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Abstract
In geotechnical planning methods, the undrained shear strength of clayey soil is very important as one of the engineering
features. Over the past years, several theoretical and empirical methods have been developed to estimate the undrained shear
strength based on soil properties using in-situ tests such as cone and piezocone penetration tests. However, most of these
methods involve correlation assumptions that can result in inconsistent accuracy. In this study, multivariate adaptive regression
splines (MARS) model with different degrees of interactions was developed for predicting the undrained shear strength of
soil from cone penetration test data. To this aim, the model had five variables named cone tip resistance, sleeve friction,
liquid limit, plastic limit, and overburden weight as inputs and undrained shear strength of soil as output. In all proposed
models, the estimated USS values demonstrate acceptable agreement with experimental records, representing the workability
of proposed equations for predicting the USS values with high accuracy. Comparison of three developed equations supplied
thatMARS-O4 has a better result thanMARS-O3, followed byMARS-O2. Furthermore, by apprising the PI andOBJ indexes,
theMARS-O4model outperforms the other twomodels, with lower PI and OBJ values equal to 0.1464 and 169.14. Therefore,
the 4th interaction equation of MARS for predicting the undrained shear strength of soil can be recognized as the proposed
regression model.

Keywords Cone penetration test · Undrained shear strength of soil · Prediction · Multivariate adaptive regression splines
(MARS)

1 Introduction

The potency of soil to tolerate shear stress is referred to by the
undrained shear strength (USS) of soil. It is one primary value
in the computation of various geotechnical phenomena, such
as settlement (Esmaeili-Falak et al. 2017, 2018). Moreover,
to design foundations (deep and shallow foundations, both
of them), the USS of soil is also of superior matter. Hence,
circumspect appraisal of the shear strength is indispensable.
Various analytical and experimental works can be performed
on different types of soils to determine the properties of soils
(Sarkhani Benemaran 2017; Poorjafar et al. 2021; Esmaeili-
Falak 2017; Esmaeili-Falak et al. 2020). After the years,
scholars had extended plenty of analytical and experiential
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procedures to specify the shear strength (Sarkhani Bene-
maran et al. 2020), for instance, bearing capacity (BCM),
strain path (SPM), cavity expansion (CEM), and finite ele-
ment (FEM) procedures (Huang et al. 2004). In addition,
mixtures of mentioned procedures were examined as well
to get an advanced commentary of shear strength, such as
cavity expansion-finite element (Abu-Farsakh et al. 2003),
cavity expansion-strain path (Yu and Whittle 1999), cavity
expansion-bearing capacity (Salgado et al. 1997), and strain
path-finite element (Teh and Houlsby 1991).

Nevertheless, many of these techniques synthesized
streamlining presumptions about soil condition, margin
circumstances, and failure benchmark (Esmaeili Falak
et al. 2020). Hence, detecting theoretic procedures requires
endorsement from in-situ and experimental soil parameters.
In this regard, the unconsolidated undrained triaxial test can
be very helpful. However, unfortunately, managing triaxial
tests need more time as well as is costly. Furthermore, an
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unavoidable disorder in transport, handling, and collecting
soil specimens means the test conclusions are controversial.

In-situ cone penetration tests can be effectually applied
for soil recognition, appraisal of soil virtues, such as shear
strength, and numbers of other geotechnical usages. In-situ
CPT is trusty, quick, and economical compared to the old soil
properties tests related to boring and experimental tests. The
CPT test can supply persistent profile information with pro-
fundity relevant to soil stiffness and strength variables, which
is good to estimate theUSSof soil.Hence, someexperimental
procedures were extended in the last decades to approxi-
mate the USS from in-situ cone penetration test parameters
(Lunne 1982; Senneset 1982). Nonetheless, many numbers
of these techniques bring some presumptions and discern-
ments in choosing suitable correlation coefficients factors
like the cone tip factor, Nkt among the CPT profiles infor-
mation and USS that can impact the computation of shear
strength. This can affect in incompatible precision of apprais-
ing the USS for various site situations.

In the recent decades, using artificial-based neural net-
works has enhanced and carried out with successful results
in various civil (Masoumi et al. 2020) and geotechnical
engineering problems, for example, shallow foundation set-
tlement, liquefaction, the behavior of frozen soils, settlement
behavior of pile foundations, swelling pressure of expan-
sive soil and so forth (Sarkhani Benemaran et al. 2020; Das
and Basudhar 2006; Ikizler et al. 2010; Neaupane and Achet
2004; Nejad and Jaksa 2017; Shahin et al. 2009; Esmaeili-
Falak et al. 2019; Nassr et al. 2018). Regression is also one of
the methods to determine the relationship between input and
output variables such as MARS (Zhang et al. 2021; Sahraei
et al. 2021; Raja and Shukla 2021).

Neural network application to estimate the USS of soil
from the CPT test is anticipated to solve the deficiencies
mentioned above in traditional techniques because there is no
correlation hypothesis or judgment (Samui andKurup 2012).
To some extent, the neural networkmethod tends to iterate the
human brain learnings from a prior instance and is learned by
specific mathematical methods. This aim can be gained from
reiterative steps by regulating the weights, node numbers,
and a number of layers. The difficulty of the neural network
could be changed by altering the transfer function or the
model form (Shahin et al. 2002). After identifying the most
precise neural network model after training well, the devel-
oped algorithm could be explored for estimating the USS
for other sites. An ANN is utilized to develop a model with
more firm forecasting of USS from CPT records in a study
(Abu-Farsakh and Mojumder 2020). First, a dataset was cre-
ated of soil boring records and experimental tests from 70
sites located inLouisiana. Then, various neural networkmod-
els were trained by cone tip resistance, sleeve friction, and
other assessable soil characteristics. The conclusions were
next compared with an experiential reference technique of

specifyingUSS fromCPT.The outputs specified that the neu-
ral network techniques outperformed the reference method,
which approves this model’s applicability in estimating the
USS.

Another study applied data-driven extremegradient boost-
ing and random forest methods optimized with the Bayesian
optimization method to find the relationships between the
USS and soil parameters. To this aim, five variables contain-
ing the pre-consolidation stress, effective vertical stress, liq-
uid limit, plastic limit, and natural water content are selected.
It is shown that XGBoost- and RF-based models outper-
form others. Along with this, the XGBoost-based model
provides properties significance ranks, which introduces it as
an efficient tool for predicting geotechnical parameters and
enhancing the model’s interpretability (Zhang et al. 2021).

The prime objective of this paper is to find out the applica-
bility of utilizing the multivariate adaptive regression splines
(MARS) model for predicting the USS of soil from cone
penetration test records to generate models which are to be
used in practical applications. Moreover, various degrees of
interactions of models are examined to have comprehensive,
accurate, and reliable outputs. To gain this aim, themodel had
five input variables named cone tip resistance, sleeve friction,
liquid limit, plastic limit, overburden weight, and USS of soil
as output. To evaluate the accuracy of the proposed models,
six statistical performance indices were considered.

2 Dataset andmethodologies

2.1 Description of the dataset

To predict the undrained shear strength of soil from the cone
penetration test, CPT data and corresponding bore log data
were collected from 70 different sites in Louisiana (Fig. 1)
(Mojumder 2020). Five different variables that can affect the
value of the USS were considered as input variables. These
variables included: cone tip resistance (CTR), sleeve friction
(SF), liquid limit (LL), plastic limit (PL), and overburden
weight (OBW). The statistics and histograms of the vari-
ables used for developing the model along with their normal
distribution curves are given in Table 1 and Fig. 2, respec-
tively.

2.2 Multivariate adaptive regression splines (MARS)

Multivariate asymmetric regression process is defined as
multivariate adaptive regression spline (MARS) (Friedman
1991; Sekulic and Kowalski 1992; Friedman and Roosen
1995). Its most important duty is the amount’s forecast of a
continual affiliate variable, y(n × 1), using a series of inputs
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Fig. 1 Locations of cone
penetration test (CPT) sites

Table 1 The statistical values of
the input and output variables Variable Inputs Output

CTR SF LL PL OBW USS

Minimum 1.59 0.02 24.00 12.00 0.03 100.00

Maximum 32.86 1.40 133.00 50.00 3.64 5670.00

St. deviation 6.4164 0.28867 19.836 6.9231 0.82181 966.1815

Average 12.03 0.42 63.49 27.48 1.57 1271.91

Median 10.10 0.36 61.00 26.00 1.52 965.00

Skewness 1.0306 1.2994 0.6217 0.6192 0.2817 2.0557

Kurtosis 0.6327 1.3710 0.2248 − 0.0772 − 0.5301 5.1846

that is independent, X (n× p). TheMARS could be presented
as:

y � f (x) + e (1)

where ƒ is a sum of basis functions which is weighted that
depend on x , and e presented the error vector in (n×1) dimen-
sion. The multivariate adaptive regression spline method is a
generalization of classification and regression trees (Hastie
et al. 2001) but prevailing the constraints of classification
and regression tree (CART). This regression model does not

request any preference assumption in the case of the fun-
damental operational connection between inputs and output
variables. Apart from that, this connection is appointed from
a totality of coefficients and piecewise multinomial of degree
basis functions (q) fully related to the regression records
(x, y).

This regression method is created by coordinating the
basis function to various spaces of the inputs. MARS uses
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Fig. 2 Histograms of input
(a–e) and output (f) variables
and their normal distribution
curves

bilateral shorten power operates as spline basis function (BF),
shown in the below relations (Friedman and Roosen 1995):

[−(x − t)]q+ �
{
(t − x)q i f x < t
0otherwise

}
(2)

[+(x − t)]q+ �
{
(t − x)q i f x ≥ t
0otherwise

}
(3)

In these relations, the power to which the splines are
picked up specifies the degree of the monotony of the result-
ing appraise all defined q (≥0). Notice that when q is equal
to one, just simple lineal splines are appraised. For example,
Fig. 3 shows a pair of splines for q equal to one at node 3.5.
This figure shows a mirrored pair of hinge functions with a
knot at for example 3.5.
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Fig. 3 A schematic exhibition of a spline BF. Dashed line (x< t, -(x-t)),
solid line (x> t, + (x-t))

MARS of a dependent variable y with M basis function
could be represented as Eq. 4 (Xu et al. 2004; Cheng and Cao
2014; Benemaran and Esmaeili-Falak 2020):

ŷ � f̂m(x) � c0 +
M∑

m�1

cm Bm(x) (4)

being ŷ the affiliate variable forecasted by the MARS, c0,
Bm(x) and cm shows a constant, themth basis function and the
coefficient of mth basis function, respectively. Specifically,
both parameters are demonstrated in the model, and the node
situations for each variable have to be optimized. Moreover,
this regression method utilizes generalized cross-validation
(GCV) to describe the basic function contained in the model.

Indeed, the mean squared residual error apportioned by
a penalty factor specifying the generalized cross-validation
which pertains to the model intricacy, and it is described as
Eq. 5 (Friedman 1991; Friedman and Roosen 1995):

GCV (M) �
1
n

n∑
i�1

(yi − f̂M (xi ))
2

(1 − C(M)/n)2
(5)

So that an intricacy penalty that increases with a number
of basis function in the model is shown asC(M) (Benemaran
and Esmaeili-Falak 2020):

C(M) � (M + 1) + dM (6)

where M and d value the basis function in Eq. (4) and a
penalty factor for all one of BF included in the model. In
addition, the must utilize the GCV make clear before with
the parameters N-subsets and the residual sum of squares

to achieve correct results. The MARS model was performed
with the ARESLab toolbox in MATLAB (Jekabsons 2011).

2.3 Performance evaluators

Different statistical evaluators were used to appraisal the
performance of developed models for predicting the USS.
Coefficient of determination (R2), root mean squared error
(RMSE), mean absolute percentage error (MAPE), mean
absolute error (MAE), performance index (PI), andOBJwere
used as precision measurements (Eqs. 7–12):

R2 �

⎛
⎜⎜⎜⎜⎜⎜⎝

P∑
p�1

(
tP − t

)
(yP − y)

√√√√
[

P∑
p�1

(
tP − t

)2][
P∑

p�1
(yP − y)2

]

⎞
⎟⎟⎟⎟⎟⎟⎠

2

(7)

RMSE �
√√√√ 1

P

P∑
p�1

(
yp − tp

)2 (8)

MAPE � 1

P

P∑
p�1

∣∣∣∣ tP − yP
tP

∣∣∣∣ (9)

MAE � 1

P

P∑
p�1

∣∣yp − tp
∣∣ (10)

P I � 1∣∣t∣∣
RMSE√
R2 + 1

(11)

OBJ � RMSE + MAE

R2 + 1
(12)

where, yP represent the predicted values of the Pth pattern,
tP depicts the target values of the Pth pattern, t shows the
averages of the target values, y is the averages of the predicted
values, and P is the number of dataset.

3 Result and discussion

The details of the basis functions and corresponding equa-
tions are shown in Table 2 for the degree of interactions of 2,
3, and 4 MARS equations. The explicable MARS approach
different orders (from 2 to 4) formulations to estimate the
USS results are created in Eqs. (13–15), respectively. Basis
functions of 2, 3, and 4 order MARS models from 3 to 37
were assessed and measured.With an incremental number of
basis functions, the performance indicators for data grew to
the proper orientation. They gained the supreme outcomes
when the number of basis functions was 17, 29, and 31
for MARS-O2, O3, and O4, respectively. By increasing the
degree of interactions of equations from 2 to 4, the values of
R2 raised from 0.8339 to 0.8619. on the other hand, RMSE
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Table 2 Basis functions and corresponding equations of MARS approach for USS

BF Equation

Order 2 (Eq. 13) Order 3 (Eq. 14) Order 4 (Eq. 15)

BF1 max (0, CTR-15.27) max (0, CTR-15.27) max (0, CTR-15.27)

BF2 max (0, 15.27-CTR) max (0, 15.27-CTR) max (0, 15.27-CTR)

BF3 BF1×max (0, SF-0.71) BF1×max (0, SF-0.71) BF1×max (0, SF-0.71)

BF4 max (0, OBW-2.81) BF3×max (0, 73-LL) BF3×max (0, LL-73)

BF5 max (0, 2.81-OBW) max (0, 2.81-OBW) BF3×max (0, 73-LL)

BF6 max (0, 23-CTR)×BF4 BF3×max (0, OBW-1.76) max (0, 2.81-OBW)

BF7 BF1×max (0, LL-24) BF3×max (0, 1.76-OBW) BF1×max (0, SF-0.71)×max (0, OBW-1.76)

BF8 max (0, SF-0.63)×BF5 BF3×max (0, PL-12) BF1×max (0, SF-0.71)×max (0, 1.76-OBW)

BF9 max (0, SF-0.48) max (0, CTR-21.78)×BF5 BF1×max (0, SF-0.71)×max (0, 73-LL)×max
(0, PL-12)

BF10 max (0, CTR-21.78)×BF9 max (0, 21.78-CTR)×BF5 max (0, CTR-21.78)×BF6

BF11 max (0, CTR-21.78)×BF5 BF3×max (0, OBW-2.51) BF7×max (PL-12)

BF12 max (0, CTR-20.1)×max (0, 2.81-OBW) max (0, CTR-20.1)×BF6

BF13 BF10×max (0, SF-0.63) max (0, CTR-17.45)×BF6

shows a decline of about 34.8, and MAE values decreased
from 296.85 to 270.84.

Order 2:

USS � 1213.536 + 137.701 × BF1 − 123.36 × BF2

+ 615.968 × BF3 + 2791.082 × BF4 + 322.3104

× BF5 − 252.727 × BF6 − 1.294 × BF7

− 2204.53 × BF8 + 1416.494 × BF9

− 774.561 × BF10 + 204.69 × BF11

(13)

Order 3:

USS � 1041.429 + 108.146 × BF1 − 74.742 × BF2

− 484.94× BF3 + 25.556× BF4 + 689.83× BF5

− 323.353× BF6− 826.5× BF7 + 34.329× BF8

+ 536.98 × BF9 − 32.992 × BF10 + 646.669

× BF11 − 371.9 × BF12 − 114.455 × BF13

(14)

Order 4:

USS � 1250.073 + 78.435 × BF1 − 117.763 × BF2

− 456.211 × BF3 + 65.9 × BF4 + 31.39 × BF5

+ 274.632 × BF6 − 1164.09 × BF7 − 1319.083

× BF8 + 1.255 × BF9 + 708.68 × BF10 + 75.149

× BF11 − 782.71 × BF12 + 275.08 × BF13

(15)

The result of developedmodels for predictingUSSvalue is
presented as follows. Figure 4 specifies acceptable potential

in themodeling phase.Comparing themeasured records from
experimental efforts with those predicted byMARS-O2, O3,
and O4 models are supplied in Fig. 4. It can be observed
that the developed models have R2 larger than 0.834 and
0.9236. It means that the correlation between measured and
predicted values from developed models is in good correla-
tion so that it shows the highest accuracy in the regression
process. Besides, to compare the productivity of the applied
models, six statistical evaluators (R2, RMSE, MAE, MAPE,
PI, and OBJ) were utilized. The results are shown in Table
3. MARS-O2 has the worst values regarding MARS mod-
els, which its R2 stood at 0.8339, and PI 0.1618. All indices
are better by increasing the MARS interaction. For instance,
RMSE declines from 393.79 to 358.99. By apprising the
PI and OBJ indexes as the whole model evaluator, which
considers other indexes altogether, theMARS-O4model out-
performs the other twomodels, with lower PI andOBJ values
equal to 0.1464 and 338.27. Therefore, the 4th interaction
equation of MARS for predicting USS of soil can be recog-
nized as the proposed regression model.

The performance assessment results of the implemented
models are portrayed in Fig. 5, showing a graphical compar-
ison between the distribution of errors. Also, an acceptable
fit between measured and predicted USS values are obtain-
able from the time series plots presented in Fig. 5. As can
be seen, in all proposed models, the estimated USS val-
ues demonstrate acceptable agreement with experimental
records, representing the workability of proposed equations
for predicting the USS values with high accuracy. Compar-
ison of three developed equations supplied that MARS-O4
has a better result than MARS-O3, followed by MARS-O2.
Based on error distribution figures, the MARS-O4 model
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Fig. 4 The scatter plot of
between observed and predicted
USS

Table 3 The results of created models

Models MARS-O2 MARS-O3 MARS-O4

Number of basis function 17 29 31

Network
results

R2 0.8339 0.8594 0.8619

RMSE
(PSF)

393.79 362.24 358.99

MAE (PSF) 296.85 272.33 270.84

MAPE
(PSF)

0.2014 0.4274 0.3241

PI 0.1618 0.1478 0.1464

OBJ 376.59 341.27 338.27

results in the lowest error percentage in the USS predicting
process, providing roughly accurate predictions than those
of the rest developed methods specified.

3.1 Sensitivity analysis

An evaluation of the sensitivity of the models was conducted
to assess the most determinative input parameters to com-

pute the USS. Various input data were built by removing a
single input parameter simultaneously, and the test data set
reported the amounts of three statistical performance criteria
as R2, RMSE, and MAE. The best model for the sensitivity
analysis is chosen using the statistical performance criteria.
In the present study, the MARS-O4 model is selected due
to its remarkable performance. The results are as Table 4,
which is shown that the cone tip resistance (CTR) is the
most influential parameter for predicting the USS using the
mentioned model, with a decline of about 0.1831 for R2.
From this perspective, although they are not as effective as
CTR, the overburden weight (OBW) and sleeve friction (SF)
parameters are in the following ranks, respectively. It isworth
considering that eliminating input variables may only cause
a minimal performance loss for the model, but in the present
study, because the analysis was based on experimental mea-
surements, eliminating variables could decline the model’s
generalizability. Considering the multicollinearity problem
has not a significant impact on the fit of a model. It com-
monly does not impress remarkably on predictions, and the
present study does not prefer deleting any variable.
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Fig. 5 USS prediction using MARS models with distribution

4 Conclusion

In this study, Multivariate Adaptive Regression Splines
(MARS) model with different degrees of interactions were
proposed for predicting the undrained shear strength of soil
from cone penetration test data. To this aim, the model had
five variables named cone tip resistance, sleeve friction, liq-
uid limit, plastic limit, and overburden weight. To evaluate

the accuracy of the developedmodel, six performance indices
were considered.

MARS-O2 has the worst values regardingMARSmodels,
which itsR2 stood at 0.8339, and PI 0.1618. All indices better
by increasing the MARS interaction. The MARS-O4 model
outperforms the other two models by apprising the PI and
OBJ indexes, with lower PI and OBJ values equal to 0.1464
and 338.27. Therefore, the 4th interaction equation ofMARS
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Table 4 Sensitivity analysis of
input variables using MARS-O4
model

Model Index Main Removed parameter

CTR SF LL PL OBW

MARS-O4 R2 0.8619 0.6788 0.8264 0.8403 0.8573 0.8225

RMSE 358.99 547.58 402.6 386.13 365.01 407.08

MAE 270.84 372.672 287.2 282.45 275.84 295.82

Bold values indicate that the effect of CTR is more than other input variables

for predicting USS of soil can be recognized as the proposed
regression model.

In all proposed models, the estimated USS values demon-
strate acceptable agreement with experimental records,
representing the workability of proposed equations for pre-
dicting the USS values with high accuracy. Comparison of
three developed equations supplied thatMARS-O4 has a bet-
ter result than MARS-O3, followed byMARS-O2. Based on
error distribution figures, the MARS-O4 model results in the
lowest error percentage in the USS predicting process, pro-
viding roughly accurate predictions than those of the rest
developed methods specified.
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