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Abstract
Artificial neural network (ANN) method has been applied in the present work to predict the California bearing ratio (CBR), 
unconfined compressive strength (UCS), and resistance value (R) of expansive soil treated with recycled and activated com-
posites of rice husk ash. Pavement foundations suffer from poor design and construction, poor material handling and utiliza-
tion and management lapses. The evolutions of soft computing techniques have produced various algorithms developed to 
overcome certain lapses in performance. Three of such algorithms from ANN are Levenberg–Muarquardt Backpropagation 
(LMBP), Bayesian Programming (BP), and Conjugate Gradient (CG) algorithms. In this work, the expansive soil classified 
as A-7-6 group soil was treated with hydrated-lime activated rice husk ash (HARHA) in varying proportions between 0.1 
and 12% by weight of soil at the rate of 0.1% to produce 121 datasets. These were used to predict the behavior of the soil’s 
strength parameters (CBR, UCS and R) utilizing the evolutionary hybrid algorithms of ANN. The predictor parameters were 
HARHA, liquid limit (wL), (plastic limit (wP), plasticity index (IP), optimum moisture content (wOMC), clay activity (AC), 
and (maximum dry density (δmax). A multiple linear regression (MLR) was also conducted on the datasets in addition to 
ANN to serve as a check and linear validation mechanism. MLR and ANN methods agreed in terms of performance and fit 
at the end of computing and iteration. However, the response validation on the predicted models showed a good correlation 
above 0.9 and a great performance index. Comparatively, the LMBP algorithm yielded an accurate estimation of the results 
in lesser iterations than the Bayesian and the CG algorithms, while the Bayesian technique produced the best result with the 
required number of iterations to minimize the error. And finally, the LMBP algorithm outclassed the other two algorithms 
in terms of the predicted models’ accuracy.

Keywords  Soft computing · Artificial intelligence · Artificial neural network (ANN) · Machine learning in geotechnics · 
Back-propagation algorithm · Levenberg–muarquardt algorithm · Bayesian algorithm · Conjugate gradient algorithm · 
Sustainable construction materials

1  Introduction

Design, construction, and performance evaluation in 
geotechnical engineering require the calculation of soil 
strength properties (Kisi and Uncuoglu 2005). The strength 

properties of both cemented and uncemented soils are key 
elements needed in soil classification, characterization, and 
identification according to appropriate design standards 
(Onyelowe et al. 2020a, 2020b). Fundamentally, founda-
tion designs related to flexible pavement subgrade depend 
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on certain primary strength properties, which include; (a) 
California bearing ratio (CBR), (b) unconfined compressive 
strength (UCS), and (c) resistance value (R). It is impor-
tant to note that previous research designs have depended 
only on the CBR evaluation in their designs for the strength 
and reliability of pavement foundation (Van and Duc and 
Onyelowe 2018; Van et al. 2018). Sadly, while CBR is a 
good determinant property in highway foundation design, 
it does not deal with lateral failure determination. There-
fore, the combination of CBR, UCS, and R-value gives a 
more dependable and reliable design and even time moni-
toring of the structures’ performance, tests through which 
CBR, UCS, and R are estimated are standardized by stand-
ard conditions (BS 1377—2, 3 1990; BS 1924 1990; BS 
5930 2015). It is highly complicated and time-consuming to 
determine these properties in the laboratory due to repeated 
test runs to achieve accurate results with less human or 
equipment error (Kisi and Uncuoglu 2005). Similar com-
plications are encountered during a stabilization procedure 
when an expansive soil requires strength improvement 
before utilization as a subgrade material (Kisi and Unc-
uoglu 2005; Van and Duc and Onyelowe, K.C. 2018; Van 
et al. 2018). The aim of this paper is the assessment of 
the effect of a hybrid binder; hydrated-lime activated rice 
husk ash on the strength properties of expansive soil and 
the development and training of an artificial neural network 
(ANN), first with the Levenberg–Muarquardt backpropaga-
tion algorithm (LMBP) and correlated with the performance 
of Bayesian and Conjugate Gradient (CG) algorithms to 
predict CBR, UCS and R performance with the addition 
of binder based on the specimen data from 121 tests. How-
ever, there have been researches previously and ongoing 
in soft computing employment in civil engineering design 
and operation. Ferentinou and Fakir (Ferentinou and Fakir 
2017) employed Levenberg–Muarquardt backpropaga-
tion algorithm (LMBP) based ANN in the prediction of 
UCS of various rocks using four (4) predictor parameters 
at the input end. The results returned at 0.99 and 0.92 for 
training and test states, respectively, showing the validity 
of LMBP-based ANN in predicting geotechnical proper-
ties supporting ANN as alternative tool in soft computing 
geotechnics. Nawi et al. (Nawi et al. 2013) presented that 
the LMBP algorithms have noticeable drawbacks such as 
sticking in a local minimum and slow rate of convergence 
and proposed an improved form trained on Cuckoo search 
algorithm, which increased the convergence rate of the 
hybrid learning method. Kingston et al. (2016) utilized the 
Bayesian algorithm’s ability to compare models of varying 
complexity to select the most appropriate ANN structure as 
a tool in water resources engineering. However, the Bayes-
ian method employs alternative methods to estimate com-
peting models’ probabilities, which is called the Markov 
Chain Monte Carlo (MCMC), which simulates from the 

posterior weight distribution to approximate the outcome. 
The outcome although shows that the MCMC-based Bayes-
ian ANN performed better in this paper than the conven-
tional model selection methods. Hosseini et al. (Hosseini 
et al. 2018) employed the ANN LMBP algorithm to predict 
soil mechanical resistance and compared the results with 
the conventional multiple regression (MR) by making use 
of bulk density and volumetric soil water content as predic-
tors. The results showed that the intelligent method of ANN 
performed well. Although Sariev, and Germano (Sariev and 
Germano 2019) stated in their work that the Bayesian-based 
ANN tends to overfit data under statistical and evolutionary 
models as its drawback, it was used with high performance 
in the probability of default estimation through regulariza-
tion technique. Saldaña et al. (Saldaña et al. 2020), utilized 
the traditional LMBP-based ANN algorithm to predict UCS 
with p-wave velocity, density, and porosity as predictors. 
The unconfined compressive strength (UCS) of cement kiln 
dust (CKD) treated expansive clayey soil was predicted by 
Salahudeen et al. (Salahudeen et al. 2020) using LMBP-
based ANN. The model performance was evaluated using 
mean square error (MSE), and the coefficient of determi-
nation, and the results showed satisfactory performance 
in the prediction model. Additionally, the particle swarm 
optimization-based ANN was used by Abdi et al. (Abdi 
et al. 2020) to predict UCS of sandstones, and the results 
showed a reliability with a correlation of 0.974, of the PSO-
based ANN model to predict UCS and recommended its 
utilization as a feasible tool in soft computing geotechnics. 
Erzin and Turkoz (Erzin and Turkoz 2016) employed ANN 
also in their work to predict CBR values of sands and the 
results showed that the predicted model and those obtained 
from experiments matched greatly. The performance indices 
were also used, which showed high prediction performance. 
In a two-case study presented by Kisi and Uncuoglu (Kisi 
and Uncuoglu 2005), three backpropagation training algo-
rithms; Levenberg–Marquardt (LM), Conjugate Gradient 
(CG) and Resilient Backpropagation (RBP) algorithms 
were employed to predict stream flow forecasting and lat-
eral stress determination in cohesionless soils. The primary 
focus of this study (Kisi and Uncuoglu 2005) was the con-
vergence velocities in training and performance in testing. 
The results in the two cases showed LMBP algorithm was 
faster and had better performance than the other algorithms 
due to its design to approach second-order training speed 
without passing through the computation of Hessian matrix, 
the RBP algorithm presented results with the best accuracy 
in the period of testing due to its ability to transfer func-
tions in the hidden layers by squashing, which compresses 
range of infinite inputs into finite outputs. In the above-
cited results, the algorithms currently being used in ANN 
programming have performed optimally with high and low 
points. Additionally, the literature review has revealed that 
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ANN has been used successfully in predicting CBR and 
UCS but has not been employed in the triocombination of 
CBR, UCS, and R predictions for the purpose more sus-
tainable pavement design, construction, and performance 
monitoring. The present work compares the performance of 
a different set of three algorithms and tries to propose the 
best approach under the present predictors being used and 
the type of soil being studied. The results of this research 
work promise to present a design, construction, and perfor-
mance evaluation plan to follow in a smart environment for 
efficient earthwork delivery.

2 � Materials and methods

2.1 � Materials preparation

Expansive clay soil was prepared. Tests were conducted 
on both untreated and treated soils to determine the data-
sets by observing the effects of stabilization on the pre-
dictor parameters presented in Appendix, Table 8, needed 
for evolutionary predictive modeling. The hydrated-lime 
activated rice husk ash (HARHA) is a hybrid geomate-
rial binder developed by blending rice husk ash with 5% 
by weight hydrated-lime (Ca(OH)2) and allowed for 24 h 
for activation reaction to complete. The hydrated lime 
served as the alkali activator. Rice husk is an agro-indus-
trial waste derived from rice processing in rice mills and 
homes disposed of in landfills. Through controlled direct 
combustion proposed by Onyelowe et al. (Onyelowe et al. 
2019), the rice husk mass was turned into ash to form 
rice husk ash (RHA). The HARHA was used in varying 
proportions between 0.1 and 12 in increments of 0.1 to 
treat the clayey soil. The response behavior with differ-
ent properties were tested, observed, and recorded (see 
Table 8 in Appendix).

3 � Methods

3.1 � The algorithms of Artificial Neural Network 
(ANN)

7-10-3 artificial neural network training from matlab toolbox 
software was used in this work, which signifies the input 
parameters to the number of neurons and the number of 
outputs. This learning method has gone through a series of 
modifications and hybridization, in a bid to improve its per-
formance, speed, global error, and convergence efficiency. In 
this work, three training algorithms were deployed: LMBP, 
Bayesian Programming (BP), and CG algorithms to pre-
sent the algorithm with the best results fits astounding rate, 
reduced global error, and best performance index. However, 

the focus is to reduce the global error to a nearest minimum 
for better deployment and better outcomes. Generally, the 
global error is estimated with Eq. 1 (Kisi and Uncuoglu 
2005);

where P = total number of training patterns, EP = error for 
training pattern, and (Kisi and Uncuoglu 2005);

N = total number of output nodes, Oi = network output at ith 
output node, ti = the target output at the ith output node. Gen-
erally, it is important to reduce this global error (see Eq. 1) 
in every evolutionary programming algorithm by adjusting 
the biases and weights.

3.2 � Levenberg–Marquardt Bachpropagation 
(LMBP) Algorithm

This was designed to overcome the computation of Hes-
sian matrix by approaching the second-order speed of train-
ing. As it is usual in feed-forward training network (FFTN) 
where the performance function has the form of a sum of 
squares, the Hessian matrix is usually estimated with Eq. 3 
and this is usually an approximation (Kisi and Uncuoglu 
2005);

where J is the Jacobian matrix. J contains the 1st derivative 
of the network errors with respect to biases and weights. 
And the gradient is usually estimated with (Kisi and Unc-
uoglu 2005);

where e is the vector of network errors. The iterations or tri-
als used to obtain the best feet in LMBP algorithm usually 
reduce the performance function.

3.3 � Bayesian programming (BP) algorithm

The Bayesian programming algorithm is a concept backed 
by Bayes’s theorem, which states that any prior notions per-
taining to an uncertain parameter are updated and modi-
fied based on new data to produce a posterior probability of 
the unknown quantity (Quan et al. 2015; Zhan et al. 2012). 
Baye’s theorwm can be used based on ANN to compute the 
posterior distribution of the network weights (w) given a set 
of N target data y and assumed model structure (Quan et al. 
2015; Zhan et al. 2012).

(1)E =
1

P

P∑

P=1

EP

(2)EP =
1

2

N∑

i=1

(
oi − ti

)2

(3)H = JTJ

(4)g = JTe
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Fig. 1   a Levenberg–Marquardt Backpropagation Training Algorithm Flowchat (Kisi and Uncuoglu 2005). b Conjugate Gradient Training Algo-
rithm Flowchat (Kisi and Uncuoglu 2005). c Bayesian Programming Training Algorithm Flowchat (Quan et al. 2015; Zhan et al. 2012)

Fig. 2   Architecture of the ANN model
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3.4 � Conjugate gradient (CG) algorithm

The most negative of the gradients, the weight in the steep-
est descent direction of the model are adjusted with the 
basic backpropagation algorithm, which is why the per-
formance function (PF) is reduced rapidly. Though this 
happens in an ANN model, it does not produce the fastest 
convergence. A search is performed along the conjugate 
directions in the deployment of CGA, and a higher rate 
of convergence in the steepest direction is produced in the 
model (Kisi and Uncuoglu 2005). This is the key factor 
being deployed in CGA models. Additionally, the step size 

is modified at each trial in CGA and the search along the 
CG direction determines the size of the step, which in turn 
minimizes the PF along the model line. This algorithm 
method resumes by searching along the direction of the 
steepest descent, the first iteration;

And to obtain the optimal distance to travel along the 
search direction, a line search is performed (Kisi and Unc-
uoglu 2005);

(5)P
0
= −g

0

(6)xk+1 = xk + �kgk

Table 1   Pearson correlation 
matrix for inputs and out 
parameters (CBR)

HARHA wL wp lp WOMC Ac δmax CBR

HARHA 1
wL − 0.99724 1
wp − 0.98926 0.991515 1
lp − 0.99652 0.999411 0.986472 1
WOMC 0.201388 − 0.1435 − 0.17491 − 0.1348 1
Ac − 0.99388 0.997543 0.984584 0.998142 − 0.12039 1
δmax 0.985771 − 0.98176 − 0.97696 − 0.98026 0.23936 − 0.97417 1
CBR 0.991609 − 0.99425 − 0.98026 − 0.99514 0.097679 − 0.9951 0.969326 1

Table 2   Pearson correlation 
matrix for input and out 
parameters (UCS)

HARHA wL wp lp WOMC Ac δmax UCS

HARHA 1
wL − 0.99724 1
wp − 0.98926 0.991515 1
lp − 0.99652 0.999411 0.986472 1
WOMC 0.201388 − 0.1435 − 0.17491 − 0.1348 1
Ac − 0.99388 0.997543 0.984584 0.998142 − 0.12039 1
δmax 0.985771 − 0.98176 − 0.97696 − 0.98026 0.23936 − 0.97417 1
UCS 0.990886 − 0.99098 − 0.97628 − 0.99206 0.134931 − 0.99283 0.967127 1

Table 3   Pearson correlation 
matrix for input and out 
parameters (R)

HARHA wL wp lp WOMC Ac δmax R

HARHA 1
wL − 0.99724 1
wp − 0.98926 0.991515 1
lp − 0.99652 0.999411 0.986472 1
WOMC 0.201388 − 0.1435 − 0.17491 − 0.1348 1
Ac − 0.99388 0.997543 0.984584 0.998142 − 0.12039 1
δmax 0.985771 − 0.98176 − 0.97696 − 0.98026 0.23936 − 0.97417 1
R 0.984407 − 0.9721 − 0.96953 − 0.97003 0.363941 − 0.96588 0.972762 1
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The fundamental procedure for determining the new 
search direction so that it is conjugated to the previous 
search direction is to combine the new steepest descent 
direction with the previous search direction (Kisi and Unc-
uoglu 2005);

The procedure of computing the constant �k differ-
entiates the various versions of CGA. However, for the 
Fletcher–Reeves proposal, the procedure is (Kisi and Unc-
uoglu 2005);

(7)pk = gk + �kpk+1

Equation 8 is the ratio of the normal square of the current 
gradient to the normal square of the previous gradient (Kisi 
and Uncuoglu 2005). This was used in the study.

In Fig. 1a–c, the global flowchart of the ANN training 
algorithm methods and execution is presented. The 121 
input and output datasets were deployed to the computing 
platform to generate the predicted outputs and models of 
that operation. Several trials or iterations were carried out to 

(8)�k =
gT
k
gk

gT
k−1

gk−1

Fig. 3   Distribution histogram for input (in blue) and output (in green) parameters
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achieve the best fit. The input data are consistently fed to the 
network and in each instance, the calculated output result is 

compared with the actual result to obtain the error function. 
By so doing, the network’s learnable parameters (weight 
and bias) are adjusted such as to decrease the network’s 
error until the desired output result is achieved (Rezaei et al. 
2009).

4 � Results and discussions

4.1 � Architecture of the ANN Model

Figure 2 represents the working of the ANN model. Leven-
berg–Marquardt (LM backpropagation algorithm was used 
in model development. During the forward pass, weights 
are assigned to the variables according to the desired output 

Table 4   Statistical functions for 
input and output parameters

Parameters Minimum Maximum Mean Median Standard 
deviation

Skewness Kurtosis

Input parameters 0 12 6 6 3.51 0 − 1.2
HARHA
wL 27 66 47.99 49 11.5 − 0.12 − 1.25
wp 12.8 21 17.2 17.7 2.41 − 0.06 − 1.24
lp 14 45 30.8 31 9.14 − 0.144 − 1.24
WOMC 16 19 18 18.2 0.76 − 0.94 0.24
Ac 0.6 2 1.34 1.4 0.39 − 0.2 − 1.17
δmax 1.25 1.99 1.68 1.69 0.24 − 0.16 − 1.4
Output parameter
CBR 8 44.6 24 22.8 11.74 0.29 − 1.17
UCS 125 232 172.8 172 31.65 0.26 − 1.03
R 11.7 27 20.5 20.9 4.48 − 0.43 − 0.79

Table 5   Setting parameters for the ANN model

Parameter Setting

Sampling
Training record 85
Validation/testing 36

General
  Type Input–output and curve fitting
  Number of hidden neurons 10
  Training algorithm Levenberg–Marquardt
  Data division Random

Fig. 4   Training state of ANN model for (a) CBR, (b) UCS, (c) R
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values. Depending on the evaluation criteria, the weights 
are readjusted to minimize the errors (Rezaei et al. 2009; 
Shi and Zhu 2008).

4.2 � Pearson correlation analysis

According to previous studies, the current research employed 
Pearson correlation coefficients to measure the linear rela-
tionship between the input and output parameters (Fan, et al. 
2002; Adler and Parmryd 2010; Benesty et al. 2008). The 
use of HARHA influenced the values of CBR, UCS, and R 
almost in a similar manner presented in Tables 1, 2, 3. The 
value of CBR depicted a strong positive linear relationship 

with the use of HARHA. In contrast, liquid limit, plastic 
limit, plastic index, and clay activity manifested a similar 
intensity of negative relation with CBR. The value of CBR 
seems to be unaffected relative to OMC. The maximum dry 
density greatly influenced the value of CBR, depicting a 
strong positive relationship. A similar type of trend was 
observed for the value of UCS and R values.

The distribution histograms were plotted for the input 
and output parameters, as shown in Fig. 3. A slight or no 
skewness was observed in both types of parameters used. 
The essential statistical functions have been listed in 
Table 3, depicting the satisfying values of skewness and 
kurtosis.

Fig. 5   Best performance validation for (a) CBR, (b) UCS, (c) R with corresponding epochs

Fig. 6   Evaluation of ANN model
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4.3 � Statistical functions for input and output 
parameters of the model

The setting parameters and statistical functions of the ANN 
models are listed in Tables 4 and 5. 70% of the total data set 
was used for training the model, while 30% of the data was 
equally divided among testing and validation data sets. The 
analysis was carried out via the machine learning toolbox of 
MATLAB R2020b. The 10 number of hidden neurons were 
used based on the best model as per the evaluation criteria 
as shown in the setting of parameters for the ANN models 
presented in Table 4. The ANN was allowed to randomly 
pick the data points for training and validation data sets.

Fig. 7   Experimental and predicted trends for (a) CBR, (b) UCS, (c) R with error analysis

Table 6   Calculation of statistical parameters for performance evalua-
tion of the proposed models

Model Statistical 
parameter

Training set Testing set Validation set

CBR MAE 0.0962 0.2198 0.1649
RSE 3.17E-6 0.00043 0.0006
RMSE 4.98 4.76 1.19

UCS MAE 0.42 0.92 1.27
RSE 8.9E-8 0.02 0.08
RMSE 12.4 14.12 1.19

R MAE 0.57 0.035 0.038
RSE 2.39E-5 0.0096 0.0097
RMSE 4.32 4.93 1.19

Table 7   Performance index 
and objective function of the 
proposed model

Model Statistical parameter Training set Testing set Validation set OBF

CBR R2 0.9998 0.9996 0.9994 0.077
RRMSE 0.20 0.20 0.05
ρ 0.100 0.104 0.028

UCS R2 0.999 0.989 0.935 0.028
RRMSE 0.08 0.07 0.08
ρ 0.04 0.035 0.0002

R R2 0.87 0.99 0.99 0.09
RRMSE 0.23 0.20 0.04
ρ 0.12 0.10 0.02
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4.4 � ANN model training and performance 
validation

Figure 4 manifests the training state of the ANN models. 
The gradient was reduced to 0.1666 after 20 iterations for the 
CBR model, whereas the minimum gradient for UCS, and 
R models was achieved in 15 and 14 iterations, respectively.

The validation of the models was carried out using a 
mean square error (MAE). The best performance for the 
validation of the CBR model was achieved in 14th iteration, 
and the error observed was 0.16405 as depicted in Fig. 5. 
Similarly, the best performance of the validation of UCS 
and R models was achieved at 9 and 8 epochs, respectively. 
The MAE observed at these epochs are 2.9159 and 0.00768, 
respectively.

The error histogram of the three models was drawn in 
Fig. 6, which reflects the strong correlation of the experi-
mental and predicted results. Almost 95% of the data yields 
an error lesser than 1%.

The comparison of experimental results and predicted 
values is presented in Fig. 7 and Tables 6 and 7. The coef-
ficient of determination (R2) for the three models is more 
significant than 0.95, representing the most robust agree-
ment of the experimental results to the predicted one. The 
other functions such as mean absolute error (MAE) (Benesty 
2009; Willmott and Matsuura 2005), relative squared error 
(RSE), root mean squared error (RMSE) (Willmott et al. 
2009), relative root mean square error (RRMSE), perfor-
mance indicator(ρ) (Iqbal 2020; Babanajad et al. 2017), and 
objective function OBF were also used for the model evalua-
tion. The mathematical equations of the statistical evaluation 
functions are presented in Eq. 9–16.

(9)RMSE =

�
∑n

i=1
(ei − mi)

2

n

Fig. 8   Comparison of best performance validation (1) CBR model (2) UCS model (3) R model using the Bayesian algorithm (a), (d), (g), conju-
gate gradient algorithm (b), (e), (h), and LMBP algorithm (c), (f), (i)
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(10)MAE =

∑n

i=1
��ei − mi

��
n

(11)RSE =

∑n

i=1
(mi − ei)

2

∑n

i=1
(
−
e −ei)

2

(12)NSE = 1 −

∑n

i=1
(ei − pi)

2

∑n

i=1
(mi−

−
mi)

2

(13)RRMSE =
1

�
��
−
e
�
��

�
∑n

i=1
(ei − mi)

2

n

where ei and mi are nth experimental and model TSR(%), 
respectively; 

−
ei and 

−
mi denotes the average values of experi-

mental and model TSR(%), respectively;n is the number of 
samples in the data set. And the subscripts T and V represent 
the training and validation data, and n is the total number 
of sample points, All statistical error evaluation functions 

(14)R =

∑n

i=1
(ei −

−
ei)(mi −

−
mi)

�
∑n

i=1
(ei −

−
ei)

2∑n

i=1
(mi −

−
mi)

2

(15)� =
RRMSE

1 + R

(16)OBF =
(nT − nv

n

)
ρT + 2

(nv
n

)
ρv

Fig. 9   Comparison of training states of (1) CBR model (2) UCS model (3) R model using the Bayesian algorithm (a), (d), (g), conjugate gradi-
ent algorithm (b), (e), (h), and LMBP algorithm (c), (f), (i)
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Fig. 10   Comparison of errors of (1) CBR model (2) UCS model (3) R model using the Bayesian algorithm (a), (d), (g), conjugate gradient algo-
rithm (b), (e), (h), and LMBP algorithm (c), (f), (i)

satisfied the performance of the three models. The proxi-
mal value of OBF to zero reflects that the models are not 
overfitted.

4.5 � Comparative analysis of employed algorithms

Three algorithms were compared in terms of iterations 
required for the best training and validation performance 
using mean squared error (MAE) as shown in Fig. 8. Lev-
enberg–Marquardt algorithm required a lesser number of 
iterations, followed by conjugate gradient algorithm and 
Bayesian algorithm. The minimum error for the train-
ing data set achieved using the Bayesian algorithm was 
recorded after 366, 558, and 160 iterations for CBR, UCS, 

and R models, respectively. In contrast, the minimum MAE 
for the validation data set using the conjugate gradient 
algorithm was observed after 30, 12, and 9 iterations for 
the CBR, UCS, and R models, respectively. These obser-
vations were recorded as 14, 9, and 8 epochs for the three 
models, i.e., CBR, UCS, and R, respectively. The authors 
observed a similar pattern of the number of iterations dur-
ing the models’ training states, as depicted in Fig. 9. The 
error analysis (see Fig. 10) illustrated that LMBP algo-
rithms outclass the other two types of algorithms regard-
ing a close agreement to the experimental values and this 
results agree with the findings of Alaneme et al., (2020; 
Alaneme et al. 2020). However, the Bayesian and conju-
gate gradient algorithms also yielded acceptable errors for 
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the specific problem. The extent of error was smaller in 
the case of Bayesian algorithms relative to the conjugate 
gradient algorithm.

5 � Conclusions

From the preceding comparative model prediction utilizing 
Levenberg–Muarquardt Backpropagation (LMBP), Bayesian 
and Conjugate Gradient (CG) algorithms of the evolution-
ary Artificial Neural Network (ANN) for the prediction of 
hydrated-lime activated rice husk ash (HARHA) modified 
expansive soil for sustainable earthwork in a smart environ-
ment, the following can be remarked;

•	 The artificial neural network has a strong ability to pre-
dict the strength properties (CBR, UCS, and R) of the 
soil containing HARHA. The predicted results of the 
ANN models using the three different algorithms accu-

rately followed the experimental trend with a very close 
agreement.

•	 While comparing the effect of changing algorithms, it 
was concluded that the LMBP algorithm yields an accu-
rate estimation of the results in comparatively lesser 
iterations compared to the Bayesian and the conjugate 
gradient algorithms; hence, showing a faster rate of com-
puting.

•	 The pattern, Bayesian > Conjugate gradient > LMBP, was 
observed for the required number of iterations to mini-
mize the error.

•	 Finally, the LMBP algorithm outclasses the other two 
algorithms in terms of the predicted models’ accuracy 
(Table 8).

Appendix

See Appendix Table 8. 

Table 8   121 datasets of input 
and output parameters

HARHA (%) Input soil hydraulic-prone properties Output soil strength properties

w
L
(%) w

P
(%) I

P
(%) w

OMC
(%) A

C
�
max

(g/cm3) CBR (%) UCS
28

(kN/m2) R
Value

0 66 21 45 16 2.0 1.25 8 125 11.7
0.1 66 21 45 16 1.98 1.25 8.1 125 11.7
0.2 65.7 20.9 44.8 16.1 1.96 1.27 8.2 126 11.7
0.3 65.6 20.9 44.7 16.3 1.96 1.27 8.2 126 11.7
0.4 65.3 20.8 44.5 16.3 1.93 1.28 8.3 126 11.8
0.5 65 21 44 16.4 1.9 1.30 8.5 128 12.0
0.6 64.8 20.8 44 16.4 1.88 1.31 8.55 128 12.2
0.7 64.5 20.8 43.7 16.45 1.88 1.31 8.6 128 12.2
0.8 64.1 20.8 43.3 16.47 1.87 1.33 8.6 130 12.3
0.9 63.5 20.9 42.6 16.49 1.85 1.33 8.85 130 12.6
1 63 21 42 16.5 1.8 1.35 9.2 132 13.1
1.1 62.5 20.6 41.9 16.6 1.8 1.35 9.25 132 13.3
1.2 62.1 20.3 41.8 16.7 1.81 1.36 9.4 133 13.5
1.3 61.9 20.2 41.7 16.8 1.8 1.37 9.5 133 13.6
1.4 61.7 20.1 41.6 17 1.81 1.38 9.7 134 13.8
1.5 61.5 20 41.5 17.2 1.8 1.38 9.8 134 14.2
1.6 61.4 20 41.4 17.2 1.8 1.39 9.8 136 14.4
1.7 61.3 20 41.3 17.3 1.79 1.39 9.85 137 14.8
1.8 61.3 20.1 41.2 17.5 1.81 1.4 9.92 137 14.8
1.9 61.2 20.1 41.1 17.7 1.8 1.41 9.96 138 15
2 61 20 41 17.8 1.8 1.41 10.4 138 15.3
2.1 60.9 19.9 41 17.9 1.8 1.42 10.4 139 15.6
2.2 60.7 19.7 41 17.9 1.8 1.42 10.7 139 15.7
2.3 60.6 19.6 41 18 1.8 1.425 11 140 15.8
2.4 60.4 19.4 41 18.2 1.8 1.43 11.6 141 16
2.5 60 19 41 18.3 1.8 1.43 12.0 141 16.2



272	 Multiscale and Multidisciplinary Modeling, Experiments and Design (2021) 4:259–274

1 3

Table 8   (continued) HARHA (%) Input soil hydraulic-prone properties Output soil strength properties

w
L
(%) w

P
(%) I

P
(%) w

OMC
(%) A

C
�
max

(g/cm3) CBR (%) UCS
28

(kN/m2) R
Value

2.6 59.8 19 40.8 18.35 1.79 1.435 12.1 142 16.5
2.7 59.7 19.1 40.6 18.4 1.77 1.45 12.4 142 16.8
2.8 59.5 19.1 40.4 18.45 1.75 1.455 12.9 142 17
2.9 59.2 19 40.2 18.5 1.72 1.46 13.3 143 17.1
3 59 19 40 18.5 1.7 1.46 13.8 143 17.3
3.1 58.8 19.2 39.6 18.55 1.7 1.47 13.9 144 17.4
3.2 58.4 18.9 39.5 18.6 1.7 1.475 14.2 145 17.7
3.3 57.9 19.1 38.8 18.7 1.71 1.48 14.5 146 18
3.4 57.4 19 38.4 18.75 1.69 1.484 14.7 147 18.3
3.5 57 19 38 18.8 1.7 1.49 14.8 148 18.5
3.6 56.8 18.9 37.9 18.85 1.69 1.5 15 148 18.7
3.7 56.7 19 37.7 18.9 1.65 1.51 15.3 150 18.9
3.8 56.5 18.9 37.6 18.93 1.64 1.51 15.7 151 19.1
3.9 56.3 19 37.3 18.98 1.61 1.52 15.9 152 19.2
4 56 19 37 19.0 1.6 1.52 16.0 153 19.4
4.1 55.7 19 36.7 19.0 1.59 1.53 16.3 154 19.5
4.2 54.9 18.7 36.2 19.0 1.57 1.54 16.8 156 19.6
4.3 54.1 18.5 35.6 19.0 1.55 1.55 17.5 157 19.7
4.4 53.6 18.4 35.2 19.0 1.52 1.56 17.8 158 19.7
4.5 53 18 35 19.0 1.5 1.57 18.0 159 19.8
4.6 52.8 18 34.8 18.98 1.5 1.58 18.1 160 20
4.7 52.7 18 34.7 18.96 1.5 1.59 18.3 160 20
4.8 52.6 18.1 34.5 18.93 1.5 1.60 18.8 162 20.1
4.9 52.3 18 34.3 18.91 1.5 1.61 19.5 163 20.2
5 52 18 34 18.9 1.5 1.61 19.8 164 20.4
5.1 51.5 17.7 33.8 18.88 1.48 1.62 19.9 165 20.4
5.2 51.1 17.7 33.4 18.86 1.46 1.63 20 166 20.5
5.3 50.8 18.1 32.7 18.84 1.43 1.64 20.3 167 20.5
5.4 50.3 18 32.3 18.82 1.41 1.65 20.9 168 20.6
5.5 50 18 32 18.8 1.4 1.65 21.7 168 20.6
5.6 49.9 18 31.9 18.78 1.4 1.66 21.9 169 20.7
5.7 49.6 17.9 31.7 18.75 1.41 1.67 22.1 170 20.8
5.8 49.4 17.9 31.5 18.71 1.42 1.67 22.3 171 20.8
5.9 49.1 17.7 31.4 18.65 1.41 1.68 22.5 172 20.9
6 49 18 31 18.6 1.4 1.69 22.8 172 20.9
6.1 48.6 17.8 30.8 18.55 1.38 1.7 23.1 173 21
6.2 48.3 17.6 30.7 18.48 1.37 1.71 23.3 173 21.1
6.3 47.7 17.3 30.4 18.6 1.35 1.72 23.7 174 21.2
6.4 47.2 17 30.2 18.44 1.33 1.73 23.8 175 21.4
6.5 47 17 30 18.4 1.3 1.74 24.0 175 21.5
6.6 46.8 17.1 29.7 18.4 1.31 1.75 24.3 176 21.6
6.7 46.5 16.8 29.7 18.41 1.31 1.76 24.9 177 21.8
6.8 45.6 15.9 29.7 18.4 1.3 1.77 25.2 177 21.9
6.9 45.2 15.9 29.3 18.41 1.3 1.78 25.5 178 22.0
7 45 16 29 18.4 1.3 1.78 25.9 179 22.0
7.1 44.8 16.3 28.5 18.39 1.29 1.79 26.2 180 22.1
7.2 44.3 16.1 28.2 18.37 1.27 1.8 26.6 181 22.3
7.3 43.7 15.9 27.8 18.35 1.26 1.81 27 182 22.4
7.4 43.4 16 27.4 18.32 1.23 1.83 27.3 183 22.5
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Table 8   (continued) HARHA (%) Input soil hydraulic-prone properties Output soil strength properties

w
L
(%) w

P
(%) I

P
(%) w

OMC
(%) A

C
�
max

(g/cm3) CBR (%) UCS
28

(kN/m2) R
Value

7.5 43 16 27 18.3 1.2 1.84 27.6 183 22.6
7.6 42.8 15.9 26.9 18.29 1.19 1.85 27.7 184 22.7
7.7 42.4 16 26.4 18.28 1.18 1.86 28.3 184 22.8
7.8 41.8 15.4 26.4 18.26 1.16 1.87 28.5 183 22.8
7.9 41.5 15.4 26.1 18.23 1.14 1.87 28.7 184 22.9
8 41 15 26 18.2 1.13 1.88 29.0 185 22.9
8.1 40.7 14.9 25.8 18.2 1.12 1.88 29.3 186 23
8.2 40.3 15 25.3 18.2 1.11 1.89 29.9 187 23.2
8.3 39.8 15.1 24.7 18.2 1.11 1.90 30.4 188 23.3
8.4 39.3 15 24.3 18.21 1.1 1.90 30.7 189 23.5
8.5 39 15 24 18.2 1.0 1.91 31.2 190 23.6
8.6 38.8 15 23.8 18.2 1.0 1.92 31.5 191 23.7
8.7 38.3 14.9 23.4 18.2 1.0 1.93 32.1 192 23.8
8.8 37.9 15.2 22.7 18.2 1.0 1.94 32.4 193 23.9
8.9 37.5 15.2 22.3 18.2 1.0 1.95 33.5 194 24
9 37 15 22 18.2 1.0 1.96 34.0 195 24.0
9.1 37 15 22 18.19 1.0 1.962 34.5 196 24.1
9.2 37 15 22 18.18 1.0 1.964 34.8 197 24.2
9.3 37 15 22 18.16 1.0 1.966 35.2 198 24.3
9.4 37 15 22 18.13 1.0 1.969 35.8 199 24.4
9.5 37 15 22 18.1 1.0 1.97 36.0 200 24.5
9.6 36.8 15.1 21.7 18 0.99 1.972 36.5 202 24.6
9.7 36.7 15.1 21.6 17.92 0.98 1.973 36.9 204 24.7
9.8 36.5 15.1 21.4 17.93 0.97 1.975 37.6 208 24.8
9.9 36.3 15.2 21.1 17.91 0.94 1.977 37.8 208 24.8
10 36 15 21 17.9 0.9 1.98 38.0 210 24.9
10.1 35.7 14.9 20.8 17.88 0.88 1.98 38.3 213 25.1
10.2 35.5 15.1 20.4 17.84 0.86 1.982 38.5 214 25.3
10.3 34.6 14.9 19.7 17.79 0.84 1.984 38.9 215 25.4
10.4 33.3 14 19.3 17.73 0.82 1.987 39.6 218 25.4
10.5 33 14 19 17.7 0.8 1.99 40.0 220 25.5
10.6 32.8 14 18.8 17.7 0.79 1.99 41.1 222 25.8
10.7 32.4 13.9 18.5 17.71 0.78 1.99 42.4 223 26.2
10.8 31.5 13.9 17.6 17.71 0.75 1.99 43.2 225 26.3
10.9 31.1 14 17.1 17.7 0.72 1.99 43.5 228 26.5
11 31 14 17 17.7 0.7 1.99 44.0 230 26.8
11.1 30.7 13.9 16.8 17.68 0.7 1.99 44.0 231 26.8
11.2 30.3 13.7 16.6 17.63 0.71 1.99 44.5 232 26.8
11.3 29.8 13.4 16.4 17.57 0.71 1.99 44.6 232 26.9
11.4 29.4 13.2 16.2 17.53 0.71 1.98 44.6 232 26.9
11.5 29 13 16 17.5 0.7 1.97 43.8 225 26.9
11.6 28.7 12.8 15.9 17.5 0.69 1.97 43.8 224 26.9
11.7 28.5 13 15.5 17.4 0.67 1.96 43.7 223 27.0
11.8 27.8 13 14.8 17.3 0.65 1.96 43.6 222 27.0
11.9 27.6 13.2 14.4 17.2 0.62 1.95 43.5 221 27.0
12 27 13 14 17.1 0.6 1.95 43.4 221 27.0



274	 Multiscale and Multidisciplinary Modeling, Experiments and Design (2021) 4:259–274

1 3

References

Abdi Y, Momeni E, Khabir RR (2020) A reliable PSO-based ANN 
approach for predicting unconfined compressive strength of sand-
stones. Open Construction Building Technol J 2020 14: 237–249. 
DOI: https://​doi.​org/​10.​2174/​18748​36802​01401​0237

Adler J (2010) Parmryd J (2010) Quantifying colocalization by correla-
tion: pearson correlation coeeficient is superior to the Mander, s 
overlap coefficient. Cytometry A 77(8):733–742

Alaneme GU, Onyelowe KC, Onyia ME, Bui Van D, Mbadike EM, 
Ezugwu CN, Dimonyeka MU, Attah IC, Ogbonna C, Abel C, Ikpa 
CC, Udousoro IM (2020) Modeling volume change properties of 
hydrated-lime activated rice husk ash (HARHA) modified soft 
soil for construction purposes by artificial neural network (ANN). 
Umudike J Eng Technol (UJET) 6(1):1–12. https://doi.org/https://​
doi.​org/​10.​33922/j.​ujet_​v6i1_9

Babanajad SK, Gandomi AH, Alavi AH (2017) New prediction models 
for concrete ultimate strength under true-triaxial stress states: An 
evolutionary approach. Adv Eng Softw 2017(110):55–68

Benesty J et al. (2009) Pearson correlation coefficient, in Noise reduc-
tion in speech proceeding, 2009, Springer, p. 1–4

Benesty J, Chen J, Huang Y (2008) On the importance of the Pear-
son correlation coefficient in noise reduction. IEEE Trans Audio 
Speech Language Proc 16(4):757–765

BS 1377 - 2, 3, 1990. Methods of Testing Soils for Civil Engineering 
Purposes, British Standard Institute, London

BS 5930, (2015). Methods of Soil Description, British Standard Insti-
tute, London

BS 1924, (1990). Methods of Tests for Stabilized Soil, British Standard 
Institute, London

Erzin Y, Turkoz D (2016) Use of neural networks for the prediction 
of the CBR value of some Aegean sands. Neural Comput Applic 
27:1415–1426. https://​doi.​org/​10.​1007/​s00521-​015-​1943-7

Fan X et al. (2002). An evaluation model of supply chain performances 
using 5DBSC and LMBP neural network algorithm

Ferentinou M, Fakir M (2017) An ANN approach for the prediction 
of uniaxial compressive strength, of some sedimentary and Igne-
ous Rocks in Eastern KwaZulu-Natal. Symp Int Soc Rock Mech 
Proc Eng 191(2017):1117–1125. https://​doi.​org/​10.​1016/j.​proeng.​
2017.​05.​286

Hosseini M, Naeini SARM, Dehghani AA, Zeraatpisheh M (2018) 
Modeling of soil mechanical resistance using intelligentmethods. 
J Soil Sci Plant Nutr 18(4):939–951

Iqbal MF et al (2020) Prediction of mechanical properties of green 
concrete incorporating waste foundry sand based on gene expres-
sion programming. J Hazard Mater 2020(384):121322

Kingston GB, Maier HR, Lambert MF (2016) A Bayesian approach 
to artificial neural network model selection. Centre Appl 
Model Water Eng School Civ Environ Eng Univ Adelaide Bull 
6(2016):1853–1859

Kisi O, Uncuoglu E (2005) Comparison of three back-propagation 
training algorithms for two case studies. Indian J Eng Materials 
Sci 12(2005):434–442

Nawi NM, Khan A, Rehman MZ, (2013) A new levenberg marquardt 
based back propagation algorithm trained with cuckoo search. In: 
The 4th international conference on electrical engineering and 
informatics (ICEEI 2013), Procedia Technology 11 (2013): p. 18 
– 23. https://doi.org/https://​doi.​org/​10.​1016/j.​protcy.​2013.​12.​157

Onyelowe KC, Van Bui D, Ubachukwu O et al (2019) Recycling and 
reuse of solid wastes; a hub for ecofriendly, ecoefficient and sus-
tainable soil, concrete, wastewater and pavement reengineering. 
Int J Low-Carbon Technol 14(3):440–451. https://​doi.​org/​10.​
1093/​Ijlct/​Ctz028

Onyelowe KC, Onyia ME, Onukwugha ER, Nnadi OC, Onuoha IC, 
Jalal FE (2020) Polynomial relationship of compaction properties 
of silicate-based RHA modified expansive soil for pavement sub-
grade purposes Epitőanyag—J Silicate Based Composite Materi-
als 72(6):223–228. https://doi.org/https://​doi.​org/​10.​14382/​epito​
anyag-​jsbcm.​2020.​36

Onyelowe KC, Onyia M, Onukwugha ER, Bui Van D, Obimba-Wogu 
J, Ikpa C (2020) Mechanical properties of fly ash modified asphalt 
treated with crushed waste glasses as fillers for sustainable pave-
ments. Epitőanyag–Journal of Silicate Based and Composite 
Materials 72(6):219–222. https://doi.org/https://​doi.​org/​10.​14382/​
epito​anyag-​jsbcm.​2020.​35

Onyelowe KC, Alaneme GU, Onyia ME, Bui Van D, Diomonyeka MU, 
Nnadi E, Ogbonna C, Odum LO, Aju DE, Abel C, Udousoro IM, 
Onukwugha E (2021) Comparative modeling of strength proper-
ties of hydrated-lime activated rice-husk-ash (HARHA) modified 
soft soil for pavement construction purposes by artificial neural 
network (ANN) and fuzzy logic (FL). Jurnal Kejuruteraan 33(2)

Quan S, Sun P, Wu G, Hu J (2015) One bayesian network construction 
algorithm based on dimensionality reduction. In: 5th international 
conference on computer sciences and automation engineering 
(ICCSAE 2015), Atlantis Publishers, p. 222–229

Rezaei K, Guest B, Friedrich A, Fayazi F, Nakhaei M, Beitollahi A et al 
(2009) Feed forward neural network and interpolation function 
models to predict the soil and subsurface sediments distribution 
in Bam. Iran Acta Geophys 2009(57):271–293. https://​doi.​org/​10.​
2478/​s11600-​008-​0073-3

Salahudeen AB, Sadeeq JA, Badamasi A, Onyelowe KC (2020) Pre-
diction of unconfined compressive strength of treated expansive 
clay using back-propagation artificial neural networks. Nigerian 
Journal of Engineering, Faculty of Engineering Ahmadu Bello 
University Samaru - Zaria, Nigeria. Vol. 27, No. 1, April 2020. 
ISSN: 0794 – 4756. Pp. 45 – 58

Saldaña M, Pérez-Rey JGI, Jeldres M, Toro N (2020) Applying statis-
tical analysis and machine learning for modeling the UCS from 
P-Wave velocity, density and porosity on dry travertine. Appl Sci 
10:4565. https://​doi.​org/​10.​3390/​app10​134565

Sariev E, Germano G (2019). Bayesian regularized artificial neural 
networks for the estimation of the probability of default. Quantita-
tive Finance, 20: 2, 311–328, doi: https://​doi.​org/​10.​1080/​14697​
688.​2019.​16330​14

Shi BH, Zhu XF (2008) On improved algorithm of LMBP neural net-
works. Control Eng China 2008(2):016

Van B, Duc and Onyelowe, K.C. (2018) Adsorbed complex and labo-
ratory geotechnics of Quarry Dust (QD) stabilized lateritic soils. 
Environ Technol Innovation 10:355–368. https://​doi.​org/​10.​
1016/j.​eti.​2018.​04.​005

Van Bui D, Onyelowe KC, Van Nguyen M (2018) Capillary rise, suc-
tion (absorption) and the strength development of HBM treated 
with QD base Geopolymer. Int J Pavement Res Technol [in press]. 
https://​doi.​org/​10.​1016/j.​ijprt.​2018.​04.​003

Willmott CJ, Matsuura K (2005) Advantages of the mean absolute 
error (MAE) over the root mean square error (RMSE) in assessing 
average model performance. Clim Res 30(1):79–82

Willmott CJ, Matsuura K, Robeson SM (2009) Ambiguities inher-
ent in sums-of-squares-based error statisitics. Atmosp Environ 
43(3):749–752

Zhan Z, Fu Y, Yang RJ et al. (2012) A Bayesian inference based model 
interpolation and extrapolation. SAE Int J Materials Manuf 5(2). 
Doi: https://​doi.​org/​10.​4271/​2012-​01-​0223

https://doi.org/10.2174/1874836802014010237
https://doi.org/10.33922/j.ujet_v6i1_9
https://doi.org/10.33922/j.ujet_v6i1_9
https://doi.org/10.1007/s00521-015-1943-7
https://doi.org/10.1016/j.proeng.2017.05.286
https://doi.org/10.1016/j.proeng.2017.05.286
https://doi.org/10.1016/j.protcy.2013.12.157
https://doi.org/10.1093/Ijlct/Ctz028
https://doi.org/10.1093/Ijlct/Ctz028
https://doi.org/10.14382/epitoanyag-jsbcm.2020.36
https://doi.org/10.14382/epitoanyag-jsbcm.2020.36
https://doi.org/10.14382/epitoanyag-jsbcm.2020.35
https://doi.org/10.14382/epitoanyag-jsbcm.2020.35
https://doi.org/10.2478/s11600-008-0073-3
https://doi.org/10.2478/s11600-008-0073-3
https://doi.org/10.3390/app10134565
https://doi.org/10.1080/14697688.2019.1633014
https://doi.org/10.1080/14697688.2019.1633014
https://doi.org/10.1016/j.eti.2018.04.005
https://doi.org/10.1016/j.eti.2018.04.005
https://doi.org/10.1016/j.ijprt.2018.04.003
https://doi.org/10.4271/2012-01-0223

	Application of 3-algorithm ANN programming to predict the strength performance of hydrated-lime activated rice husk ash treated soil
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Materials preparation

	3 Methods
	3.1 The algorithms of Artificial Neural Network (ANN)
	3.2 Levenberg–Marquardt Bachpropagation (LMBP) Algorithm
	3.3 Bayesian programming (BP) algorithm
	3.4 Conjugate gradient (CG) algorithm

	4 Results and discussions
	4.1 Architecture of the ANN Model
	4.2 Pearson correlation analysis
	4.3 Statistical functions for input and output parameters of the model
	4.4 ANN model training and performance validation
	4.5 Comparative analysis of employed algorithms

	5 Conclusions
	References




