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Abstract
Amultiscalemodeling techniquewas developed to predictmechanical properties of human bone, which utilizes the hierarchies
of human bone in different length scales from nanoscale to macroscale. Bone has a unique structure displaying high stiffness
with minimal weight. This is achieved through a hierarchy of complex geometries composed of three major materials:
hydroxyapatite, collagen and water. The identifiable hierarchical structures of bone are hydroxyapatite, tropocollagen, fibril,
fiber, lamellar layer, trabecular bone, cancellous bone and cortical bone. A helical spring model was used to represent the
stiffness of collagen. A unit cell-based micromechanics model computed both the normal and shear stiffness of fibrils, fibers,
and lamellar layers. A laminated compositemodel was applied to cortical and trabecular bone, while a simplified finite element
model for the tetrakaidecahedral shape was used to evaluate cancellous bone. Modeling bone from nanoscale components to
macroscale structures allows the influence of each structure to be assessed. It was found that the distribution of hydroxyapatite
within the tropocollagenmatrix at the fibril level influences themacroscale properties significantly.Additionally, themultiscale
analysis model can vary any parameter of any hierarchical level to determine its effect on the bone property. With so little
known about the detailed structure of nanoscale and microscale bone, a model encompassing the complete hierarchy of bone
can be used to help validate assumptions or hypotheses about those structures.

Keywords Multiscale model · Biomaterial · Bone

1 Introduction

Biomaterials are living tissues that have developed through
evolutionary processes. They are distinct for their com-
plex hierarchies built by simple materials (Vaughan et al.
2012). There are a limited number of structural materials
in the human body, but living organisms rely on compos-
ite hierarchical structures to achieve macroscale forms and
functions (Cui et al. 2007). Biomaterials such as skin, liga-
ments, tendons, muscles and bones exhibit this hierarchical
organization. This study focuses on the structure of bone.

Bone is themain structural component of the body. Unlike
tendons and ligaments, bone structures support both tensile
and compressive loads, as well as bending, torsional and
shearing loads (Hench and Jones 2005). To understand and
predict the structural properties of bone, a multiscale model
is presented. This model begins at the nanoscale level and
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continues up the hierarchies to the macroscale level. The
hierarchical structure of the bone is sketched in Fig. 1. To
the authors’ best knowledge, no attempt has been under-
taken to link the material properties in the nanoscale to those
in the macroscale. Almost all previous studies investigated
material properties in a single length scale, especially at the
macroscale. Reviews on previous studies are discussed later
when appropriate to be introduced.

The multiscale analysis model is presented in the follow-
ing section, adhering to the hierarchical order as shown in
Fig. 1. Then, the predicted results at each length scale model
are compared to available data, if any, to validate the model
in the subsequent section. Finally, conclusions are provided.

2 Multiscale analysis

2.1 Nanoscale model

Human bone consists of hydroxyapatite (HA), tropocolla-
gen (TC), water and others. Among them, hydroxyapatite
and tropocollagen are the major load-bearing components.
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Fig. 1 Hierarchical structures of bone from nanoscale to microscale

Hydroxyapatite has a large surface area to volume ratio,
allowing for rapid absorption and dissolution when ions are
needed (Buschow et al. 2001; Cui et al. 2007). Furthermore,
the HA structures are organized into small plates ranging
from 1.5 to 5nm thick (Rho et al. 1998). Although the size of
HA crystals varies based on location, mineral density and
time allowed for growth; the average crystal size is con-
sidered as 50nm × 25nm × 3nm (Nikolaeva et al. 2007;
Buehler 2006). The crystal lattice of HA has the hexago-
nal close packed structure. From the nanoindentation testing
completed on single HA crystals, the stiffness in the [0001]
directionwas 150GPa,while the stiffness in the [1010] direc-
tion was 143GPa (Zamiri and De 2011).

The tropocollagen molecule is the basic molecular unit
of collagen. There are 28 different variations of collagen;
each is used for a different physiological purpose within
the body (Ricard-Blum 2011). Collagen I is the main col-
lagen species found in bone, comprising 95% of the total
collagen (Tzaphlidou and Berillis 2005). Collagen I is com-
posed of three helical protein strands: two alpha-1 type-1
strands and one alpha-1 type-2 strand (Hench and Jones
2005). The polyproline-II (PPII) helices of the alpha-1 type-
1 and alpha-1 type-2 collagen contain a common repeating
subunit: Gly-X-Y. The combination of the alpha-1 type-1 and
alpha-1 type-2 helices creates the right handed triple helix of
the TC molecule.

To determine the quantitative values for each tropocolla-
gen triple helix, a helical spring model is used. It is assumed
that each repeating subunit of the polyproline helices is rep-
resented by Gly-Pro-Hyp. A helical spring is used to assess
the stiffness of a single molecule of tropocollagen, because
each left-handed polyproline helix of the TC molecule can
be independently treated as a spring. Buckling is prevented
through stabilizing hydrogen bonds, van derWaals attraction
and the close packing of the TC molecules within collagen
fibrils. The stiffness of a single TC molecule is equal to the
stiffness of the combined alpha-1 type-1 and alpha-1 type-2
strands.

The spring constant of each helix is computed from the
following equation

k = F

y
= Gd4

8D3NA
(1)

where k andG are the spring constant and the shear modulus,
d and D are the wire and mean coil diameter, and NA is the
number of coils. Typical values for the TC model (Hamed
and Jasiuk 2013; Reznikov et al. 2014) are G = 67.9GPa,
d = 0.286nm, D = 0.5nm, and NA = 300. The shear
modulus was the most difficult to estimate, since no data
is available for the shear modulus of a single chain amino
acid helix. To create a valid estimate, the bond energy of the
backbone of a single subunit was calculated. The shear mod-
ulus of the TC backbone is computed as energy over volume,
which equates to 67.9GPa. The calculation above neglects all
strengthening effects of cross-linking, non-backbone atoms
and other atomistic considerations, but still provides a basic
starting point to calculate the overall stiffness of collagen.

Finally, the elastic modulus of TC is computed from

E = 3

(
L

A

)
k (2)

where L and A are the length and cross-sectional area of the
helix spring, and the factor 3 comes from the sum of the three
helices. For the TC helix, the length is 300nm, and the area
equals to πD2/4.

2.2 Microscale model

A micromechanical unit cell model (Kwon and Kim 1998;
Kwon and Park 2013; Park andKwon 2013;Kwon andDarcy
2018) is used to compute microscale bone properties. This
model is a rectangular prismdivided into 8 subcells, as shown
in Fig. 2. Each subcell may have a different material, and the
unit cell model computes the effective material properties
of all subcells such as elastic moduli, Poisson’s ratios and
coefficients of thermal expansion in every axis. The details
of the unit cell model were given in the references (Kwon
and Kim 1998; Kwon and Park 2013; Park and Kwon 2013;
Kwon and Darcy 2018). As a result, only a brief summary of
the model is provided here.

Uniform stresses and strains are assumed for each subcell
as shown in Fig. 2. Subcell stresses must satisfy the equi-
librium at their interfaces. For example, subcells #1 and #2
should maintain the following equilibrium:

σ 1
11 = σ 2

11

σ 1
12 = σ 2

12

σ 1
13 = σ 2

13 (3)

where σ k
i j denotes the stress tensor. The subscripts indicate

stress components according to the axes shown in Fig. 2, and
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Fig. 2 Unit cell of micromechanics model

the superscripts indicate subcell number. The similar set of
equilibrium equations are applied to all subcell interfaces.

In addition to stress equilibrium, deformation compatibil-
ity must be met for the unit cell. Deformation compatibility,
for instance along the 1-axis, results in the following equa-
tions:

a1ε
1
11 + a2ε

2
11 = a1ε

3
11 + a2ε

4
11

= a1ε
5
11 + a2ε

6
11

= a1ε
7
11 + a2ε

8
11 (4)

in which εki j is the strain tensor whose indices are defined in
the same way as those for the stress tensor. Similar equations
can be developed for the deformation compatibility along
other axes as well as for the shear deformation.

Furthermore, each subcell has a constitutive equation
defining strain.

εni j = Cn
i jklσ

n
kl + αn

i j�θ (5)

For this model, the thermal expansion of the materials is
ignored. This can be assumed because the internal tempera-
ture of the human body is highly regulated.

The total unit cell stress and strain, denoted with an over-
bar, can then be found by averaging the subcell stresses and
strains based on the subcell volumes.

σ i j =
8∑

n=1

V nσ n
i j (6)

εi j =
8∑

n=1

V nεni j (7)

Combining all the equations discussed above can yield the
following equation:

[T ] {ε} = { f } (8)

If the normal and shear components are not coupled together,
the normal and shear components can be solved indepen-
dently. In the present case, each subcell is considered as
either isotropic or orthotropic. Therefore, there is no cou-
pling between the normal and shear components. Then, the
matrix [T ] is a 24 × 24 matrix for the normal components,
because each subcell has three normal strain components.
A similar matrix equation can be written for the shear com-
ponents. Here, only the normal components are discussed,
because the same derivation can be applied to the shear com-
ponents.

The vector { f } is a 24 × 1 column vector composed of
a 21 × 1 column containing zeros, representing the stress
and strain equilibrium, and a 3 × 1 column containing the
effective normal strains.

{ f }T = [[0] [ε11 ε22 ε33]] (9)

Solving Eq. (8) produces the following expression.

{ε} = [T ]−1 { f } (10)

The inverse of [T ] can be further broken down into three
matrices. These are substituted into Eq. (10) to obtain the
following.

[T ]−1 = [[R1] [R2] [R3]] (11)

{ε} = [R3] [ε11 ε22 ε33]
−1 (12)

Furthermore, Eq. (6) can be written as:

{σ } = [V ] {σ } (13)

which finally results in the following expression:

{σ } = [V ] ([E] {ε}) = [V ] [E] [R3] {ε} (14)

where [E] is amatrix of the inverse of the subcell compliance
tensors stated in Eq. (5). Then, the unit cell stiffness can be
calculated.

[
E

] = [V ] [E] [R3] (15)

The [E] matrix is the 3 × 3 matrix of the unit cell stiffness.
With these values, the Poisson’s ratio of the unit cell can also
be found.
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Fig. 3 Repeated unit cell selected for fibril models: a linear and b twist
models

2.2.1 Fibril model

The fibril is the smallest microstructure of the bone. It is
represented by a staggered array of HA crystals and TC
molecules. The regular organization of fibrils is caused by
fibrillogenesis. The crystals for the fibrillar models have a
length of 50nm, a width of 25nm, and a height of 3nm. The
linear packing model is a lateral repeat of the fibril array as
shown in Fig. 3a. A small section is repeated throughout the
array in 67nm increments. The repeated unit cell is selected
for the linear fibril model in the figure. The dimensions of
the unit cell have a1 = 50nm, a2 = 17nm, b1 = 25nm,
b2 = 3nm, c1 = 3nm, and c2 = 9nm.

For many years, a linear fibril orientation has been the
accepted model (Nikolaeva et al. 2007). This model was
viewed as a long thin filament with alternating bands of min-
eral rich phase and mineral deficient phase. Although the
linear model presents a viable solution, there has not been
any evidence proving lateral growth is a purely linear process.
Fibrils grow laterally in 4nm steps by electrostatic attraction
during the formation of the microscale fibril (Gibson 1994).
A twisting crystalline structurewasmore recently considered
for fibril model. The 67nm periodicity, which determined the
two-dimensional stacking, was assumed to direct the three-
dimensional pattern. For this reason, the lateral periodicity is
also 67nm. A simplified twisted model is shown in Fig. 3b.

The twisting fibril takes into account a 67nm periodicity
in the 2 direction as well as the 3 direction. Additionally,
because each repeated stack in the 2 direction contains the
same 67nmperiodicity in the 3 direction, the subunit is short-
ened in the 3 direction. The repeated unit cell for the twisting
fibril model is shown in Fig. 3b. The dimensions associ-

(a)

(b)

Fig. 4 a Sketch of fiber and b unit cell applied to the fiber model. Dark
subcells 3, 5, and 7 represents minerals attached to the fibril denoted by
subcells 1 and 6. The remaining subcells are filled with water or void
depending on compression or tension, respectively

ated with the twisting model are a1 = 50nm, a2 = 17nm,
b1 = 25nm, b2 = 75 nm, c1 = 3nm, and c2 = 6nm. For
both fibril models, subcell #1 in Fig. 2 is assigned HA prop-
erties; the remaining subcells are assigned TC properties.

2.2.2 Fiber model

The subsequent hierarchy following the bone fibril is that
of the bone fiber. Fibers consist of fibrils and HA. The
HA is present in the fibers, as both extrafibrillar mineral
deposited between densely packed fibrils and intrafibrillar
mineral within each fibril (Vaughan et al. 2012; Rho et al.
1998). Each closely packed fibril is surrounded by a crust of
mineral, approximately 20–30nm thick, where the long axis
ofminerals andfibrils runparallel to eachother (Gautieri et al.
2013). The thickness of the crust is estimated as 26nm.Addi-
tionally, the diameter of a single uniform fibril is assumed to
be 150nm (Rho et al. 1998). This three-dimensional structure
is shown in Fig. 4a with the surface mineral removed.

The fibers found in the micro level are single bundles of
fibrils or a combination of many bundles: each bundle is
an organized and repeating arrangement of fibrils and HA.
Accordingly, the unit cell micromechanics model is aptly
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Table 1 Dimension for fiber
unit cell with extrafibrillar
mineralization

%EFM a1 a2

50 0.50 0.50

70 0.70 0.30

90 0.90 0.10

95 0.95 0.05

suited for modeling bone fiber, as the fiber unit cell relies on
volume fractions of each material.

This area percent of the subcell #1 face in Fig. 2 assumes a
total crust thickness of 26nm and a fibril diameter of 150nm.
When symmetry is applied, a crust of 13nm and a radius
of 75nm are utilized. These dimensions are applied to the
micromechanics unit cell model with b1 = 75nm, b2 =
13nm, c1 = 75nm, and c2 = 13nm. To test the effect of
fibril mineralization, the degree of mineralization is varied,
which is denoted as%EFMand defined as the total percent of
the fibril surface covered by minerals. In Fig. 4b, subcells 3,
5, and 7 represent the minerals covering the fibril. Therefore,
by altering the length of a1, %EFM is varied for the fiber. We
assume that the fiber is comprised of nomore than 95%EFM.
The different levels of mineralization analyzed are listed in
Table 1. In compression, subcells 4, 6, and 8 in Fig. 4b are
assigned the properties of water. In tension, these subcells
are assigned as void spaces.

2.3 Macroscale model

2.3.1 Lamellar bone

The next hierarchical step of bone is that of lamellar bone.
Lamellar bone is a fiber reinforced composite of bone fibers
and bone fibrils. The lamellar bone model utilizes the knowl-
edge that fibers within a lamellar layer are unidirectional and
that the disordered matrix has a relatively random thickness,
within the bounds defined by (Gautieri et al. 2013). Figure 5
shows the simplified view of lamellar layers. The macroscale
model used for the lamellar layers assumes that the layer
thickness is 2.5µm and the matrix thickness is 0.375µm.
The longitudinal cross-section of the micromechanics model
provides a 38.4% fiber volume for the lamellar unit cell. The
presence of the small pores is neglected, as they account for
approximately 0.1% of the current model’s volume and they
are not uniformly present along the length of the fibers.

Tomodel the lamellar layer as a continuous fiber, themate-
rial properties assigned to subcells #1, #3, #5 and #7 in Fig. 2
are mirrored for subcells #2, #4, #6 and #8. This produces
a continuous fiber reinforced composite. The dimensionless
values to be used for this model are a1 = 0.5, a2 = 0.5,
b1 = 0.62, b2 = 0.38, c1 = 0.62, and c2 = 0.38.

Fig. 5 Simplified model for lamellar bone

Fig. 6 Simplified model for cortical bone

The material properties of a single lamellar layer in a dif-
ferent fiber orientation can be found by rotating the layer
with respect to the 3-axis. This rotation can be completed by
rotating the stiffness matrix of the material (Gibson 1994).

2.3.2 Cortical bone

Cortical bone is composed of concentric layers of lamellar
bone, known as osteons. Osteons can be made of primary or
secondary bone. Secondary osteons are calledHaversian sys-
tems, which are analyzed in this study. The concentric layers
composing Haversian systems form a cylindrical structure
approximately 200µm in diameter (Reznikov et al. 2014)
as shown in Fig. 6. Each concentric layer associated with
the osteon is composed of lamellar bone. The fibers of each
individual layer are unidirectional in alignment. The center
cylinder is representative of aHaversian canal andwill be rep-
resented as un-bound water. Multiple Haversian systems are
packed together in cortical bone. Due to their circular shape,
there are incomplete layers at the interface of each Haver-
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Table 2 Preferential orientation of layered composite model

Layer Fiber orientation (◦) Volume fraction

Transverse 72.5 0.45

Longitudinal 22.5 0.35

Intermediate 0 0.05

Intermediate 40 0.05

Intermediate 55 0.05

Intermediate 90 0.05

sian systemwhere the boundaries intersect. These boundaries
are defined by a cement line, which is an identifiable region
where osteon growth direction has transitioned. The proper-
ties of cement lines are similar to those of the surrounding
bone, despite themisnomer of ‘cement’ (Skedros et al. 2005).

The fiber directions of the concentric lamellar layers vary
for each layer. Two distinct patterns have been identified in
lamellar bone: a periodic alternating pattern and a contin-
uous fiber twist. The two models for cortical bone rely on
the volume percent of a defined fiber orientation. The pref-
erential model has the fiber orientations as listed in Table 2.
On the other hand, the smooth model assumes even distribu-
tion of fibers at 10◦ intervals. The fiber directions as stated
by (Skedros et al. 2005; Harley et al. 1997) do not desig-
nate either positive or negative angles about the longitudinal
axis. Therefore, it is assumed that the fiber orientations are
equal in both positive and negative angles for the cortical
bone model to produce an orthotropic linear elastic material.
In addition, due to the random radial distribution of osteons,
the cortical bone is expected to have a transverse isotropic
material.

2.3.3 Trabecular bone

Trabecular bone is the term used in this paper to classify
the material contained within single trabeculae of cancel-
lous bone. Cancellous bone is the term used to identify the
macroscale structure of all interlocking trabeculae. Trabecu-
lar bone is more metabolically active than cortical bone. The
deposition of newbone is related to the applied stresses on the
cancellous bone (Reznikov et al. 2014). Trabecular bone is
modeled using the same layered composite model as utilized
for cortical bone. However, the fiber orientations and volume
percent of each layer are altered. The fiber orientations and
their volume percent in trabecular bone are listed in Table 3.
Due to the lack of Haversian canals in trabecular bone, the
void space is a result of microscopic canaliculi. This void
space is evaluated at 5% volume percent and is treated as a
liquid in compression and a void in tension.

Table 3 Fiber orientation of trabecular bone layer model

Fiber direction Volume fraction

−10◦ 0.20

−5◦ 0.20

0◦ 0.20

5◦ 0.20

10◦ 0.20

2.3.4 Cancellous bone

While a laminated compositematerial represents thematerial
properties of a single trabecula, it does not quantify the prop-
erties of cancellous bone. The structure of cancellous bone is
a uniquely three-dimensional problem, that cannot be solved
through a two dimensional approximation (Odgaard 1997).
Additionally, there is much heterogeneity in cancellous bone
at different anatomical locations (Parkinson and Fazzalari
2013).

Early models of cancellous bone utilized a model of rods
and plates. Four early models were an asymmetric rod-like
cubic model, a plate-like cubic model, a rod-like hexagonal
columnar model, and a plate-like hexagonal columnar model
(Gibson 1985). These early models helped to shape simple
models of cancellous bone. However, these models provided
asymmetrical properties for cancellous bone. Additionally,
the early models included Euler buckling as a failure mecha-
nism.Later experiments have shown that failure of cancellous
bone is most commonly due to microscopic cracking, which
removes buckling as a failure mode for trabeculae (Fyhrie
and Schaffler 1994).

Complex finite element models have been used to model
cancellous bone. Three-dimensional models formed from
micro-computed tomography can replicate small sections of
bone (Kadir et al. 2010). Furthermore, two unit cells have
been proposed that are able to accurately model cancellous
bone. Kadir et al. (2010) compared the results of prismatic
unit cells and tetrakaidecahedral unit cells to those of amicro-
computed tomography model. The authors found that both
unit cells accurately represent the mechanical properties.
Additionally, Guo and Kim (2002) have shown that a com-
plex finite element model of several tetrakaidecahedron cells
can accurately represent different levels of bone loss due to
aging.

This study makes use of a tetrakaidecahedron (TKDH)
unit cell to calculate the macroscale properties of cancellous
bone as sketched in Fig. 7. Several values of trabecular bone
properties are used, as well as different bone densities. The
results of the macroscale properties are then compared to
experimental data.
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Fig. 7 Tetrakaidecahedron for cancellous bone model

The TKDH has eight hexagonal faces, six square faces, 36
edges and 24 vertices. For the open cell structures present in
cancellous bone, the faces are treated as voids and the edges
are treated as trabeculae. A simple finite element model was
developed by (Kwon et al. 2003) to analyze the TKDH frame.
Each ligament in the TKDH geometry is modeled as a 3-D
beam which has the property of the trabecula. The details of
the 3-D beam element are shown in (Kwon et al. 2003) and
it is omitted here to save space.

3 Results and discussion

3.1 Nanoscale result

To compute the elastic modulus of the tropocollagen, the
geometric and material properties as discussed in the pre-
vious section are used for Eq. (1). In addition, the length
and diameter of the helix are considered as 300 and 0.7nm,
respectively, for Eq. (2). Then, a single helix has the elas-
tic modulus of 1.18GPa and TC has three helices with the
modulus of 3.54GPa. The experimental data in (Carter and
Caler 1981; Zysset et al. 1999) showed 3.0 and 5.1GPa. The
present value agrees well with the data.

3.2 Microscale result

3.2.1 Fibril

The collagen network is assumed to stagger its array with at
least a 25nm width, so as to allow for the generally accepted

Table 4 Material properties of fibril model component

Material EL (GPa) ET (GPa) ν G (GPa)

Hydroxyapatite 150 143 0.23 59.7

Tropocollagen under
compression

3.43 3.43 0.35 1.27

Tropocollagen under
tension

3.26 3.26 0.35 1.21

dimensions of the HA crystals. The micromechanical model
provides results for both the linear and twisted packing mod-
els. For bothmodels, thematerial properties shown in Table 4
are used. In this and following tables, subscript ‘L’ denotes
the longitudinal direction, while ‘T ’ means the transverse
direction.

In addition to using two different models to explore the
crystal arrays within fibrils, the presence of water is taken
into account with the calculation of material properties. The
presence ofwater produces a bi-modulus compositematerial,
as water is only considered in compression. While the vol-
ume percent water is much higher in tendons and ligaments,
bone is known to have approximately 10–25% water. Some
of this is thought be foundwithin the nanoscale tropocollagen
and hydroxyapatite.Water serves as a binding and stabilizing
agent within the triple helix of tropocollagen. Additionally,
small amounts of water are tightly boundwithin the HA crys-
tal. However, the rest is assumed be held within the various
hierarchies. For the purpose of the fibrillar model, each unit
cell is assumed to have 8% volume of water. This is calcu-
lated by adjusting the stiffness of collagen to assume an 8%
volume of water in compression and an 8% volume of void
space in tension. Tropocollagen in compression and tension
exhibits the different properties as shown in Table 4.

The resulting values for the fibril models are shown in
Table 5. These results can be compared to the experimental
transversemodulus between 3.07±0.23 and 7.65±3.85GPa
(Kotha andGuzelsu 2007). The present fibrilmoduli are close
to the experimental data.

One metric for comparing validity of theoretical mod-
els is to compare bone mineral content. However, very
little information is available as to the mineral content of
microstructures. Therefore, the mineral content at each level
is tracked for comparison at the macro level. The linear fibril
model has 16.7%mineral volume fraction, while the twisting
fibril model has 6.2 % mineral volume fraction.

3.2.2 Fiber

The results for the fiber model are calculated both in com-
pression and tension using the geometric data. As expected,
due to the applied symmetry, the fiber exhibits transverse
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Table 5 Predicted material
property of fibril

Model EL (GPa) ET (GPa) GTT (GPa) GLT (GPa) νT L νT T

Linear

Compression 6.05 6.60 1.53 1.68 0.30 0.30

Tension 5.76 6.30 1.46 1.59 0.30 0.30

Twisting

Compression 4.26 3.81 1.35 1.37 0.31 0.37

Tension 4.05 3.62 1.29 1.30 0.31 0.37

Table 6 Predicted fiber
compressive material property

50% EFM 70% EFM 90% EFM 95% EFM

Linear Twisting Linear Twisting Linear Twisting Linear Twisting

EL (GPa) 6.51 5.45 7.57 6.51 11.6 10.5 16.2 15.0

ET (GPa) 16.7 14.6 21.4 19.2 26.4 23.9 27.7 25.2

GTT (GPa) 1.05 0.93 1.47 1.30 1.89 1.67 2.00 1.77

GLT (GPa) 0.01 0.01 0.02 0.02 0.06 0.06 0.11 0.11

νT L 0.37 0.41 0.36 0.40 0.30 0.31 0.25 0.25

νT T 0.14 0.13 0.13 0.12 0.13 0.12 0.13 0.12

Table 7 Estimated mineral volume percent of fiber model

%EFM Mineral volume fraction (%)

Linear Twisting

50 25.9 18.4

70 31.5 23.9

90 37.0 29.5

95 38.4 30.9

isotropic material properties. Table 6 shows the results for
compression.

The results in compression show that the linear fibril
model produces a stiffer fiber in all normal and shear cases
and in all directions. For all %EFM, the fiber shear modu-
lus GLT is much less than GTT . As %EFM increases from
50 to 95%, the shear modulus GLT increases by an order of
magnitude and GTT increases approximately double. This
is exhibited for both the linear and the twisting models. The

Poisson’s ratio in the transverse plane remains relatively con-
stant, but as %EFM increases, νT L decreases. The results in
tension show similar results to those in compression.

The difficultywith evaluating the results of the fibermodel
is that there is an absence of experimental testing available
for comparison. Fibers exist within the macrostructures of
bone and are not easily isolated for testing. Additionally,
almost all theoretical calculations assume that macrostruc-
ture bone is composed solely of layered fibers. However, the
macrostructures of bone are fiber reinforced composites with
fibrils acting as the matrix and bone fibers as the fibers.

The mineral content completely surrounds the fibril. This
complete encirclement increases the normal stiffness in the
transverse direction and stiffens the fiber against shear on
the transverse plane. The mineral content of the different
fiber models was calculated. These calculations include both
intrafibrillar and extrafibrillar HA. The resulting values are
shown in Table 7.

Table 8 Predicted lamellar
compressive material property

50% EFM 70% EFM 90% EFM 95% EFM

Linear Twisting Linear Twisting Linear Twisting Linear Twisting

EL (GPa) 6.43 4.61 6.84 5.02 8.39 6.55 10.1 8.27

ET (GPa) 9.00 6.43 9.72 6.93 10.4 7.41 10.6 7.58

GTT (GPa) 1.34 1.16 1.55 1.34 1.71 1.47 1.74 1.49

GLT (GPa) 0.62 0.53 0.630 0.54 0.67 0.57 0.72 0.62

νT L 0.33 0.37 0.32 0.35 0.28 0.29 0.24 0.24

νT T 0.24 0.27 0.24 0.27 0.24 0.29 0.25 0.30
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Table 9 Estimated mineral volume percent of lamellar model

%EFM Mineral volume fraction (%)

Linear Twisting

50 20.2 10.9

70 22.4 13.0

90 24.5 15.2

95 25.0 15.7

3.3 Macroscale result

The results of the lamellar micromechanics model were cal-
culated in both compression and tension for four different
%EFM.The resulting stiffness andPoisson’s ratios are shown
in Table 8 for compression. Both linear and twisting fib-
ril models were used in the prediction. Through the bone
hierarchies, the mineral content of the lamellar layers was
calculated. The mineral volume fraction of each model is
displayed in Table 9. The mineral volume fraction within
lamellar layers is representative of macroscale bone min-
eral content and comparisons can be made to theoretical
and experimental values. Early studies of fibril organiza-
tion suggested total bone mineral volume content at 50%
(Guo and Kim 2002). Calculation of the bone ash content of
adult cows was found to be close to 70%. The volume per-
cent of bone ash does not directly correlate to bone mineral
content. This method results in a large estimate of mineral
content, as additional residues remain from sources other
than hydroxyapatite. More recent studies estimate a lower
bone mineral volume. Kotha and Guzelsu (2007) postulate
that mineral volume content is 40% for bone, while (Ashman
and Rho 1988) approximates 33–43% hydroxyapatite min-
eral volume. These estimates are based on a more complete

understanding of the hierarchical structure of bone, but are
still estimates as bone mineral content varies with bone type,
anatomical position, age, and gender.

When comparing the bonemineral content from this study
to those found through experimental and theoreticalmethods,
the linear crystal pattern emerges as the more viable model.
The mineral volume fractions of the twisting model are too
low to validate its use. Even with slight perturbations to the
constraints applied to the fibril and fiber models, the mineral
content of the twisting model does not match the current
estimates.

For the subsequent analyses, only the linear fibril model
is used. Additionally, the preferential and smooth layered
models were calculated in both tension and compression.
The compressive results are shown in Table 10. The results of
the cortical model can be compared to results from (Buehler
2006) as shown in Table 11.

When compared based on the similarmineral volume con-
tent, the present model computes comparable moduli with
the finite element results with 20% mineral volume percent
as shown in Table 11. Increase in mineral content for differ-
ent hierarchical models would increase the stiffness of the
cortical bone as shown in Table 11.

Furthermore, the results of the trabecular laminated com-
posite model for both compression and tension are shown
in Table 12. Table 13 lists the experimental and theoretical
results for trabecular bone. The predicted results in Table 12
are comparable to those in Table 13.

The results of the cancellous bone TKDH model were
calculated using the trabecular results in compression and
tension. These two values were used to create bounds on the
stiffness of cancellous bone. The results of the three anatom-
ical locations are shown in Table 14. The present results are
comparable to other tested data shown in Table 15.

Table 10 Predicted cortical
bone material property under
compression

50% EFM 70% EFM 90% EFM 95% EFM

Pref. Smooth Pref. Smooth Pref. Smooth Pref. Smooth

EL [GPa] 5.07 4.64 5.39 4.91 5.94 5.45 6.42 5.92

ET [GPa] 5.84 5.68 6.22 6.05 6.82 6.59 7.28 6.99

GTT [GPa] 0.70 0.74 0.77 0.82 0.84 0.89 0.87 0.92

GLT [GPa] 0.94 0.96 1.04 1.05 1.14 1.16 1.21 1.23

νT L 0.32 0.36 0.32 0.36 0.31 0.35 0.31 0.34

νT T 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22

Table 11 Published cortical
elastic modulus

Elastic modulus (GPa) Method Source

6 FEM, 20% mineral volume fraction Buehler (2006)

9 FEM, 30% mineral volume fraction

15 FEM, 40% mineral volume fraction

21 FEM, 50% mineral volume fraction
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Table 12 Predicted trabecular
bone property in compression
and tension

50% EFM 70% EFM 90% EFM 95% EFM

Comp. Tens. Comp. Tens. Comp. Tens. Comp. Tens.

EL (GPa) 6.05 5.10 6.43 5.16 7.85 5.23 9.45 5.25

ET (GPa) 8.52 7.76 9.19 8.57 9.79 9.13 9.98 9.25

GTT (GPa) 1.26 1.20 1.46 1.39 1.61 1.53 1.64 1.56

GLT (GPa) 0.66 0.62 0.67 0.64 0.72 0.67 0.77 0.72

νT L 0.24 0.25 0.24 0.26 0.24 0.32 0.24 0.38

νT T 0.23 0.25 0.23 0.24 0.24 0.24 0.25 0.24

Table 13 Published values for
trabecular property

Elastic modulus (GPa) Method Source

18.1 ± 1.7 Nanoindentation (transverse) Kadir et al. (2010)

12.7 ± 2.0 Ultrasound (isotropic) Yoon and Katz (1976)

3.8 Three-point bending Cowin and Mehrabadi (1989)

5.4 ± 1.4 Four-point bending Gong et al. (2010)

Table 14 Predicted cancellous
elastic modulus (all expressed in
MPa)

50% EFM 70% EFM 90% EFM 95% EFM

Comp. Tens. Comp. Tens. Comp. Tens. Comp. Tens.

Femoral neck 292 246 311 249 379 252 457 253

Femoral head 196 165 209 167 255 170 307 170

Distal/proximal 300 253 319 256 390 259 469 260

Table 15 Published values for
cancellous property

Elastic modulus (MPa) Method Source

300 Micro-compression testing Majumar et al. (1997)

110 Compressive testing Krug et al. (2008)

550 Mechanical testing Ding and Hvid (2000)

4 Conclusions

The structures of biomaterials are highly dependent on
complex geometries. This study has shown that material
properties of hierarchical structures can be found by analyz-
ing each level independently. By linking all hierarchies and
adjusting parameters, the influence of each level can then be
analyzed. Additionally, changes to the geometry at each level
can be completed to test assumptions about the structure of
bone.

The nanoscale constituents of bone were described, and a
spring model was utilized to calculate the longitudinal stiff-
ness of tropocollagen. This simple model produced accurate
results. Additionally, a micromechanical unit cell model was
used to analyze themicroscale components of bone.Bonefib-
rils represent a particle reinforced matrix, while bone fibers
are a fiber reinforced composite. The fibrillar model pro-
duced accurate results as compared to accepted values. The
fiber model could not be compared to experimental results,
so different variations were carried over to the next hierarchy.

The first macroscale structures of bone are the lamellar
layers. These were modeled as a fiber reinforced compos-
ite and compared to accepted values of mineral fraction
volume. The results disproved the twisting hydroxyapatite
fibrillar model. The linear fibril model was utilized for both
cortical and trabecular bone. Thesemacroscale structures uti-
lized a layered composite model to calculate their transverse
isotropic material properties.

A simple finite elementmodel of a tetrakaidecahedronwas
used to model cancellous bone. From experimental testing,
the volume fractions of bone and trabecular thicknesses were
defined for different anatomical locations. The model was
shown to accurately predict the properties of cancellous bone.

Thismodel can be used to validate future discoveries about
the structure of bone.As technology advances, imaging capa-
bilitieswill allow the nanostructures of bone to be explored in
detail. The discoveries can be checked against this model to
assess their impact on macroscale properties. Additionally,
the properties of synthetic bone materials can be checked
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against the hierarchical structure of bone. This would allow
for more anatomically beneficial bone grafts.
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