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Abstract
Soft matrices reinforced by textile preforms are considered as flexible composites that can undergo large elastic deformation. 
The mechanical behaviors of these composites are highly nonlinear, involving both material and geometric nonlinearities. To 
conduct a finite element analysis studying woven fabric structures, one of the desired approaches is to develop an equivalent 
continuum model representing the mechanical behavior of the fabric’s unit cell. During large deformation, significant fabric 
architecture rearrangement occurs. To include this geometrical nonlinearity into a continuum model, it is always a chal-
lenge. In this work, the constitutive model of weave fabrics under biaxial loadings has been derived considering the large 
nonlinear elastic deformations. This model assumes that the fabric consists of monofilaments, where the yarn is treated as 
a thin isotropic solid bar which follows the sinusoidal shape. The effects of the yarn’s crimp interchange, and bending are 
considered in the constitutive equations. One of the special advantages to use this constitutive model is that the geometry 
can be completely defined by the commonly given information for a fabric (i.e., crimps, number of yarns per unit fabric 
length). Good agreement has been found between predictions and experiments under various biaxial loadings. The theoreti-
cal predictions also agree well with FEA simulations of the mechanical behaviors of the unit cell.

Keywords  Plain weave fabrics · Textile composite · Biaxial loading · Finite element analysis (FEA) · Analytical modeling

1  Introduction

Researchers and engineers prefer textile composites due 
to their superior mechanical and chemical properties, e.g., 
high specific stiffness and strength, dimensional stability, 
low thermal expansion, and good corrosion resistance. Most 
important is that textile composites are more flexible than all 
continuous material; therefore, they are particularly suitable 
for manufacturing components with complex shape. Along 
with these advantages, composite materials based on woven 
fabric reinforcements achieve high stiffness and strength, 
comparable with traditional fiber reinforcements (Adum-
itroaie and Barbero 2012). Plain weave fabrics are chosen 
as a research topic since plain weave fabrics are widely used 
as reinforcements in textile composites. Plain weave fabric 

reinforcements are widely employed in aircraft, boats and 
pressure vessels, because they can provide more balanced 
properties than a unidirectional laminate. In the last dec-
ade, there has been an increasing trend in the application of 
flexible dry woven fabrics in various fields spanning from 
personal protective garments to composite materials. They 
can offer a superior combination of properties such as high 
tenacity, strength-to-weight ratios and flexibility (Erol et al. 
2017). Moreover, due to the flexibility plain weave rein-
force composite are widely used in curvature type structure 
(Boisse et al. 2006; Launay et al. 2008). The fabrication cost 
of flexible composite reinforced by plain weave fabric is 
comparatively low. Since the cost of plain weave fabric com-
posite fabrication is cheap, easy to handle and have many 
advantages as discussed above; it is important to study the 
mechanical behavior of such fabrics to fully realize their 
potential to be used as composite reinforcement (Barbero 
et al. 2006a).

In this study, biaxial loading is considered to char-
acterize the mechanical behavior of plain weave fabric. 
Since, plain weave fabric reinforce composite suffers 
biaxial loading condition in many practical case, however 
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biaxial experimental setup is expensive and often fails 
to obtain fully reliable data due to the architectural non-
linearity of the fabric specimen. Biaxial data are needed 
both for investigating the stress–strain behavior of ortho-
tropic composites used in structural applications as well 
as for assessing the reliability of failure criteria (Barbero 
et al. 2006b; Boehler et al. 1994; Welsh and Adams 2002; 
Zhang and Harding 1990). From the literature (Ito and 
Chou 1998; Adumitroaie and Barbero 2012; Naik 1995; 
Buet-Gautier and Boisse 2001), it could be concluded that 
one of the most frequent concerns associated with the use 
of modern composite materials and textiles is the inabil-
ity of researchers to accurately model the onset of failure 
under complex biaxial loading conditions and a universally 
accepted failure theory for unidirectional composite mate-
rials has not been developed yet mainly due to the lack of 
reliable biaxial experimental data.

Therefore, finite element models and theoretical analy-
sis could solve the problem of verifying experimental data. 
Many studies have been conducted before to character-
ize the mechanical behavior of plain weave fabric during 
biaxial loading (El-Messiry and Youssef 2011; Pan 1996; 
Kumazawa et al. 2005; Gasser et al. 2000) and shear load-
ing (Basit and Luo 2018; Sun and Pan 2005; Mohammed 
et al. 2000; Daelemans et al. 2016; Page and Wang 2000; 
Cao et al. 2008). In this study, a simplified biaxial consti-
tutive model has been proposed that needs only the com-
mon information of fabric as the input. Moreover, a finite 
element analysis was conducted. To conduct a finite ele-
ment analysis on plain weave fabric structures, one of the 
desired approaches is to develop an equivalent continuum 
model representing the mechanical behavior of the fabric’s 
unit cell. Experiments show that, during large deformation, 
the fabric architecture may change significantly (e.g., crimp 
interchange). The fiber reorientation affects the mechanical 
behavior of the unit cell, and causes geometrical nonlinear-
ity. To include the geometrical nonlinearity into a general 
continuum model is always a challenge.

A comprehensive experimental study of plain weave fab-
rics under various ratios of biaxial loading was reported in 
reference (Freeston et al. 1967). Since sufficient informa-
tion is provided, these experimental results are used as an 
example in the comparison study. The experimental engi-
neering stress–strain curves of a plain weave fabric under 
various biaxial loadings (Freeston et al. 1967) are shown in 
Fig. 1, whereas nomenclature are listed in Table 1. When 
the fabric is under loading Nx:Ny = 1:1, the pattern is simi-
lar to a linear orthotropic composite laminate. While, under 
loading Nx:Ny = 5:1, the strain (solid triangle) in the minor 
load direction tends to go negative first before moving to 
the positive direction. This indicates that the internal fabric 
architecture rearrangement not only depends on the magni-
tude of the loading, but also the path and ratio.

The objective of this work is to develop an equivalent con-
tinuum model for plain weave fabric under biaxial loading. 
The sinusoidal unit cell model, used in this work, describes 
the overall mechanical behavior of the fabrics (i.e., the biaxial 
stress resultant and fabric strain). The required inputs are (1) 
initial crimps, (2) number of yarns per unit fabric length, and 
(3) yarn properties. The predictions from the current model 
agree with the experimental data (Freeston et al. 1967) for 
a fabric under biaxial loading of 0:1, 1:1, 1:2, 1:5 and 5:1. 
They also agree well with FEA simulations of the mechanical 
behaviors of the unit cell.

2 � Geometry of a unit cell

A unit cell of a plain weave fabric with initial in-plane dimen-
sions of Lx0 and Ly0 is shown in Fig. 2. The unit cell was first 
proposed by (Kawabata et al. 1973) to study the biaxial proper-
ties of woven fabric. Two curved filling yarns and two curved 
warp yarns are interlaced over and under one another. Let the 
filling and warp yarns be denoted by x and y, respectively.

Let z� be the coordinate of the �-yarn ( � = x or y) along 
the thickness direction; a�0 and L�0 the initial amplitude and 
wavelength of the sinusoidal curve of � yarn, respectively, as 
shown in Fig. 2.

Referring to Fig. 2b, the positions of the yarns can be 
expressed as:

Crimp is the ratio of difference between straightened 
arc length, and wavelength to the wavelength. Crimp is 
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Fig. 1   Experimental results of undyed saran monofilaments fabric 
under biaxial loading, Nx:Ny = 1:1, 1:2, 5:1
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the measure of waviness of a fabric. For a fabric, crimps 
( crimp−x and ( crimp−y ), and the number of yarns per unit 
fabric length (nx and ny) are usually given in the datasheet, or 
can be easily measured. Referring to Fig. 2 and from the def-
inition of crimp, the wavelength (Lx0 and Ly0) and arc length 
(Sx0 and Sy0) of the undeformed yarns can be calculated as:

(2)
Lx0 = 2∕ny, Ly0 = 2∕nx

Sx0 = Lx0(1 + crimp−x), Sy0 = Ly0(1 + crimp−y),

where crimp−� is the crimp of the �-yarn; and n� is the num-
ber of �-yarns per unit fabric length of the fabric along its 
perpendicular direction.

Referring to Fig. 3, the yarn’s arc length ( S�0 ) in an unde-
formed fabric unit cell can be mathematically expressed as 
(Luo and Mitra 1999):

Table 1   Nomenclature Definition Symbol

x, or y �

Total arc length of �-yarn in an undeformed unit cell S�0

Total arc length of �-yarn in a deformed unit cell S�

Initial wavelength of the �-yarn wave L�0

Current wavelength of the �-yarn wave after deformation L�

Amplitude of the �-yarn wave in a deformed unit cell a�

Initial amplitude of the �-yarn wave in an undeformed unit cell a�0

Crimp of the �-yarn or ( S�0∕L�0 − 1) Crimp−�

Number of the �-yarns per unit length of fabric n�

Distance between �-yarn center and its surface along z direction r�

Rigid body displacement of the contact point �

Normal strain of the unit cell in the � direction ��

Yarn’s axial strain �f−�

Stress resultant (normal force per unit length of the fabric) in � direction N�

Effective Poisson’s ratio of the yarn ν
Cross-sectional area of the circular yarn A
Strain energy stored in a unit cell U
Energy stored in a �-yarn due to the yarn axial strain uf−�

Energy stored in a �-yarn due to the lateral displacement ub−�

Shear modulus of the yarn referring to the longitudinal-transverse plane Gz�

Lateral stiffness of a half of a yarn k�

Fig. 2   a Unit cell of a plain woven fabric with wavelengths ( L�0 , where � is either x or y); b cross-section along an x-yarn
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The geometry of the fabric sinusoidal model can be com-
pletely defined by Eqs. (1)–(3) with commonly given informa-
tion (i.e., crimps, n�).

2.1 � Input information

The material properties and fabric information are recaptured 
from Page and Wang (2000) as the following:

Number of yarns per inch fabric length (filling), nx = 33.25
Number of yarns per inch fabric length (warp), ny = 31.5
Filling yarn crimp−x = 2.75%
Warp yarn crimp−y = 5.5%
Yarn modulus Ef = 145 ksi (approximately linear)
Yarn diameter d = 10.2 × 10−3 in

Calculated fabric properties and initial geometric param-
eters are listed in Table 2. First Lx0, Ly0, Sx0, and Sy0 were cal-
culated from input information and using Eq. (2). Then ax0, ay0 
were calculated using equation number (3). Cross-sectional 
area of the yarns was calculated from the yarn diameter assum-
ing they have circular cross-section. The cross-section of yarn 
is often represented by oval, elliptical, lens or circular shape. 
For simplicity, the geometry of the unit cell has been described 
by assuming that both the yarn cross-section and the undulated 

(3)
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0

√
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length can by represented by arcs of circles (Afrashteh et al. 
2013; Behera et al. 2012). It was reported that the yarn cross-
section partially returns to its circular shape with the release of 
pressure on it, whether the twist factor is high or low (Ozgen 
and Gong 2010).

3 � Biaxial deformation of a unit cell

If a fabric is treated as a continuum, the biaxial loading and 
deformation are illustrated in Fig. 3a. The stress resultants Nx 
and Ny are defined as the tensile force per unit length of the 
fabric; the engineering strains of the fabric:

where Lx and Ly are the current dimensions of the deformed 
unit cell; and are also the current wavelengths of the 
deformed yarns. Due to the waviness, the axial strain of a 
yarn differs from the strain of the fabric as demonstrated by 
Fig. 3b, c. The average values of yarn’s axial strain are

where S� is the current arc length of the �-yarn in a deformed 
unit cell (Fig. 3c). Similar to Eq. (3), S� can be expressed in 
terms of the wavelengths L� and current yarn amplitude a�:

(4)

�x =
ΔLx

Lx0
=

Lx − Lx0

Lx0
,

�y =
ΔLy

Ly0
=

Ly − Ly0

Ly0
,

(5)

�f−x =
ΔSx

Sx0
=

Sx − Sx0

Sx0
,

�f−y =
ΔSy

Sy0
=

Sy − Sy0

Sy0
,

Fig. 3   a Biaxial deformation of 
a unit cell; b wavelength and arc 
length of an x-yarn in unde-
formed unit cell; c wavelength 
and arc length of an x-yarn in 
deformed unit cell
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Table 2   Yarn properties and 
initial geometric parameters 
(before loading)

Lx0 (mm) Ly0 (mm) Sx0 (mm) Sy0 (mm) ax0 (mm) ay0 (mm) E (N/mm2) ν EI (N-mm2) EA (N)

1.613 1.529 1.657 1.612 0.086 0.116 1000 0.35 0.221 52.70
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Significant portion of the strain energy stored in the 
deformed fabric is due to the yarn axial extensions (or 
S� − S�0 ). To determine S� in a deformed fabric, a� must be 
solved. As demonstrated in Fig. 4, the change of the yarn 
amplitudes is due to two factors:

1.	 The amount of distance change of r� in the z (thickness) 
direction, Δr� . r� is the distance between the �-yarn’s 
center and the contact point at the crossovers.

2.	 The lateral displacement (along z direction) of the con-
tact point between warp and filling yarns �.

The current amplitudes of the yarn centerline waves may 
be expressed as:

Notice that, in general, the yarn cross-section may have 
an ellipse shape, and r�0 should be measured from the fabric. 
For single-filament circular yarns, r�0 is the radius; and the 
yarn-flattening phenomenon is insignificant. The change in 
r� is mainly contributed by the Poisson’s ratio (ν) effect. For 
the problems with loading Nx and Ny as the inputs, we have:

If the deformations (Lx and Ly) are the inputs, the change 
in r� can be estimated as:

(6)
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(7)
ax = ax0 + Δrx + �,

ay = ay0 + Δry − �.

(8)
Δrx = −�

�x

E
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E
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where �f−x is the yarn’s axial defined in Eq. (5).
� is the vertical displacement of the contact point during 

fabric deformation. Fabric architecture rearrangements and 
crimp interchanges are mainly caused by this displacement. 
The value of � depends on both the magnitude and ratio of the 
biaxial loading. Referring to Eqs. (4)–(7), the deformed unit 
cell is not only defined by the fabric overall strain, but also 
the lateral displacement � . Thus, � must be treated as an inde-
pendent displacement variable into the constitutive equations 
developed in the following sections.

4 � Strain energy and constitutive equation

For linear yarns, the axial tensile strain energy stored in a �
-yarn of volume AS�0 can be expressed as:

where EA is the yarn axial stiffness, which can be obtained 
from yarn axial tensile tests.

To determine the bending energy, each half of the yarn 
is treated as a simply supported beam shown in Fig. 5. Due 
to biaxial loading, half of the yarn will undergo load in the 
upward direction, rest half downward, and vice versa. Then, 
the bending energy stored in a full �-yarn may be estimated as:

(9)
Δrx = −��f−xrx0,

Δry = −��f−yry0,

(10)
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2
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,

Fig. 4   a The undeformed ampli-
tude; amplitude change of the 
wave of a yarn central line due 
to b flattening, �z� , and c rigid 
body displacement
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where k� is the lateral stiffness of a half yarn simply sup-
ported as shown in Fig. 4. Applying classical shear beam 
theory, the value of the k� can be estimated as:

where EIf is the bending rigidity of the yarn. G is the shear 
modulus of the yarn referring to the longitudinal-transverse 
plane. There are two warp and two filling yarns in a unit 
cell, with Eqs. (10) and (11), the total strain energy stored 
in a unit cell is

Based on the principal of virtual work, the constitutive 
equation of the plain weave fabrics under biaxial loading can 
be obtained as:

Equation (14) is the constitutive equation for a plain weave 
fabric under biaxial loading. If external loads (Nx and Ny) are 
given, external deformations (Lx and Ly) can be calculated by 
solving Eqs. (6) and (14) simultaneously. Here, Mathcad soft-
ware was used to solve these equations. After solving, engi-
neering and fabric strain can be calculated using Eqs. (4), and 
(5), respectively. The zero value shown in Eq. (14-3) represents 
no external lateral force acting at the yarn contact points. This 
additional equation solves � which directly affects the fabric 
crimp interchange. The contact force can be calculated from 
Eq. (15). Note that Px and Py have equal value in the contact 
point:
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5 � Finite element model of biaxial loading

Quarter model of the unit cell was built in ANSYS. This 
model was built using fabric properties and initial geomet-
ric parameters listed in Table 2. Note that half of the length 
( L�0∕2 ) of yarn was being modeled to establish the quarter 
symmetry. The model was meshed with SOLID185 element. 
After meshing, it was carefully checked that whether any 
distortion of the element occurred. The element size was 
checked for convergence test. The whole analysis was run 
for different element sizes, and then the results were com-
pared for those element sizes. The shape of the mesh was 
Hex/wedge.

The contact and target surfaces constitute a “Contact 
Pair” in ANSYS. In studying the contact between two bod-
ies, the surface of one body is conventionally taken as a 
contact surface and the surface of the other body as a target 
surface. For a rigid–flexible contact, the contact surface is 
associated with the deformable body, and the target surface 
must be the rigid surface. For flexible–flexible contact, both 
contact and target surfaces are associated with deformable 
bodies. Therefore, flexible–flexible contact pair was chosen. 
Here, CONTA174 element type was used to create contact 
pair. CONTA174 is an 8-node element that is intended for 
general rigid–flexible and flexible–flexible contact analysis. 
Again, surface–surface contact pair option was used in this 
study.

5.1 � Boundary condition

The input of this FE model was deformations (∆Lx and ∆Ly) 
so that the resultant stress can be obtained from the solution. 
There are two different types of boundary conditions (sym-
metric and translational) which were applied on the area of the 
model as shown in Fig. 6. The boundary conditions applied 
on two ends of the yarns are shown in Fig. 6, described in the 
following:

 

where B represents the magnitude of displacement. First 
subscript stands for the direction of displacement (x, y or 
z); whereas the second for x- or y-yarn. The translational 
boundary condition along x and y directions were divided 
by 2 because half of the length ( L�0∕2 ) of yarn was being 
modeled.

(16a)Bx−x =
(

Lx − Lx0
)

∕2,

(16b)Bz−x = 0,

(16c)By−y =
(

Ly − Ly0
)

∕2,

(16d)Bz−y = −2 × ((ax + ay) − (ax0 + ay0)),
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5.2 � Output

The input of the FE model was deformations (∆Lx and ∆Ly) as 
mentioned in boundary condition. The output of FE model is 
reaction forces (Fx/2 and Fy/2) of master node shown in Fig. 7. 
Reaction force (Fx/2 and Fy/2) of master node was obtained 
from results of nodal solution after solving (nonlinear solution) 
the FE model by ANSYS. Note that the result of master node 
(shown in Fig. 7) represents the overall nodal results of cor-
responding nodes. Therefore, Fx/2 and Fy/2 are the load that 
exists in the end of the yarn model due to the applied deforma-
tion in the boundary condition. The resultant stress (Nx and Ny) 
was calculated from the ANSYS output (reaction load of Fx/2 
and Fy/2), using following equations:

(17)
Nx = 2

(

Fx

2

)

nx,

Ny = 2

(

Fy

2

)

ny.

6 � Biaxial model validation

6.1 � Force–displacement

Comparisons have been made between the theoretical pre-
dictions and experimental results for the fabric under various 
biaxial loading ratios: Nx:Ny = 0:1, 1:5, 1:2, 1:1, and 5:1. 
The stress–strain relationship is presented in Fig. 8 for the 
loading ratio of Nx:Ny = 5:1. Figure 8 shows the experimen-
tal results verses predicted stress–strain curves calculated 
by analytical and FEA model for the fabric under biaxial 
loading of Nx:Ny= 5:1. The vertical axis is stress resultant 
defined as force per unit width of the fabric (kN/m). The 
horizontal axis is the engineering strain of the fabric. Note 
that only the values of major loading (Nx) are used to plot in 

Fig. 6   Boundary condition on 
the sinusoidal model
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the vertical axis both for filling and warp strain. The experi-
mental data are represented by symbols, whereas the hollow 
circles indicate the stress–strain relationship in x (filling) 
direction and the solid circles are for y (warp) direction. The 
solid lines are the theoretical predictions based on the con-
stitutive equations developed in this paper; whereas the thin 
line is for x (filling) direction and the thick line represents y 
(warp) direction. Similarly, the thin dash line and thick dash 
line are the FEA results for x (filling) and y (warp) direction, 
respectively. Figures 8 and 9 show the similar comparisons 
for the cases of Nx:Ny = 0:1, 1:1, 1:2, and 1:5. Note that only 
the values of major loading (Ny) are used to plot in the verti-
cal axis both for filling and warp strain. Notice that to avoid 
any possible singularity problem, a very small load is used 
instead of 0 (zero) load in the case of Nx:Ny = 0:1. As indi-
cated in the original reference, the experimental data shown 
in the figures are the average values with a maximum of 5% 

deviation from the individual data points. Considering the 
possible uncertainties involved, very good correlations have 
been found for the comparisons.

6.2 � Contact forces and lateral displacements

Figure 11a shows the theoretical and FEA predictions of 
contact force (P) for the biaxial cases.

where Fz/2 is the reading of force of master node (shown in 
Fig. 7) along the z direction.

Strain in the major direction ( �y ) is used as the horizon-
tal axis in Fig. 11a. It is clear from Fig. 10 that the contact 
force (P) is increased by the increment of minor resultant 
stress (Nx); as major to minor stress ratio (Nx:Ny) increases 
the contact force. This fabric behavior is expected because 

(18)P = 4(Fz∕2),
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Fig. 9   Experimental data, theoretical and FEA predictions for biaxial cases of a Nx:Ny= 0:1, and b Nx:Ny = 1:1

(b) (a) 

0

2

4

6

8

10

-5 0 5 10 15 20
Strain (%)

St
re

ss
 R

es
ul

ta
nt

, N
y 

(k
N/

m
)

Exp-x
Exp-y
Theory-x
Theory-y
FEA-x
FEA-y

Nx:Ny = 1:2

0

2

4

6

8

10

-5 0 5 10 15 20
Strain (%)

St
re

ss
 R

es
ul

ta
nt

, N
y 

(k
N/

m
)

Exp-x
Exp-y
Theory-x
Theory-y
FEA-x
FEA-y

Nx:Ny = 1:5

Fig. 10   Experimental data, theoretical and FEA predictions for biaxial cases of a Nx:Ny = 1:2, and b Nx:Ny = 1:5
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due to the increment of minor load (values of major load 
keep same), x-yarn and y-yarn compact each other; there-
fore, the contact force is increased.

Figure 11b shows the theoretical and FEA predictions 
of lateral displacement (δ) for the biaxial cases. It is clear 
from Fig. 11b that the lateral displacement (δ) is decreased 
by the increment of minor and major resultant stress ratio 
(Nx:Ny). This is the opposite behavior of contact force. 
This fabric behavior is expected because due to the incre-
ment of minor load, x-yarn and y-yarn compact each other; 
therefore, the lateral displacement is decreased.

7 � Conclusions

When a plain weave fabric is subjected to biaxial loading with 
different loading ratios, the patterns of the nonlinear force 
displacement curve are significantly different. This phenom-
enon is caused by the fabric structure rearrangement, mainly 
through the crimp interchange (or the vertical displacement of 
the contact point between the warp and filling yarns). In this 
work, a sinusoidal unit cell model has been used to study the 
geometric nonlinearity behavior of the plain weave fabrics. 
All the parameters used to describe the model can be com-
pletely defined by the real physical properties of the fabric 
(i.e., crimps, number of yarns per unit fabric length, and yarn 
properties). Strain energy approach is used to establish the 
constitutive equation for the biaxial loading. The predictions 

from current model agree well with the experimental results 
found in the literatures for a fabric under biaxial loadings of 
0:1, 1:5, 1:2, 1:1, and 5:1. They also agree well with FEA 
simulations of mechanical behavior of plain weave fabrics due 
to in-plane biaxial loading.
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