
Multiscale and Multidisciplinary Modeling, Experiments and Design (2022) 5:317–335
https://doi.org/10.1007/s41939-022-00120-1

ORIG INAL PAPER

Hybridizing multivariate robust regression analyses with growth
forecast in evaluation of shear strength of zeolite–alkali activated
sands

Babak Jamhiri1 · Fazal E. Jalal1 · Yang Chen1

Received: 13 April 2021 / Accepted: 30 January 2022 / Published online: 18 February 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
A comprehensive experimental program was undertaken to investigate the relationships between B-ratio, void ratio, and
principal stress difference at failure of zeolite–alkali activated sands. For this purpose, a series of unconfined compressive
strength tests (UCS) was carried out on specimens under different arrangements of zeolite–lime content to fixate an optimum
lime content. From interpretation of UCS test results, undrained triaxial shearing tests were performed on samples comprising
optimum lime content and various zeolite percentages. With regards to the experimental evidence, a novel time dependent
growth forecast was performed to extend the curing ages beyond the conditions of the experimental program. Then, a series of
multivariate regression analyses including robust analysis along with error diagnoses estimations was utilized to define new
relationships among influential variables. High accuracy and confidence rate of the proposed unified relationships presented
by this research will provide a solid framework for the treatment of fine sands with natural zeolite–lime blends.

Keywords Zeolite–alkali activation · Multivariate robust regression · Time series analysis · Huber outlier estimation

1 Introduction

Improvement of soil properties where environmental issues
including: expansion, shrinkage and liquefaction are prevail-
ing is of major importance to prevent infrastructure failures
(Jalal et al. 2020). Saturated fine sands are usually suscep-
tible to catastrophic disasters such as liquefaction (Jamhiri
et al. 2020). To prevent these disasters, artificial cementation
methods such as cement or lime additions,microbial-induced
cementation, and fibre reinforcement cementation have been
suggested in practice (Hamdan et al. 2017; Sharma et al.
2018; Tran et al. 2018). Themain issue concerning artificially
cemented sands under shearing is their complex shearing
mechanism (He et al. 2014). For example, during undrained
shearing, when cemented soils experience an increase in
confining stress, degree of saturation adjusts the pore water
space where the coefficient of pore water pressure or B-
ratio is considered for evaluation of degree of saturation.
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Confining pressure and peak shearing stress, also affect the
failure mechanism of sands under undrained shear loadings
(Sugiyama et al. 2016; Mun et al. 2016). More importantly,
the void ratio has long been recognized as a key factor con-
trolling shear strength of sands (Zamani andMontoya 2018).

Following the treatment of sands with several binding
agents, natural zeolite as a hydrated aluminosilicate poz-
zolan that contains alkaline-earth metals has shown promis-
ing geotechnical and environmental benefits (Ahmadi and
Shekarchi 2010). Unlike soil improvement methods such as
sole cement or lime treatment, alkali activation of zeolite
with lime and then treatment of soil with its blend does not
alter the safety of treated soil and averts the toxicity that is
often produced by the buildup of soil pollutants (Shon and
Kim 2013). However, current studies have utilized zeolite
as a partial cement replacement (Mola-Abasi et al. 2019,
2020) while remaining researchers investigated lime-zeolite
stabilization only in terms of chemical reactions and shear
strength development (Jamhiri 2020; Jamhiri and Pakbaz
2020). Though, there are great shortcomings in determin-
ing a comprehensive relationship to correlate or to predict
associated parameters with the shear failure mechanism of
zeolite–lime treated sands such as void ratio, peak deviatoric
stress, and B-ratio.
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A few empirical equations have been proposed to correlate
or to predict influential parameters regarding sand amend-
ment with or without additives concerning compressive and
tensile strength. Among these studies, Consoli et al. (2010,
2012, 2013) and Consoli and Foppa 2014) presented an
adjusted porosity-binding agent index to evaluate the uncon-
fined compressive and tensile strength of lime/cement treated
sands. Also, Subramanian et al. (2019) indirectly predicted
compressive strength of treated sands as normalized strength
against curing time to capture time dependencies on strength
evolution, while Mola-Abasi et al. 2019 directly predicted
compressive strength of treated sands without explicit con-
sideration of curing conditions.

Regarding studies about undrained shear of treated sands,
Okamura and Soga (2006) introduced a relationship to
account for the increase in cyclic strength of natural saturated
sands with the change in the degree of saturation, suggesting
that the normalized undrained shear strength of sands in the
form of liquefaction resistance ratio (LRR) has an exponen-
tial relationship with B-ratio and potential volumetric strain
of εv as follows:

LRR � log(6500ε∗
v + 10). (1)

He et al. (2014) expanded Eq. (1) further by incorporating
a calibrated coefficient α � 14,000 and 1800 for both com-
pression and extension conditions respectively in undrained
triaxial testing as follows:

LRR � log(α × ε∗
v + 10). (2)

But Eq. (2) is only applicable in the range of prede-
termined α values. To further extend Eq. (2), a general
equation was proposed by Mun et al. (2016) indicating
that (σ1 − σ3) f increases log-linearly with axial strain rate,
where (σ1 − σ3) f is the principal stress difference at failure
andA andB are the slope and intercept parameters depending
on any specific undrained loading respectively as follows:

(σ1 − σ3) f � A × log(ε̇) + B. (3)

Perhaps, the most inclusive relationships were proposed
by Belkhatir et al. (2011). They employed multivariate linear
regressions and instrumented intergranular void ratios (es)
with the aim of forecasting undrained residual shear strength
(Sus) of sand-silt mixtures. Due to the presence of low to large
amounts of fine content and several confining pressures (σ c)
in their study, a number of equations considering different
relative densities were proposed as follows:

Sus/σ
′
c � 0.22 − 0.056(es) for Dr � 12%

Sus/σ
′
c � 0.22 − 0.046(es) for Dr � 50%

Sus/σ
′
c � 0.23 − 0.049(es) for Dr � 90%

(4)

Relationships above generally work well for loose fine
to naturally compacted sand mixtures bearing in mind their
shortcomings and lack of any alkali activated agents in their
structures. Hence, considering the scarcity of available stud-
ies regarding the undrained shear response of zeolite–alkali
(zeolite–lime) activated sands, achieving relationships capa-
ble of generalizing the effects of curing periods and additives
content by associating undrained shear parameterswill estab-
lish a solid ground for evaluating the performance of treated
soils. Furthermore, advanced artificial intelligence methods
such as GEP and deep neural networks are feasible to per-
form when high uncertainty or nonlinearity exist among
variables (Jalal et al. 2021a, b, c; Jamhiri et al. 2021; Shah-
mansouri et al. 2021). Otherwise, hybridization of several
AI approaches in combination, to improve the precision of
each step in machine learning and without extra demands for
resources, is preferable.

Therefore, through a chain of analyses, this research aims
to define new correlational equations between B-ratio, void
ratio at failure and principal stress difference at failure (here-
after called USS). First, by using an experimental approach
including the performance of tests such as unconfined com-
pression strength (UCS) tests and undrained unconsolidated
(UU) triaxial test on reconstituted specimens of zeolite–lime
activated sands. Then, on the basis of experimental results, a
unified forecasting model is proposed by generalizing the
effects of curing periods, zeolite–lime content, and each
given confining pressures. Forecast values were derived
directly from the experimental results by a hybrid time series
analysis namely, exponential growth smoothing and by iden-
tifying logically visible patterns in the extension of curing
periods. Finally, with the aid of multivariate linear regression
analyses on forecast values, unique relationships are pro-
posed by achieving a good agreement between the measured
and predicted undrained shear properties of zeolite–alkali
activated sands.

2 Materials, experimental program
andmethodology

2.1 Materials

The results of the soil characterization tests are illustrated
in Table 1 and the grain-size distribution curve of sand and
laser particle size analysis of natural zeolite is shown inFig. 1.
This soil is classified as poorly graded sand with less than
5% fine content and used natural zeolite was clinoptilolite.
To achieve desired fineness, zeolite was micronized by high
energy ball milling. Conventional dry hydrated lime with
mean particle size of 2 μm and a specific gravity of 2.34
was used as the bonding agent. Distilled and tap water were
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Table 1 Physical and mechanical characteristics of studied sands

Soil Property Amount

Cu 2.22

Cc 1.42

D10 (mm) 0.09

D30 (mm) 0.16

D60 (mm) 0.2

Soil name SP

Specific gravity 2.65

Optimum moisture content (%) 15.6

Maximum dry density (KN/m3) 15.77

Cohesion intercept (kPa) 0.2

Internal friction angle (°) 30
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Fig. 1 Grain size distribution of sands and laser particle size distribution
of natural zeolite

used for the characterization and remolding of specimens,
respectively.

Following reconstitutingof samples, sand and zeolitewere
dry mixed thoroughly before mixing with lime. To reduce
dispersion in the grain size distribution of mixed batches,
zeolite with a mean particle size of nearly 10 μm and the
Si/Al ratio of 5.6% was used. The batch was then mixed
with lime until a consistent mixture was obtained. Finally,
required water for wet mixing with respect to the optimum
moisture content was added to the mixture and the wet batch
was again mixed properly to reach a homogeneous state. To
ensure sample uniformity, undercompaction procedure was
adopted for sample remolding and precise measures were
taken to reach a relative density of 95% with respect to the
maximum dry unit weights. Specimens were then compacted
in cylindrical molds with the height to diameter ratio of 2.2.

After that, the molds with the samples in place were sealed in
plastic bags and placed in a humid room with 90% humidity
and 20° ± 1 °C temperature.

2.2 Experimental program andmethodology

The experimental program was carried out by conducting
a series of unconfined compression tests on reconstituted
specimens to fixate an optimized lime content based on the
highest compressive strength. In reference to the results of
other studies (Consoli et al. 2010, 2012, 2013), four dif-
ferent lime percentages i.e., 3%, 4%, 5%, and 6% were
used based on the mass of dry soil. Three different percent-
age amounts of zeolite, i.e., 8%, 10%, and 12% which can
be considered as a limit for its effective use were adopted
for UC tests. Close to exactly similar percentage amounts
were also adopted in other studies investigating zeolite as
cement replacement material (Ahmadi and Shekarchi 2010;
Nagrockiene and Girskas 2016).

At the end of the experimental program, a series of
undrained triaxial tests was carried out to investigate princi-
pal stress difference at failure and corresponding variation of
void ratio withB-ratio of treated specimens. Noticeably, only
zeolite content was varied in samples prepared for undrained
shearing while lime content was maintained at its optimized
value. Additionally, along with previous 8%, 10%, and 12%
of zeolite, a 14% amount was also used to investigate the
effects of variation in zeolite content on undrained shear
strength development. The AI modeling part in this research
includes two main parts. time series analysis with exponen-
tial smoothing to forecast growth of pozzolanic reactions.
Then, Multivariate robust regression, with outlier treatment
thorough Huber estimation. The flowchart of steps taken in
the hybrid regression modelling is shown in Fig. 2.

3 Unconfined compressive strength
and undrained triaxial shearing tests

Following curing periods of 7 and 28 days, the hardened
samples were subjected to UCS tests in accordance with
ASTM D-2166 to verify the effectiveness of the stabiliza-
tion with lime. Afterwards, triaxial tests were performed
under a constant rate of strain according to the ASTM D
2850 on samples with optimized lime and different percent-
ages of 8%,10%,12%, and 14% of zeolite. It is expected that
stiff or brittle materials such as cemented samples exhibit
small deformations at failure. In this regard, cemented sam-
ples should be tested at the lower portion of recommended
strain range between 0.5 and 2% mm/min. Accordingly, the
strain rate was adopted to be 0.75 mm/min for both UCS and
triaxial tests. Also, confinement pressures of 50, 100, and
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Fig. 2 Flowchart of steps in the
hybrid multivariate robust
regression

150 kPa were applied to the specimens in the triaxial cham-
ber. Finally, observed UCS and undrained shear strength at
failure corresponding to the maximum strain during loading
were recorded. Each specific specimen was tested at least
twice to ensure repeatability and validity of the results, and
then the mean of results was reported.

4 The B-value test procedure

While performing undrained triaxial shearing,measurements
of B-ratio is undertaken to account for variation of degree
of saturation. In cases of cemented samples, back pressure

is applied to the specimen in order to increase the degree of
saturation by raising the pore water pressure (Sugiyama et al.
2016).

One of efficient methods for sample saturation includes
both vacuum procedure and application of back pressure
(Rad and Clough 1984). During saturation, both cell and the
back pressure must be applied in increments and when a
back pressure is applied, an equal pressure simultaneously
is added to the cell pressure to maintain the effective confin-
ing pressure constant. Thus, specimen vacuity starts with the
exertion of 50 kPa of vacuum pressure below atmospheric
pressure applied to the water in the specimens.
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Fig. 3 Theoretical steps in incremental application of back pressure utilizing with simultaneous confining pressure up to the full equilibrium
(modified after Lade 2016)

Following the vacuum procedure, initially, total volume
of the specimen with a preliminary degree of saturation (S0),
at saturation stage of triaxial test, comprises the volume of
air in the specimen (V a), initial void ratio (e0) with pore pres-
sure, (u0) and the volume occupied by the dissolved air which
is negligible even during saturation. After successful appli-
cation of incremental back pressure, as it is visualized both
graphically and theoretically in Fig. 3, initial B-ratio at the
onset of shearing equivalent to the final degree of saturation
Sf (not necessarily full saturation) is obtained after further
saturating of the specimen and raising the pressure to (u0 +
�u).

5 Results and discussions

5.1 Unconfined compression (UC) test

The UCS variations with different percentage amounts of
zeolite and lime for two distinct curing periods of 7 and
28 days are shown in Fig. 4. All treated samples with zeolite
and lime showed compressive strength improvement due to
the formation of cemented compounds by pozzolanic reac-
tion in treated soils leading to stronger bonds and increase in
interlocking forces among soil particles, which is similar to
the findings of Rao and Rajasekaran (1996).

As shown in Fig. 4a, after 7 days, cured samples with a
similar lime content portrayed high compressive stress as
zeolite content increased. The results in Fig. 4b indicate
that 28-day cured samples containing 5% lime developed
relatively higher compressive stress with increasing zeolite.
However, for sampleswith 4% and 6%of lime, themaximum
compressive stress belonged to the samples with less zeolite.
It is indicated by comparing Fig. 4a with b that samples with
5% lime showed a steady growth of hardening with no or low
deviation in any case and in all curing ages.

Additionally, it was indicated that UCS results of speci-
mens with 4% and 6% of lime and different zeolite contents
are in contrast with each other. This case prompts different
conclusions which must be considered. Initially, at 7 days
of curing, samples with more zeolite showed higher strength
growth, while at 28 days of curing, samples with less zeolite
showed higher strength. These differences attributed to the
imbalance of the incorporation of zeolite and lime into the
pozzolanic reaction process. For example, in samples with
4% lime, as in Fig. 4b, required lime was not enough for the
pozzolanic reaction to progress, and in sampleswith 6% lime,
zeolitewas insufficient to consumeextra lime. In otherwords,
as the lime percentage increased, the pH increased accord-
ingly and strongly influenced the early reactivity (Mertens
et al. 2009; Jamhiri and Pakbaz 2020).
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Fig. 4 Variation of UCS of treated samples with different percentage amounts of zeolite and lime during a 7 days of curing and b 28 days of curing

Following the results of UCS tests, the optimum lime
requirement for an effective zeolite–lime treatment of sands
is 5%. Accordingly, in the next part of the experimental pro-
gram, the authors decided to conduct an additional series
of tests on reconstituted samples with 14% of zeolite along
with previous 8%,10%, and 12% of zeolite to investigate
the effects of variation in zeolite content on undrained shear
strength.

5.2 Unconsolidated undrained triaxial test

TheUU stress–strain response of sampleswith optimized 5%
lime and different percentage amounts of zeolite are illus-
trated in Figs. 5 and 6 for 7 and 28 days of curing periods,
respectively. The samples under undrained shearing showed
strain-hardening behavior (Nataatmadja and Parkin 1989);
but there were no clear drops in strength or residual soften-
ing until the termination of loading. Hence, failure points on
the slopes of the curves are breaking points of the samples
corresponding to a given strain range rather than total break-
ing point. As shown in Figs. 4 and 5 at initial part of the curve,
the stress increases linearly with strain which then shifts into
a semi hook-shaped ending part though at a slower rate of
increase. Therefore, the increase of shear stress decreases
when the stress state starts to reach the failure state. This
event probably associated to the development of higher fric-
tion due to the increase in slippage forces among cemented
particles which are trying to break apart (Cai et al. 2006;
Muntohar et al. 2012).

Following the importance of confining pressure on the
undrained response of treated samples, variation of peak

deviatoric stress for samples comprising optimized 5% lime
and different percentage amounts of zeolite are investigated
in Fig. 7a, b. As depicted in Fig. 7a, samples containing 8%
zeolite have a steep slope at their initial portion of the curve
which could be due to closure of low aspect ratio micro pores
resultant of lack of a mature cementation. Beside the ini-
tial range, strength envelopes are essentially straight lines
with nearly the same slope. Additionally, as can be seen in
Fig. 7b, samples with 12% and 14% of zeolite have shown
a sharp strength increase especially beyond the application
of 100 kPa of confining pressure which are visible as a steep
slope at the end portion of their curves too. The reason is
ascertained from the fact that at lower confining pressures,
the cemented bond breakage has more contribution to the
final strength than particle interlock friction.

Also, both samples containing 12% and 14% of zeo-
lite cured for 7 days have a corresponding peak deviatoric
strength to each relative confining pressure well above those
of the 8% and 10%. The reason for this behavior could
be traced from the relatively higher zeolite content which
largely contributes to the degree of cementation. However,
the envelopes for both specimens are parallel to each other
and closely following a straight line which shows a logical
pattern in strength development.

5.3 Analysis of measured B-ratios and void ratios

For cemented soils B-ratio is expected to be less than unity,
even for fully saturated specimens (Lade 2016). Moreover,
large voids or a fissuredmicrostructure has a significant effect
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Fig. 5 The UU stress–strain response of samples with optimized 5% lime and different percentage amounts of zeolite at 7 days of curing under 50,
100, and 150 kPa of confining pressure

on the value ofB at non-zero differential pressures. For exam-
ple, cracked sandstones apparently have a value of B around
0.6, while sandstones with low crack densities are expected
to have values closer to 0.8 for non-zero differential pressures
(Berge et al. 1993).

Table 2 expresses that as confining pressure increases over
the extension of curing periods, the B-ratio decreases owing
to two factors. First, pozzolanic reaction and the evolution of
a softmixture into a rigid cemented body. Second, decreasing
bulk compressibility due to the closure of highly compliant
small voids at low confining pressures and also the com-
pression of relatively soft inter-granular contacts (Green and
Wang 1986).

Measured B-ratios in this study are similar to those
observed by Green and Wang (1986) who measured B �
0.95–1.0 for differential pressures below 1 MPa for fully
saturated sandstones. Fredrich et al. (1995) showed that in

the fully saturated silicified zeolite sandstone, the B-ratio at
near-zero applied confining minus induced pore pressure is
close to 0.9, and it decreases systematically to approximately
0.7–0.8 at effective pressures of about 25 MPa, and tends
to increase again at higher confining pressures. Namikawa
et al. (2017) studied cement-treated Toyoura sand containing
a small amount of Kaolinite clay using triaxial compression
and tension tests under a back-pressure of 200 kPa and under
confining pressures varying from 50 to 200 kPa. B-ratios
measured during their tests ranged from 0.8 to 0.95 for sam-
ples prepared with 4.5% cement and from 0.7 to 0.95 for
samples prepared with 7% of cement.

The influence of USS, curing age, void ratio, and confin-
ing pressure on theB-ratio is shown in Fig. 8a. It is clear from
Fig. 8a, that void ratio increases with increasing of B-ratio,
but void ratio decreases over curing time due to further devel-
opment of calcium silicate hydrate (C–S–H) bonds when

123



324 Multiscale and Multidisciplinary Modeling, Experiments and Design (2022) 5:317–335

0.0 0.5 1.0 1.5 2.0
0

500

1000

1500

2000

2500

3000

Pe
ak

 d
ev

ia
to

ri
cs

tr
es

s (
kP

a)

Axial strain (%)

50 (kPa) 100 (kPa) 150 (kPa)

5 % L + 8 % Z

0.0 0.5 1.0 1.5 2.0
0

500

1000

1500

2000

2500

3000

Pe
ak

 d
ev

ia
to

ri
cs

tr
es

s (
kP

a)

Axial strain (%)

50 (kPa) 100 (kPa) 150 (kPa)

5 % L + 10 % Z

5 % L + 12 % Z

0.0 0.5 1.0 1.5 2.0
0

500

1000

1500

2000

2500

3000

3500

Pe
ak

 d
ev

ia
to

ri
cs

tr
es

s (
kP

a)

Axial strain (%)

50 (kPa) 100 (kPa) 150 (kPa)

5 % L + 14 % Z

0.0 0.5 1.0 1.5 2.0
0

500

1000

1500

2000

2500

3000

3500

Pe
ak

 d
ev

ia
to

ri
cs

tr
es

s (
kP

a)

Axial strain (%)

50 (kPa) 100 (kPa) 150 (kPa)

Fig. 6 The UU stress–strain response of samples with optimized 5% lime and different percentage amounts of zeolite at 28 days of curing under
50, 100, and 150 kPa of confining pressure

coarser mass of their reaction product being produced by
growing pozzolanic reaction. As it is highlighted in Fig. 8b,
with the increase of zeolite content under similar confining
pressures, the difference between values of the void ratio is
significant and occurs during curing age. But, for samples
with an identical zeolite content, the difference between the
void ratios and peak deviatoric strengths develops less dif-
ference during curing age especially for treated samples with
12% and 14% of zeolite, while comparing to those samples
treated with 8% and 10%, increase in peak failure strength
and void ratio are much more noticeable.

In view of Fig. 8, the data in Table 2 could be better
explained knowing that the rate of air andwater occupancy of
voids is mainly dependent on degree of saturation and air dis-
solution inwater. So, asB-ratio is also a function of the degree
of saturation, increase in degree of saturationwill result in the
increase of B-ratio and achieving a higher void ratio. These

observations accentuate previous studies in implicating that
the increase in degree of C–S–H bonding and pozzolanic
reaction rate with time lead to a finer void space (Consoli
et al. 2010, 2012, 2013).

6 Exponential smoothing time series
analysis

Forecasting shear strength of treated samples requires ana-
lyzing time dependent variables influencing strength devel-
opment. One major effective variable is the pozzolanic reac-
tion that continues its influence over curing time. Although,
pozzolanic reaction itself is not measured on a quantita-
tive scale, however, its kinetics could be measured through
solvent-regent dissolution and SEM analysis. But the former
is not easily comparable with different pozzolan contents,
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Fig. 7 Variation of peak deviatoric stress for treated samples with optimized 5% lime and different percentage amounts of zeolite with confining
pressures, a 7 days of curing, b 28 days of curing

Table 2 Variation of pore
pressure coefficient B-ratio with
confining pressures at curing
periods of 7 and 28 days

Curing age 7 days 28 days

Confining pressure (kPa) 50 100 150 50 100 150

Sand + 5%L + 8%Z 0.91 0.9 0.9 0.84 0.84 0.83

Sand + 5%L + 10%Z 0.9 0.89 0.88 0.84 0.83 0.83

Sand + 5%L + 12%Z 0.88 0.88 0.87 0.83 0.82 0.82

Sand + 5%L + 14%Z 0.87 0.86 0.86 0.81 0.8 0.8
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Fig. 8 a Influence of peak deviatoric stress, age and confining pressure on B ratio, b variation of void ratio at peak failure stress for samples
containing 8%, 10%, 12%, and 14% of zeolite over curing ages
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Fig. 9 R-squared validated exponential trend among experimental read-
ings of void ratio with peak deviatoric stress over curing ages of 7 and
28 days

and the latter shows low precision in results (Wang 2014).
Thus, pozzolanic reaction is definable as a qualitative value
which can be explained mainly by discrete empirical obser-
vations over time.

In contrast, evaluation of compressive strength develop-
ment at each distinct curing periods, which is a direct result
of pozzolanic reaction, can only be explained by comparing
the UCS values. Therefore, in these cases, a precise corre-
lational pattern could be established because of quantitative
nature. But forecasting instead means providing functional
correlations among all influential variables including both
quantitative and qualitative. So as to determine a multi-
variate relationship among all influential variables in this
study, a time series forecasting was implemented directly
from the curve fitting among recorded data. Noticeably, time
series analysis can be performed by means of curve fitting
with smoothing and interpolation among datapoints. In order
investigate the variation of input variables over time, beyond
available four weeks of experimental evidence, exponential
curve fitting smoothing can also be visualized to aid inferring
datapoints in a projected forecast. Therefore, by extrapolat-
ing the smoothed curve beyond the range of the experimental
data in Fig. 8b, the logical trend between experimental values
of void ratio and USS values under each confining pressure
over curing time was used to develop a time series analysis
in Fig. 9 as the basis for an exponentially smoothed time
series forecast. The reason for adopting variation of USS as
the study variable in the forecast model is due to the previ-
ously determined significant effect of confining pressure on
deviator stress and its constant predictor pattern of influence
that follows an escalating straight line as shown in Fig. 7a, b.

Observed exponential trend in Fig. 9 was then used as a
high confidential modeling tool for exercising a time depen-
dent forecast with integration of exponential smoothing and
by identifying patterns in the past such as growth of strength
in the length of curing periods. Exponential smoothingmeth-
ods allow smoothing parameters to change over time with an
aim of adapt to changes in the characteristics of the time
dependent forecast series (Taylor 2004; Billah et al. 2006).
Subsequently, calculation of predicted exponential growth
was done by using triaxial test results and by utilizing the
following equation to calculate the least squares fit through
the data points in Fig. 9 as follows:

y � b × mx , (5)

where b andm are unknown constants, to a set of (xi, yi) data
points. Thereafter, by assigning each set of data points to a
given zeolite content including variation of void ratio with
corresponding USS, evaluation of the resulting function at
each given set of points was performed. The values of b and
m were obtained by reduction of linear fit to an exponential
one by taking the logarithm of the y values, and then using
it to fit the function log y(x) � α + β·x, where α � log b and
β � log m, to the data points (xi, log yi). Obtained values
of b and m in this way do not generally minimize the sum
of squared errors, but they do minimize the sum of squared
logarithmic errors in Eq. (5) by adjusting an exponential fit
using the following equation:

log yi − log ŷi �
∑

i
(log yi − log ŷi )

2 �
∑

i

(
log

(yi )(
ŷi

)
)2

,

(6)

where yi is the experimental value and ŷ is the predicted value
for i � 1, …, n. Equation (6) is the sum of squared logarith-
mic errors to the set of data points. Furthermore, avoiding
implanting an asymmetry in the residuals, mean squared log-
arithmic error (MSLE) was ruled out to treat all estimates in
their real differences. Thus, by exponentially smoothing the
existing trend among undrained triaxial test results shown in
Fig. 9, for curing periods of 1 week to 4 weeks, the growth-
adjusted forecast of predicted values for curing periods up
to 16 weeks is illustrated in Fig. 10. This enables the fore-
cast to include and also integrate the effect of curing periods
in predicted values and to be smoothed without losing the
trend of time dependent forecast by giving best fit accuracy.
Also, Table 3 provides a comparison between exponentially
smoothed growth forecast of experimental results over pro-
jected curing time.
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Fig. 10 Exponentially smoothed time series forecast of experimental
readings over curing ages of 7 and 28 days to a forecast projection up
to 16 weeks

6.1 Exponentially smoothed growth projection
validation

There are two prominent measures used to evaluate the pre-
cision of time projection analyses, each of them is based on
the error or deviation between the forecast and actual values
including, mean absolute percentage error (MAPE) and root
mean square error (RMSE). The best possible approach to
judge the performance of a forecast is rests on the lowest
RMSE or MAPE (Hyndman and Koehler 2006).

Best-fitted values of RMSE and MAPE of the predicted
data compared to the experimental ones shown in Fig. 9 are
presented in Table 4. As can be seen in Table 4, the data is
perfectly fittedwith lowdeviations in bothRMSE andMAPE
values. The present highR-squared shows that approximately
more than 95% of variation in USS due to the changes in void
ratio in the length of predicted 12 weeks plus the measured
4weeks of curing can be explained by the forecast projection.
Noticeably, appearance of high RMSE in the data, is because
of sensitive response of RMSE to extreme values or so-called
outliers, so a few extreme values or even a single one can
completely change estimates, though it is a compensation
for excluding mean squared logarithmic error in the forecast

projection when adopting Eq. (6). Still, if the error diagnoses
performon the residuals, it will ascertain that adoptedmodels
produce less noise and the extent of outlier influence will be
determined.

7 Multivariate analyses

7.1 Multiple linear regression (MLR)

The growth-adjusted exponential forecast showed a good
accuracy with high precision in forecasting the variation of
void ratio at failure with USS over the extension of 16 weeks
of experimental and forecast curing period. It is now advanta-
geous to use more than one independent influential variables
in the forecast which extend the domain of the forecast
model. As previously mentioned, presence of a high RMSE
means that trend projection with exponential smoothing can-
not guarantee further accuracy with high precision when
the chances of appearing outliers are imminent. Particularly,
when more variables are added to the forecast, for example,
forecast curing period exceeds by far overmeasured 4weeks,
which is beyond the reach of trend projection. In that event,
the model cannot avoid outliers in the forecast period. Fore-
casting more variables directly from these data values then
requires regression analyses.

A regression analysis applies least-squares analysis to find
the best-fitting line. The best line is defined as the minimized
mean square error by application of Eq. (6) between the his-
torical behavior of samples such as growth in strength due
to higher zeolite content and subsequent higher pozzolanic
activities, and the predicted behavior of cemented particles
under triaxial shearing based on those forecast values. So,
as the quantitative values affecting each other in this study
comprise B-ratio, void ratio, and USS, a simple linear regres-
sion analysis could not be adopted since the independent
variables are more than one. So, by extending the concept
of linear regression, MLR should be adopted (Piñeiro et al.
2008; Khanlari et al. 2012). MLR attributes one dependent
variable namely Y to n independent variables as in Xi (i � 1,
…, n) as:

Table 3 Best-fitted values of
RMSE and MAPE of the
predicted data compare to the
experimental values

Procedure Experimental Predicted

Total observations 24 48

Zeolite content (%) 8%Z 10%Z 12%Z 14%Z 8%Z 10%Z 12%Z 14%Z

RMSE 176 190 599 629 91 88 43 51

MAPE 7 7 23 25 3 2 1 1

R-squared 0.91 0.93 0.95 0.95 0.94 0.95 0.98 0.98
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Table 4 Comparison of values
obtained by exponentially
smoothed growth projection
against experimental results

Zeolite content (%) 8Z 10Z 12Z 14Z

Experimental 0.902 0.901 0.953 0.952

Time series projectiona 0.95 0.96 0.983 0.98

Precision increase (%) 5 6 3 3

aExponential smoothing of curve fitting function

Y � a0 + a1X1i + a2X2i + ... + an Xni + εi , (7)

where Y is an evaluation of variable’s co-relationship and the
ais are the coefficient of each variable’s best-fit line slope and
εi is the error for the ith observation. The coefficients ais are
measured such that the sum of the squares of the evaluation
error is at its minimum residual.

As it is evident in Fig. 10, the variances of void ratio with
USS along the exponential smoothed line of best fit remain
similar as curing age extends; showing a continuous scale
of the data. But, over curing time, as it can be seen from
Fig. 8a, the void ratio is decreasing with the decrease of B-
ratio while it decreases with the increase of USS as shown
in Fig. 8b. So, obviously direct co-linearity among variables
does not exist and it enables the regression analysis to distin-
guish which independent variable contributes highly to the
rest the dependent variables. Above all, sound performance
of a MLR analysis relies on avoiding significant outliers or
influential points. Possible appearances of any untreated out-
lier would change the statistics output produced by themodel
and reduces the predictive accuracy of the results. Hence,
every MLR should be examined with diagnostic measures to
evaluate its accuracy and to treat possible outliers (Sohn and
Kim 1997).

7.2 Error diagnostic and treatment of MLR:

To measure the accuracy of performed multivariate regres-
sion analysis, error diagnostic tools (Schützenmeister et al.
2012) are plotted for each zeolite content-based dataset.
Accordingly, normal probability (Q–Q) error diagnostic plots
of residuals are shown in Fig. 11. TheseQ–Q plots show how
similar the quantiles are for each dataset with a similar zeo-
lite content compared to what the quantiles of that dataset
would be if it followed a normal probability distribution.
Figure 11 shows that despite sound performance of regres-
sion analysis, residuals were randomly distributed and points
are partially fold on diagonal line and even some points (the
numbered ones) are sharply deviated from the normal dis-
tribution line, particularly as zeolite content increases to the
highest amount; the deviation increases accordingly and it is
clearly showing the influence of outliers.

Figure 11 also showed that many influential outliers are
present in each dataset which means some points are not

approximated well by the model. Theses outliers have large
residual errors which then it significantly influences regres-
sion accuracy. Though, not all outliers are really influential in
a regression analysis. However, considering the high RMSE
values in Table 4 and current results of error diagnostic plots,
the extent of influence of outliers should be investigated. To
determine the influence of outliers, a metric called Cook’s
distance has been developed by Cook (1977). This diagnos-
tic tool is used to determine influential outliers that could
have a significant effect on the output and accuracy of the
analysis and also the rest of dataset.

Subsequently, error diagnostic plots of residual vs lever-
age (Cook’s plot) are shown in Fig. 12. In this type of
diagnosis, important outlying values are generally located
at the upper right corner or at the lower right corner outside
the dashed line (Cook’s distance).When cases are outside the
Cook’s distance, it means that results will alter if those cases
being excluded. From Fig. 12, it is concluded that almost
all outliers are out of Cook’s distance which it means those
points might have significant influence on any relationship
among variables obtained by a regression analysis and they
should inevitably be treated.

7.3 Outlier treatment with robust regression

Robust regression is an alternative to least squares regres-
sion catering for residual errors and variance inflation factor
(VIF) due to multicollinearity. It checks all the observed
residual errors differently based on how well they behaved.
Additionally, Robust regression makes it possible to eval-
uate and remove variables which promote high VIF values
without extra needs to perform analysis such as principal
component analysis. Based on those residuals, it reduces the
skewness resulting from the outliers and after that trains all
the data accordingly and if necessary, removes the pointswith
the highest errors and finally refits the model again (Davies
1993). Robust regression employs several methods for its
outlier treatment; among which, the two-stage huber esti-
mation (Huber 1983) is one of the reliable ones. In Huber
estimation, objectives are observations with different resid-
ual errors which will then get a weight function according
to the leverage of the residuals and a tuning constant, k, as
follows:
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Fig. 11 Normal Q–Q error
diagnostic plots for distinct
datasets including a 8% zeolite,
b 10% zeolite, c 12% zeolite,
d 14% zeolite

Fig. 12 Residual vs leverage
error diagnostic plots for distinct
datasets including a 8% zeolite,
b 10% zeolite, c 12% zeolite,
d 14% zeolite
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ρH (e) �
{

1
2e

2 f or |e| ≤ k

k|e| − 1
2k

2 f or |e| ≥ k
(8)

and

wH (e) � k
|e| f or |e| ≥ k otherwise wH (e) � 1, (9)

where ρH (e) is Huber objective function, wH (e) is Huber
weight function, and k is tuning constant relative to error
residual (e) where accordingly smaller values of k produce
more resistance to outliers. Since all datasets with differ-
ent zeolite content have shown similar presence of outliers
(Figs. 11, 12), it is reasonable to establish a unified model
to combine all datasets and then run error diagnoses again
only this time with a Huber outlier treatment. Consequently,
by running error diagnoses, Fig. 13a, b is drafted to show
the results of robust regression by instrumentation of Huber
estimation. Figure 13a indicates that outlierswere evenly dis-
tributed and points are folded roughly on diagonal line and
small deviations in values at first and last points of the red line
are symmetrically balanced and compensating the associated
errors between measured and predicted values. Dashed lines
in Fig. 13b can now barely be seen, because all cases are
well inside the Cook’s distance and there is no evidence of
outliers.

Figure 13a, b showed that fromHuber estimation, existing
outliers in each zeolite database are treated and placed in one
unified database, implying that they could not alter the results
if either being treated separately or collectively. This does
not mean that zeolite content lacks any role in predication
steps, rather, it means the role is now integrated into more
pronounced quantitative variables that they produce the same
results. Integration of qualitative influence of zeolite in a
unified database gives an opportunity to establish generalized
relationships with disregard to zeolite content and its curing
time influence.

Now that a well-ordered unified database is created, by
employing Eq. (7) and incorporating robust multivariate
regression, computation of a unified fitting model capable
of forecasting and correlating the behavior of zeolite–lime
treated sands with consideration of major influential vari-
ables is possible as follows:

e f � 4.89 − 0.043B − 0.0003(σ1 − σ3) f (10)

B � 113 − 23e f − 0.007(σ1 − σ3) f (11)

where e f is void ratio at peak failure, B represents the coef-
ficient of pore pressure and (σ 1 − σ 3)f is principal stress
difference at failure. It is expected that the fitting model of
the co-relationships between e f , (σ 1 − σ 3)f , and B-ratio
expressed by Eqs. (10) and (11) can predict future observa-
tions. Consequently, the target undrained shear strengths can

be achieved by using the expected void ratio at failure and
B-ratio at saturation stage considering the conditions of cur-
rent study. Of note, Eqs. (10) and (11) are also subjected to
further optimization with wider range of observations.

7.4 Measuring the accuracy of the hybrid model

Considering the precision of experimental program, the
reproduced values are almost similar to the measured ones.
However, the rate of prediction accuracy should be consid-
ered in practice. For that reason, measured accuracy between
predicted values by Eqs. (10) and (11) and experimental
results for B-ratio, void ratio (e f ), and USS are illustrated
in Tables 5, 6 and 7, respectively. The average discrepancy
between forecast values by proposed relationships and exper-
imental results are about 8.6% for B-ratio, 10% for values of
void ratio, and 8.8% for USS values. Furthermore, pair-wise
correlationmatrices among all linkedparameters byEqs. (10)
and (11) is shown in Fig. 14. Accordingly, Fig. 14 shows a
strong link between each pair of variables where B-ratio is
indirectly proportional to the void ratio with 90% collinear-
ity and USS is directly proportional to the void ratio with
92% collinearity; and remarkably the collinearity between
produced values of B-ratio and USS is about 96% which
confirms a solid performance of derived equations without a
major multicollinearity and by proving a normal distribution
of data values and residuals in the unified model’s database.

Keeping in mind that the proposed relationships include
outliers in their regression model, while integrating several
amounts of zeolite into the model, and considering the fore-
cast period up to 16 weeks, some errors are expected. But,
as can be seen in the Tables 5, 6 and 7, obtained mean dis-
crepancies are satisfactory with a high confidence rate equal
to more than 90%. This high correlation between B-ratio and
void ratio suggests that these two effects are fairly bounded
together and interpretation of B-ratio for determination of
geotechnical parameters such as degree of saturation should
be coupledwithmeasuring the variations of void ratio.More-
over, according to the probability in the predicted Eqs. (10)
and (11), void ratio also contributes a statistically signifi-
cant role towards this model of predicting undrained shear
strength from B-ratio.

The proposed relationships by this research will establish
logical correlations between the governing variables influ-
encing undrained shear properties of zeolite–lime treated
sands with less than 5% fine content, considering the initial
confining pressure (σ3) and peak deviatoric stress. Addition-
ally, successful application of robust multivariate regression
will provide a solid ground for predicting conditions beyond
the conditions of the current study specially where available
data are in discordunder the influenceof outliers. Finally, pre-
sented results in this study will recommend the neglected yet
beneficial instrumentation of optimized zeolite–lime blend
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Fig. 13 a Normal Q–Q, and
b residual vs leverage error
diagnostic plots of treated
outliers with Huber estimation of
robust regression in the unified
dataset

Table 5 Average discrepancy between predicted and experimental values by proposed relationships for the value of B-ratio based on different
percentage amounts of zeolite

Curing age (days) σ c Z � 8% Z � 10% Z � 12% Z � 14%

Real Predicted Real Predicted Real Predicted Real Predicted

7 50 91 93 90 92 88 87 87 88

7 100 90 90 89 90 88 86 86 86

7 150 90 88 88 89 87 84 86 85

28 50 84 85 84 85 83 84 81 84

28 100 84 83 83 83 82 83 80 83

28 150 83 82 83 83 82 81 80 80

Sum of residuals 6.3 6.6 10.9 10.7

Mean discrepancy B-ratio � 8.6%

Table 6 Average discrepancy between predicted and experimental values by proposed relationships for the value of Void-ratio at failure based on
different percentage amounts of zeolite

Curing age (days) σ c Z � 8% Z � 10% Z � 12% Z � 14%

Real Predicted Real Predicted Real Predicted Real Predicted

7 50 0.665 0.595 0.656 0.571 0.522 0.553 0.563 0.526

7 100 0.572 0.579 0.613 0.554 0.451 0.548 0.532 0.512

7 150 0.510 0.578 0.595 0.547 0.414 0.532 0.444 0.504

28 50 0.584 0.561 0.560 0.532 0.569 0.522 0.648 0.503

28 100 0.522 0.554 0.540 0.521 0.558 0.510 0.622 0.498

28 150 0.500 0.537 0.486 0.501 0.446 0.500 0.484 0.491

Sum of residuals 6.91 7.66 12.47 12.95

Mean discrepancy Void ratio � 10%

as an eco-friendly soil improvement method for future refer-
ences.

7.5 Relative importance analysis

In order to assess the isolated contribution of variables on
the overall performance, assessment of relative importance

of parameters is required. Based on the performed multivari-
ate regression, a relative important analysis among deviatoric
stress, Void ratio,B-ratio and zeolite was performed. Accord-
ingly, the averaging over orderings method proposed by
Grömping (2007) was used. This method employs averaging
sequential sums of squares over all orderings of independent
variables and comes up with the most influential parameters
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Table 7 Average discrepancy between predicted and experimental values by proposed relationships for the values of principal stress difference at
peak failure (kPa) based on different percentage amounts of zeolite

Curing age (days) σ c Z � 8% Z � 10% Z � 12% Z � 14%

Real Predicted Real Predicted Real Predicted Real Predicted

7 50 963 1201 1140 1428 1885 1780 1895 2017

7 100 1423 1399 1432 1630 2126 1798 2146 2211

7 150 1632 1403 1640 1802 2397 1997 2444 2241

28 50 2262 2339 2343 2438 2458 2619 2485 2976

28 100 2471 2363 2559 2620 2644 2805 2720 3139

28 150 2693 2568 2739 2689 3023 2839 3185 3162

Sum of residuals 8.43 8.24 10.42 8.11

Mean discrepancy Principal stress difference at peak failure (USS) � 8.8%

Fig. 14 Pair-wise correlation plot matrices of studied variables obtained
byproposed relationships throughmultivariate linear regression. (Aster-
isk) Correlation values in the upper right portion of the graph belong
to each neighboring parameters which are delineated to one another

with one arrow pointing at the corresponding correlation value. The
diagonal graphs and graphs at the lower left portion are normal proba-
bility distribution of each value and the random distribution of values,
respectively

in the regression model. The result of the analysis on the
hybrid model is shown in Fig. 15. Consequently, the devia-
toric stress has the governing effect on the overall regression
output, followed byB-ratio and void ratio, respectively.How-
ever, the rate of influence for zeolite is negligible, which
ascertains from the previous findings. This outcome means
that lime content and zeolite should be optimized together in

order to assess the overall effect of pozzolanic reaction on
the overall performance.

8 Conclusions

This study proposes a novel forecasting procedure to cor-
relate influential variables of zeolite–alkali activated sand.

123



Multiscale and Multidisciplinary Modeling, Experiments and Design (2022) 5:317–335 333

Fig. 15 Relative importance analysis of variables in the overall Hybrid
model

Based on a series of experimental tests such as UC and UU
triaxial tests, principal stress difference at failure (USS), void
ratio at failure, and B-ratio at saturation stage were mea-
sured. Considering experimental evidence, a chain of the
growth-adjusted forecast projections and a series of multi-
variate regression analyses including robust analysis along
with residual error diagnoses were utilized to define unified
correlational relationships. The validity of proposed relation-
ships has been proven accurate by comparing the average
discrepancy between predicted and measured results. This
research has also established some important verdicts about
zeolite–lime treated sands as follows:

1. Strain hardening behavior of samples under shearing
indicates quickmobilization of resistance forces at earlier
strain ranges. However, considering a given strain rate
for loading termination, confining pressure contributes
highly to the occurrence of shear failure of samples while
zeolite content defines the shear strength.

2. Earlier in curing and because of the lack of sufficient
hardening in samples containing more lime, a sharper
increase in compressibility of the soil body is observed.
This is due to the presence of higher void ratios which
then leads to the increase of B-ratio and consequent
decrease in the rate of shear mobilization.

3. Hybridization of multivariate robust regression with
exponentially smoothed times series analysis enables a
wider range of zeolite contents to be dealt by time pro-
jection. However, integration of separate datasets in one
requires directing the residuals by defining a tuning con-
stant to assign an equalweight to all variables considering
their nature in description.

4. Employing Huber estimation in robust analyses merges
outlier without compromising the precision of the fore-
casting model. Alternating least squares regression with
robust regression then enables building big datasets with
the least error residual while adhering quantitative and
qualitative variables together

5. The collinearity between B-ratio and void ratio at fail-
ure in zeolite–alkali activated sands is implying that one
should not directly interpret the degree of saturation by
attaining a high value of B-ratio and the result should be
adjusted in accordance to the capacity of the void ratio
to be minimized.

6. The comparisons of the predicted and measured results
showed that the adopted forecast model and proposed
relationships are capable of predicting values of void
ratios at failure, principal stress difference at failure, and
B-ratio of zeolite–lime treated sands with high confi-
dence rate equal to 90% up to 16 weeks of curing period.

7. Relative importance analysis on the hybrid model indi-
cates that the optimization of zeolitewith alkali activators
such as lime should be performed prior to utilization
in modeling. In this way, any possible collinearity due
to limited range of incorporated zeolite dosages or
unreliability in estimated regression coefficients can be
eliminated considering zeolite–alkali activator’s inherent
importance in stabilization.
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