coefficients between all pairs of the
considered criteria. The details of different criteria weight

measurement techniques can be available in Chakraborty
et al. (2023).

4 Parametric optimization of NTM processes
using MCDM techniques

4.1 ECM process

In ECM process, electrolytic dissolution is responsible for
removal of material from the workpiece and the machined
component would be a mirror copy of the tool (electrode).
The dissolved material is rinsed out from the machining
zone with the help of pressurized electrolyte flow. Low volt-
age high current DC is applied between the electrode and
workpiece resulting in anodic dissolution. During material
removal, the tool is guided towards the workpiece with-
out making a direct contact. Bhattacharyya and Sorkhel
(1999) observed that while keeping other parameters con-
stant, MRR would increase nonlinearly with increasing
values of electrolyte concentration, electrolyte flow rate, and
applied voltage. However, their higher values had detrimen-
tal effects on OC. It can be revealed from Table 2 that
the past researchers thus mainly considered applied voltage,
electrolyte concentration and its flow rate, feed rate, inter-
electrode gap, duty cycle (pulse-on time + pulse-off time),
duty ratio (pulse-on time/duty cycle), etc. as the predominant
ECM parameters affecting the responses. It is noticed from
this table that almost all the ECM experiments were con-
ducted based on Taguchi’s OAs. Selection of an appropriate
OA principally depends of the number of input parameters
and their operating levels. With respect to work materi-
als machined, ECM operations were mainly performed on
those materials (like various grades of steel and SS, tita-
nium and aluminum alloys, Inconel, Hastelloy, Al MMCs,
etc.) which are usually difficult-to-cut by the conventional
machining processes. The performance (productivity) of any
of the machining processes is measured with respect to MRR
and surface quality of the machined components is evalu-
ated using Ra value. Besides measuring MRR and Ra for
an ECM process while machining EN 31 steel material, Das
et al. (2014a) also determined values of Rq, Rsk, Rku, and
Rsm as the other surface characteristics. But, the correlations
between those surface characteristics were not explored. It
is worthwhile to mention here that some of those surface
properties may be correlated. The optimal settings of elec-
trolyte concentration, feed rate, voltage, and inter-electrode
gap were later determined using GRA technique. During any
of the NTM operations, quality of the machined holes is usu-
ally measured with respect to ROC which is the difference
between hole diameter and electrode diameter, divided by
two. On the other hand, while generating cavities, pockets,
channels, etc., OC is treated as the metric for dimensional
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deviation. Circularity, cylindricity, perpendicularity, delam-
ination, taper angle, etc., were also considered by the past
researchers for measuring hole quality during ECM opera-
tion.

Table 2 unveils that almost all the past researchers applied
either GRA or TOPSIS for optimization of the ECM pro-
cesses. The popularity of these MCDM techniques may be
due to their extremely simple and easily understandable cal-
culation steps. Khan and Maity (2016a), and Chandrasekhar
and Prasad (2020), respectively, employed MOORA and
VIKOR methods for the same purpose. Soundarrajan and
Thanigaivelan (2018) contrasted the multi-objective opti-
mization performance of TOPSIS and GRA methods, and
concluded that GRA would be a more preferred technique
achieving 35.24% improvement in the preference grade as
compared to 17.54% improvement attained in TOPSIS. On
the other hand, Krishnan et al. (2020) interestingly noticed
that the applications of both VIKOR and TOPSIS meth-
ods would provide the same combination of voltage, duty
ratio, feed rate, electrolyte concentration, and tool rotational
speed for achieving improved values of MRR, Ra, and taper
angle. With respect to the relative importance assigned to the
responses, the past researchers mostly preferred to allocate
equal weights simply to reduce the computational burden.
Chandrasekhar and Prasad (2020) estimated those weights
employing entropy method, whereas, Singh et al. (2015) and
Agrawal et al. (2018) applied PCA technique for the same
purpose. The PCA is a powerful mathematical tool for data
dimensionality reduction, and estimation of the proportion-
ate contribution of the responses in decision making based
on eigenvector and eigenvalues.

To resolve the ambiguity during allocation of relative
weights to the responses, Mohanty et al. (2015) integrated
fuzzy theory with TOPSIS in an attempt to identify the
optimal intermix of voltage, feed rate and electrolyte con-
centration while achieving the most desired MRR and Ra
values. Trapezoidal fuzzy numbers were assigned to both
the responses to determine their significance. Santhi et al.
(2013) first performed ECM experiments using a CCD plan,
and applied DFA to transform both the MRR and Ra val-
ues into a global knit quality index. Fuzzy set theory along
with trapezoidal membership function was later utilized to
convert the input parameters and responses into fuzzy scales.
Finally, TOPSIS was adopted to optimize the considered pro-
cess based on the closeness coefficients. Chakraborty et al.
(2018) proposed the application of grey-fuzzy logic approach
as an effective multi-objective optimization tool for an ECM
process. Besides identifying the optimal parametric combi-
nation, it also helped in developing simple ‘If-~Then’ rules to
investigate the effects of feed rate, voltage, electrolyte con-
centration and reinforcement content on MRR, ROC, and Ra.
It was noticed that the proposed approach would outperform

@ Springer

TOPSIS with respect to the predicted values of grey-fuzzy
relational grade.

4.2 EDM process

Among all the NTM processes, EDM is the most impor-
tant one, extensively used in various modern-day industries,
mainly for making tools and dies. It is a thermo-electric
process where material removal takes place under high fre-
quency controlled pulses generated in the dielectric fluid
between the tool and workpiece. A plasma channel devel-
oped in the spark gap is maintained between the tool and
workpiece. Continuous bombardment of ions and electrons,
raising the temperature around 8000°-12,000 °C in the small
gap, causes vaporization and erosion of the work material.
Although it has extremely low MRR, but it can machine
components with satisfactory surface finish. As itis a thermo-
electric process, tool (electrode) wear, formation of HAZ,
white (recast) layer, surface crack, residual stress, change
in the micro-structural properties of the workpiece, etc., are
inevitable which adversely affect the geometrical accuracy
of the machined components. Table 2 presents some of the
recent research works carried out on optimization of the EDM
processes.

It can be revealed from Table 2 that most of the past
researchers adopted Taguchi’s OA for conducting the exper-
iments; and preferred to machine various grades of steel and
SS, aluminum MMCs, aluminum, Nimonic, titanium and
their alloys, ceramic composites, Inconel, etc., due to their
poor machinability properties, but having immense poten-
tialities as advanced engineering materials. Pulse-on time,
pulse-off time, discharge current, gap voltage, flushing pres-
sure of the dielectric, etc., as the process parameters; and
MRR, Ra, EWR/TWR/tool wear ratio, surface crack density,
white layer thickness, micro-hardness, etc., as the responses
were treated with maximum importance during EDM opera-
tions. Although GRA and TOPSIS were the two most popular
approaches for EDM process optimization, but the applica-
tions of other MCDM tools, like SAW, WPM, WASPAS,
MOORA, VIKOR, PROMETHEE, ARAS, COPRAS and
similarity index method were also occasionally found.

Sivapirakasam et al. (2011), Senthil et al. (2014), Tiwary
etal. (2014), Dewangan et al. (2015a), Roy and Dutta (2019),
and Viswanth et al. (2020) intergated TOPSIS with fuzzy
set theory for assigning relative importance to the responses
under uncertain environment, and later optimized the EDM
processes under consideration. On the other hand, Dewan-
gan et al. (2015b), and Singh and Sharma (2018) proposed
the combined application of GRA and fuzzy logic to frame
‘If-Then’ clauses to study the influences of various EDM
parameters on the responses leading to process optimiza-
tion. Singh and Sharma (2018) also employed ANFIS as a
prediction tool to envisage the response values for an EDM
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process. Using DoE, Chakraborty et al. (2019) developed
TOPSIS-based metamodels to optimize the performance of
an EDM process. Huu (2020) estimated the subjective criteria
weights using AHP and applied similarity index method as a
multi-objective optimization tool for a powder-mixed EDM
process. Similarly, while machining ceramic composites,
Chaudhury and Samantaray (2020) first determined the rela-
tive importance of the responses using WPCA approach, and
later optimized the EDM process using MOORA method.

Some of the researchers also endeavored to integrate
metaheuristic algorithms with MCDM techniques for opti-
mization of the EDM processes. Prabhu and Vinayagam
(2016) first applied TOPSIS to identify the best combination
of pulse current, pulse duration, and pulse voltage during
EDM of AISI D2 tool steel material, and later validated the
derived solutions with the help of developed regression equa-
tions which were subsequently solved using GA technique.
Based on a CCD plan with 20 experiments, Sharma et al.
(2020) developed two second-order polynomial equations
for electrical discharge drilling rate and EWR. The GRA
technique was employed to calculate the corresponding grey
relational grades for all the experimental trials which were
again employed to formulate a regression model. Finally,
TLBO algorithm was utilized to solve the developed model
to identify the optimal intermix of EDM process parameters.
Shastri and Mohanty (2021) developed a regression model
correlating the net outranking flow of PROMETHEE and
EDM process parameters which was subsequently optimized
with the help of CSA. A combination of discharge current =
3 A, voltage = 60 V, pulse-on time = 100 ws, duty factor =
85% and copper electrode would provide the optimal values
of the responses under consideration.

Despite its several advantages, EDM is a hazardous pro-
cess, releasing large amount of harmful solid and liquid
wastes along with expulsion of toxic gases, thus polluting
the environment (Sivapirakasam et al. 2011). These harm-
ful and toxic substances may cause severe health hazards
due to inward breath, ingestion or skin contact. Nowadays,
green-EDM has emerged out as a suitable alternative of
EDM process with minimum use of dielectric fluid, energy
consumption, and emission of toxic gases. Sivapirakasam
et al. (2011) optimized a green-EDM process using TOP-
SIS while machining high carbon high chromium (HCHCr)
tool steel material. Using the same dataset of Sivapirakasam
et al. (2011), Jagadish (2015, 2016) employed GRA tech-
nique to determine the ideal settings of pulse duration, peak
current, flushing pressure, and dielectric level to minimize
the hazardous effects of EDM process along with minimum
tool wear and process energy (Table 3). The corresponding
criteria weights were calculated using entropy method and
PCA, respectively. While developing a causal diagram for a
green-EDM process, Das and Chakraborty (2020a) applied
DEMATEL to segregate all the responses into corresponding

cause and effect groups, and optimized the process using SIR
method. It was observed that the adopted approach would
provide better results as compared to TOPSIS and same
results as grey-AHP method.

4.3 WEDM process

Unlike EDM process, a thin wire (usually made of brass,
tungsten or molybdenum with diameter 0.05-0.30 mm) is
utilized in WEDM as an electrode to convert electrical energy
into thermal energy to cut intricate 2- and 3-dimensional pro-
files on various harder and tougher materials due to spark
erosion (Rao et al. 2020). In this process, material is eroded
ahead of the wire, and there is no direct contact between
the wire and workpiece. Due to high accuracy level and
good surface finish, it has found its major applications in
manufacturing of extrusion dies, stamping dies and proto-
type components. Pulse-on time, pulse-off time, discharge
current, gap voltage, pulse frequency, wire feed rate, wire
tension, dielectric pressure, etc., are the main input param-
eters for this process. On the other hand, besides MRR
and Ra, KW is treated as the most important measure of
dimensional deviation of the machined components. Its value
is estimated after adding the wire diameter to 2 x ‘wire-
workpiece gap distance’ (Selvam and Kumar 2017). While
machining Hastelloy-C-276 work material using a brass wire,
Selvam and Kumar (2017) observed that KW would increase
with increasing values of pulse-on time and pulse-off time,
whereas, higher values of pulse current, gap voltage, and wire
tension would result in lower KW.

A concise review of different MCDM methods applied
by the past researchers for optimizing WEDM processes is
presented in Table 4. Gauri and Chakraborty (2010) adopted
four multi-objective optimization techniques in the form of
GRA, MRSN, WSN, and VIKOR, and concluded that WSN
would supersede others in optimizing the WEDM process.
Azhiri et al. (2014) and Kumar et al. (2019b) determined
the optimal combinations of the WEDM process parameters
using GRA technique, and later employed ANFIS models
to accurately predict the corresponding responses. Similarly,
besides process optimization, the applications of fuzzy logic
in studying the relationships between WEDM process param-
eters and responses can be found in Majumder and Maity
(2018a, b), Das et al. (2019), Guha et al. (2021). Majumder
and Maity (2018a, b) also deployed GRNN as a predictive
tool for the responses during WEDM of Nitinol shape mem-
ory alloy. Diyaley et al. (2017) optimized a WEDM process
using PSI and TOPSIS methods, and noticed that both the
MCDM techniques would provide the same combination of
pulse-on time, pulse-off time, servo voltage, and wire ten-
sion. Similarly, Patel and Maniya (2019) applied MOORA,
GRA, TOPSIS, ARAS, and OCRA methods for parametric
optimization of a WEDM process, and observed that those

@ Springer
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Table 7 Parametric optimization of USM processes using MCDM techniques

Author(s) Design Material Process parameters Responses MCDM Other tool(s)
plan
Chakravorty et al. Lig OA Co-based super Tool material, MRR, TWR, Ra GRA WSN, MRSN,
(2013) alloy, tungsten abrasive slurry UT
carbide material, slurry
concentration, grit
size, power rating
Chakraborty et al. Ly7 OA Al-based ceramic Workpiece material, Hole oversize, WASPAS
(2015) tool material, grit out-of-roundness,
size, power rating, conicity
slurry
concentration
Kataria et al. (2016) L3s OA WC-Co Cobalt content, MRR, TWR GRA
composite workpiece
thickness, tool
profile, tool
material, abrasive
grit size, power
rating
Khan and Maity Lig OA Co-based super Tool material, MRR, TWR MOORA
(2016a) alloy abrasive slurry,
slurry
concentration, grit
size, power ratio
Chakraborty et al. Lg OA titanium (ASTM Tool material, MRR, TWR, Ra GRA Fuzzy logic
(2018) Grade-I) abrasive type, grit
size, power rating
Bhowmik et al. Lo OA Zirconia Slurry concentration, MRR, taper angle, TOPSIS Fuzzy theory
(2019) composite feed rate, power oC
Biswas et al. (2019) L9 OA Zirconia Slurry concentration, ~MRR, taper angle, MOORA
composite power, feed rate oC
Bania et al. (2021a) Lig OA Reinforced epoxy Abrasive grit size, MRR, TWR, OC EDAS CRITIC
hybrid abrasive flow rate,
composite power rating,
slurry
concentration
Bania and Maity L OA Reinforced epoxy Abrasive grit size, MRR, TWR, OC TODIM CRITIC
(2021b) hybrid abrasive flow rate,
composite power rating,
slurry
concentration
Banerjee et al. CCD Zirconia Grit size, slurry MRR, Ra TOPSIS AHP

(2022)

concentration,
power rating, feed
rate

preference ranking methods would lead to varied intermixes
of the input parameters for different aluminum MMCs.
Reddy and Reddy (2018) and Sen et al. (2021), respec-
tively, adopted neutrosophic fuzzy number and trapezoidal
interval type-2 fuzzy number for criteria weight measure-
ment under uncertain environment, and pointed out that
their integration with MCDM techniques would provide
more pragmatic solutions. For a WEDM process, Kumar and
Narasimhamu (2020) first employed TOPSIS to compute the

@ Springer

closeness coefficients of all the experimental trials which
were subsequently utilized to formulate a regression equa-
tion. The GWO was finally applied to optimize the developed
equation along with determination of the optimal settings of
pulse-on time, pulse-off time, wire feed rate, and water pres-
sure. Tudu etal. (2021) presented the application of WASPAS
and MOGA techniques for optimizing a WEDM process,
and observed that both the approaches would provide almost
comparable results for MRR and Ra.
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Table 8 Optimization of PAM processes using MCDM techniques
Author(s) Design Material Process parameters Responses MCDM Other
plan tool(s)
Das et al. (2014b) Ly7 OA EN 31 steel Arc gas pressure, arc MRR, Ra, Rq, Rsk, Rku, GRA
current, torch light Rsm
Maity and Bagal (2015) CCD AISI 316 Feed rate, current, Kerf, chamfer, dross, GRA PCA
voltage, torch height Ra, MRR
Renangi et al. (2015) Lig OA SS 420 Cutting current, cutting ~ Ra, MRR GRA
speed, torch height
Khan and Maity Ly7 OA EN 31 steel Arc gas pressure, arc MRR, Ra, Rq, Rsk, Rku, MOORA
(2016a) current, torch light Rsm
Khan and Maity CCD AISI 316 Feed rate, current, MRR, Ra, chamfer, TOPSIS
(2016b) voltage, torch height dross, kerf
Chakraborty et al. Ly7 OA SUPERNI 718 Assist gas pressure, KW, kerf deviation, kerf =~ GRA Fuzzy
(2018) pulse width, pulse taper logic
frequency, cutting
speed
Muhamedagic et al. Lo OA X5CrNil8-10 SS  Cutting speed, plasma Ra, cut perpendicularity, ~ TOPSIS
(2018) gas pressure KW
Ananthakumar et al. BBD Monel 400 Cutting speed, gas MRR, kerf taper, HAZ TOPSIS
(2019) superalloy pressure, arc current,
stand-off distance
Hamdy et al. (2019) Ly7 OA Mild steel Cutting speed, arc Kerf taper, dross, Ra, MOORA SDV,
current, stand-off MRR GA
distance
Hema and Ganesan Lig OA SS 304 alloy Arc voltage, cutting Ra, MRR, kerf ratio GRA

(2020)

speed, stand-off
distance, plasma
offset

4.4 AWJM process

The AWIM is a hybrid NTM process in which the work-
ing principles of AJM and WIM are synergically integrated
to remove material mainly from brittle materials (glass and
ceramics). In this process, abrasive particles, like SiC, B4C,
etc., proportionately mixed with water, are passed through a
small nozzle and ejected on to the workpiece surface causing
removal of material due to erosive action. Thus, various fea-
tures of the abrasive as well as nozzle, like abrasive grain
size, abrasive flow rate, water pressure, nozzle diameter,
stand-off distance, etc., play significant roles in attaining the
desired properties of the work materials. From Table 5, which
presents a literature survey on optimization of AWJM pro-
cesses using MCDM techniques, it can be noticed that most of
the researchers utilized this process for machining of ceram-
ics and composite materials.

Tozan (2011) and Yuvaraj and Pradeep Kumar (2018)
considered the application of fuzzy theory along with the
MCDM techniques while assigning relative importance to the
responses under consideration. It was concluded that the inte-
grated approach could effectively resolve the ambiguity and
uncertainty involved in the group decision making scenario.

Deris et al. (2013) hybridized GRA and SVM to develop a
predictive model for an AWJM process. It was postulated that
the proposed model would provide better results as compared
to GRA which was only applied to identify the significant
process parameters affecting the responses. Rao et al. (2019)
optimized the input parameters of an AWJM process using
Jaya algorithm and its posteriori version. It was observed
that the derived optimal solutions would outperform those
as obtained by other metaheuristics, like particle swarm
optimization, CSA, simulated annealing, firefly algorithm,
blackhole algorithm, and bio-geography-based optimization
techniques. Finally, PROMETHEE was implemented to sin-
gle out the best solution from the set of the Pareto-optimal
solutions developed using the multi-objective version of Jaya
algorithm. In a recent paper, Das and Chakraborty (2021)
integrated grey correlational method with EDAS to solve the
parametric optimization problem of an AWJIM process.

4.5 LBM process

The LBM process employs a high intensity laser beam,
focused on to the workpiece surface to a very small spot
with the help of a lens. Due to extremely high temperature

@ Springer
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at the narrow zone on the surface, material removal takes
place through melting and/or vaporization of the work mate-
rial, leaving a crater on the incident area of the beam. The
molten material is blown away from the machining zone
with the help of air, oxygen, nitrogen or argon, which also
helps in minimizing the HAZ. It has several advantages, like
higher cutting speed, high degree of flexibility and automa-
tion, lower level of noise, etc. Micro-holes with better KW,
smaller HAZ and accurate cut edge profile can be easily gen-
erated using this process. It can also machine brittle materials.

Based on the working principle of this process, it can be
revealed that the researchers should be interested to control
dimensional accuracy of the machined components while set-
ting the optimal values of laser beam power, pulse width,
pulse frequency, focus position, cutting speed, and pressure
and flow rate of the assist gas during LBM operation. While
assigning relative importance to the considered responses
using suitable linguistic variables, Priyadarshini etal. (2017),
and Biswas et al. (2019) combined fuzzy theory with TOP-
SIS for parametric optimization of LBM processes. In the
similar direction, fuzzy logic was hybridized with GRA to
frame fuzzy rules to investigate the effects of varying LBM
process parameters on the responses and also to search out
the ideal settings of those parameters (Priyadarshini et al.
2015; Joshi and Sharma 2018; Das et al. 2018). Madic et al.
(2016) first applied AHP to determine weights of KW, Ra,
and perpendicularity, and later optimized an LBM process
using WASPAS and OCRA methods. The applications of
both the MCDM approaches had identified the same paramet-
ric intermix of the said process. The same research group also
applied PSI method to optimize an LBM process (Madi¢ et al.
2017). Sivaprasad and Haq (2019) and Das and Chakraborty
(2020b), respectively, employed similarity index and SIR
methods to determine the ideal combinations of different
input parameters leading to optimization of LBM processes.
While machining Kevlar-29 and Basalt materials using LBM
process, Gautam and Mishra (2019) applied GRA to com-
pute the grey relational grades of all the experimental trials
which were subsequently utilized to develop a nonlinear
model taking into account the considered process parame-
ters. Finally, GA was employed to solve the model along
with determination of the optimal parametric intermix. Inte-
grating FEM and ANN, Mishra and Yadava (2013) developed
a prediction model for a laser beam percussion drilling pro-
cess. At first, FEM-based thermal models for the process
were developed, considering temperature-dependent thermal
properties, optical properties and phase change phenomena
of aluminum. The ANN was then trained using the input and
output data based on the FEM model. Finally, the said pro-
cess was optimized using GRA and PCA techniques. The
adopted multi-objective optimization tool was able to maxi-
mize MRR with reduced values of taper angle and HAZ. A

@ Springer

concise review on the applications of MCDM methods for
optimizing LBM processes is provided in Table 6.

4.6 USM process

During USM operation, material is removed from the work-
piece surface with the help of low amplitude and high
frequency vibration of a tool in the presence of abrasive parti-
cles. The material removal takes place due to abrasion of the
abrasive-loaded liquid slurry circulating between the work-
piece and the tool vibrating perpendicular to the workpiece
at an ultrasonic frequency. It differs from the other NTM pro-
cesses as minimum amount of heat is generated during the
machining operation. It can also effectively machine brit-
tle materials. To expedite the performance of USM process,
type, size of the abrasive and its concentration, power rating,
abrasive flow rate, etc., are identified to play important roles.

Chakravorty et al. (2013) applied four techniques, i.e.
GRA, WSN, MRSN, and UT for simultaneous optimization
of MRR, Ra, and TWR during machining of cobalt-based
superalloy and tungsten carbide work materials. It was
noticed that WSN having simple computational steps would
provide the best intermix of the considered USM param-
eters. The relative importance of MRR, TWR, and OC was
first estimated by Bania et al. (2021a) using CRITIC method,
and EDAS method as an MCDM tool was later adopted to
optimize the USM process. Similarly, Bania et al. (2021b)
determined weights of the responses using CRITIC, and
adopted TODIM method to search out the best combina-
tion of abrasive flow rate, power rating, abrasive grit size,
and slurry concentration which would simultaneously max-
imize MRR, and minimize TWR and OC. Table 7 enlists
the MCDM techniques adopted by the past researchers for
optimizing USM processes.

4.7 PAM process

In PAM process, material is removed by directing a high
velocity jet of high-temperature ionized gas on to the work-
piece, causing melting and vaporization of the material. This
ionized gas is known as plasma. It can effectively machine
thick hard and brittle materials, and has a faster machin-
ing rate while providing good dimensional accuracy. The
applications of different MCDM techniques for parametric
optimization of PAM processes are presented in Table 8.
Maity and Bagal (2015) integrated GRA with PCA to
study the effects of current, voltage, feed rate, and torch
height while optimizing MRR, Ra, dross, kerf and cham-
fer during machining of AISI 316 SS work material using
PAM process. Hamdy et al. (2019) first determined the rela-
tive importance of Ra, MRR, kerf taper, and dross using SDV
method. The MOORA method was later adopted to convert
the multiple responses into a single performance index which
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was subsequently modelled using GA. The derived solutions
would help in studying the effects of PAM parameters on the
responses and determining the ideal parametric intermix of
the said process.

5 Summary

This paper reviews more than 200 research articles mainly
published during the last ten years on the applications of
different MCDM techniques for optimizing ECM, EDM,
WEDM, AWJM, LBM, USM, and PAM processes. It can be
revealed from Fig. 2 that EDM and WEDM processes con-
tribute 32.2% and 25.7%, respectively, to the total number
of articles reviewed. The immense popularity of these two
NTM processes may be due to their potentiality to generate
complex and intricate shape features on various conductive
and non-conductive advanced engineering materials used in
modern-day automobile, molding, tool and die making indus-
tries. This review paper also extracts valuable information
with respect to the design plans deployed for conducting the
required experiments, materials machined, process parame-
ters and responses considered, and MCDM methods applied
for optimizing the said NTM processes. Figure 3 exhibits that
among different experimental design plans, Lo (27.7%), L1
(16.0%) and L7 (31.6%) are maximally considered while
conducting experiments leading to optimization of the NTM
processes. Perhaps the main reason for huge popularity of
OAs (Lo, L1g, L7, etc.) lies in their simplicity. The OAs,
which are developed with a fraction of full factorial array,
maintain independency between various factors evaluated.
They are also extremely potent tools for pilot analysis as the
number of factors evaluated can often be increased without
increasing the number of tests to be carried out. For example,
considering a three-level design, an Lo OA can be employed
for constructing a DoE of 2, 3, and 4 number of factors. Thus,

L27
31.6%

L9
27.7%

Fig.3 Experimental design plans deployed for parametric optimization
of the NTM processes
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Fig.4 Types of work materials machined using the NTM processes

they can be effectively utilized to study machining charac-
teristics of the NTM processes with minimum number of
experimental trials. Figure 3 also reveals that CCD (12.1%)
and BBD (2.2%) plans are also employed mainly to develop
the corresponding metametals correlating the NTM process
parameters and responses.

From Fig. 4, which shows various work materials
machined by the NTM processes, it can be unveiled that
different grades of steel and SS, aluminum, Nimonic, and
titanium and their alloys, Inconel, MMCs and ceramics are
maximally machined due to their wide-ranging industrial
applications. These harder and tougher materials with poor
machinability properties cannot be machined by the con-
ventional material removal processes. Besides these work
materials, different ceramic-based composites, WC alloy,
hardfacing materials, polymer composites, etc. are also
machined which are combined together in ‘Others’ category
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Fig.5 Responses considered during optimization of the NTM processes

in Fig. 4. With respect to the input parameters, applied volt-
age, feed rate, inter-electrode gap, electrolyte concentration,
and its flow rate for ECM process; pulse-on time, pulse-off
time, discharge voltage and current, dielectric type, and its
flushing pressure for EDM process; and pulse-on time, pulse-
off time, peak current, wire feed rate and tension for WEDM
process are mainly treated with utmost importance by the
researchers. On the other hand, abrasive size and its flow rate,
traverse speed, and stand-off distance; laser power, cutting
speed, focus position, and assist gas pressure; power rating,
abrasive slurry material, size, concentration and flow rate,
and feed rate; and arc current, torch height, cutting speed, and
arc gas pressure are considered as the main input parameters
for AWJM, LBM, USM, and PAM processes, respectively.

It can be noticed from Fig. 5 that MRR has the maximum
importance among the researchers as the response, followed
by SR (consisting of Ra, Rku, Rq, Rsk, Rsm, and Rz), kerf
characteristics and EWR. As the primary objective of any
of the machining processes is to remove material from a
given workpiece, MRR is always treated as the main metric to
quantify production rate and machining efficiency. To reduce
friction, heat generation, consumption of energy, material
loss due to wear, degradation of metallurgical properties,
etc., it is always desired to have a smooth machined sur-
face which is often defined by various surface characteristics
(mainly in the form of Ra value). During generating intricate
shape geometries on various work materials using WEDM,
AWIM, LBM, and PAM processes, dimension deviations are
usually characterized by different kerf features (KW, kerf
deviation, and kerf taper angle). Furthermore, EWR repre-
sents tool (electrode) wear during the machining operation
which is proportional to more tool consumption leading to
higher machining cost.

Figure 6 reveals that GRA (51.30%) and TOPSIS
(29.57%) are the two most popular MCDM tools deployed
by the researchers for optimizing of the considered NTM
processes. The extreme popularity of GRA lies in its simple
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processes

calculation steps, ability to deal with incomplete information
and in-built criteria weight estimation. In this method, after
translating the performance scores of all the candidate alter-
natives into a comparability sequence, a reference sequence
is framed. The difference between the reference sequence
and every comparability sequence is then estimated in terms
of grey relational grade which is finally employed to rank the
alternatives. The TOPSIS identifies the best alternative which
is positioned nearest to the ideal solution and farthest from the
anti-ideal solution. Besides GRA and TOPSIS, applications
of other MCDM tools, like MOORA, VIKOR, WASPAS,
AHP, SAW, ARAS, EDAS, SIR, PSI, PROMETHEE, OCRA,
COPRAS, etc., are also found for optimizing the NTM pro-
cesses. It is also observed that in most of the cases, equal
weights are assigned to the criteria (responses) mainly to
ease out the related calculation steps. When it is required to
allocate objective weights to the responses, entropy method,
CRITIC and PCA are occasionally applied. Fuzzy set theory,
fuzzy logic, neutrosophic fuzzy set and interval type-2 fuzzy
number are also integrated with many of the MCDM tech-
niques to resolve the problem of subjective weight allocation
to the responses under uncertain decision making environ-
ment. Based on the calculated performance scores of the
MCDM tools, attempts are also put forward to develop the
corresponding metamodels which are subsequently solved
using different metaheuristics, like GA, GWO, CSA, TLBO,
etc., leading to determination of the optimal combinations of
the NTM process parameters in continuous solution space.

6 Conclusions

This review of research articles published on parametric opti-
mization of ECM, EDM, WEDM, AWJM, LBM, USM, and
PAM processes using different MCDM tools draws the fol-
lowing conclusions:



Multiscale and Multidisciplinary Modeling, Experiments and Design (2023) 6:1-40 33

(a) Among the experimental design plans, the researchers
preferred Taguchi’s Ly (27.7%), L1g (16.0%), and L»7
(31.6%) OAs mainly due to their easier calculation
steps and availability of user-friendly software (like
MINITAB, Design Expert, etc.). They are also capable
of dealing with both quantitative and qualitative input
parameters and responses.

(b) The harder, tougher, and brittle materials having poor
machinability properties are usually machined employ-
ing the NTM processes with generation of complex
and intricate shape features with minimum dimensional
deviation and satisfactory surface finish.

(c) The MRR is the most important response (66.96%), fol-
lowed by SR (64.78%), kerf characteristics (32.17%),
and EWR (29.57%).

(d) Among the MCDM tools, GRA has found maximum
applications (51.30%), followed by TOPSIS (29.57%)
for optimizing the considered NTM processes.

(e) To ease out the computational steps, equal importance
is usually allocated to the responses.

(f) The applications of fuzzy set theory and its different
variants are sometimes found while assigning subjec-
tive weights to the responses under uncertain decision
making environment.

This review paper also proposes the following future
research directions:

(a) The application potentialities of MCDM techniques
for optimization of other NTM processes, like AJM,
WIM, electrochemical discharge machining, electro-
chemical grinding, electrochemical honing, etc., need
to be explored.

(b) More emphasis needs to be focused on the applications
of CCD/BBD-like design plans to identify the optimal
parametric combinations of the NTM processes in con-
tinuous solution space.

(c) The interaction effects between the NTM process
parameters may be explored with subsequent devel-
opment of the corresponding linear graphs related to
different OAs.

(d) In GRA, influences of the changing values of the dis-
tinguishing coefficient on the derived optimal solutions
should be investigated.

(e) More preference should be provided on criteria weight
determination using objective methods. In this direction,
application of simultaneous estimation of criteria and
alternatives (SECA) method is highly recommended.

(f) Other new but yet to be popular MCDM tools, like
CoCoSo, MABAC, MARCOS, compromise ranking of
alternatives from distance to ideal solution (CRADIS),
etc., can be employed to derive the optimal intermixes
of the NTM process parameters.

(g) It should be interesting to study the effects of chang-
ing criteria weights on the optimal parametric set-
tings through sensitivity analysis (Mukhametzyanov
and Pamucar 2018).

(h) The MCDM tools can be effectively hybridized with
various metaheuristic algorithms leading to optimiza-
tion of NTM processes.

(i) Development of a decision support system is highly
demanded to alleviate the calculation steps of MCDM
tools which would guide the concerned process engi-
neers in identifying the most suitable parametric com-
binations with the help of a graphical user interface
(Chakraborty and Kumar 2021).

The limitations of this review paper are as follows. Appli-
cations of MCDM tools for optimization of ECM, EDM,
WEDM, AWIM, LBM, USM, and PAM processes are only
considered in this paper. Further review may be conducted
to highlight the applications of MCDM tools for optimiz-
ing other NTM processes, like electrochemical discharge
machining, electrochemical grinding, AJM, WJM, electron
beam machining, chemical machining, etc. Metaheuristics-
based optimization of various NTM processes may be a topic
of another review work. It also does not endeavor to extract
values of the optimal settings as well as achieved response
values of the NTM processes. Extraction of this information
would greatly help the process engineers in conducting the
pilot runs to study the significant effects of the input param-
eters on the responses.
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