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Abstract
Composite materials and structures may be characterized at different length scales, ranging from the micro-scale at the
fiber–matrix level, meso-scale at the lamina–laminate level, to structural macro-scale. However, uncertainties in material
properties and geometric parameters due to manufacturing, defects and assembly processes may occur at various length
scales. This paper presents a computational framework for stochastic analysis of composites with consideration of stochastic
parameters at micro- and meso-scales. The novelty of the proposed framework is the integration of the spectral stochastic
finite element method and asymptotic homogenization method within a finite element technique, which was implemented
through ABAQUS�. This spectral stochastic homogenization method efficiently predicts the propagation of uncertainties
from the constituent to ply levels. The derived probability distributions of effective properties were verified by Monte Carlo
simulation. Another novelty is the study of the influence of stochastic parameters at both micro-scale and meso-scale on the
failure prediction of composite structures, without assumptions of probabilistic characteristic of ply properties commonly used
in a single-scale stochastic analysis. The up-scaled uncertainties combined with other randomness at meso-scale (strength
properties and ply orientations) are provided as the input of meso-scale stochastic strength analysis of a quasi-isotropic
laminate based on classical lamination theory (CLT) and ply discount. The probability distribution of first-ply failure and
ultimate failure loads are obtained and their sensitivity factors with respect to input variations are presented.

Keywords Stochastic homogenization · Probabilistic strength · Polynomial chaos · Spectral stochastic method · Monte Carlo
simulation

1 Introduction

Fiber-reinforcedpolymer–matrix composites havebeenwidely
applied in many industries (e.g., aerospace engineering) due
to their excellent properties and tailored-design capability.
Recently, there have been efforts to develop multi-scale sim-
ulation strategies across different length scales (constituent,
ply and laminate level, usually denoted by micro-, meso-
and macro-scale, respectively) (Lorca et al. 2011). How-
ever, statistical uncertainties in properties at micro- and
meso-scales (Chamis 2004) can arise due to various sources
such as manufacturing defects, variable constituent proper-
ties, damage, voids, etc., as shown in Fig. 1. Deterministic
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approaches implicitly account for uncertainties in predictive
models through safety factors, which may be excessively
conservative. Therefore, some recent efforts to incorporate
uncertainties quantitatively in design and analysis of com-
posites have been proposed in the literature (Sriramula and
Chryssanthopoulos 2009; Chiachio et al. 2012; Dey et al.
2017).

As shown in Fig. 1, typical stochastic responses of com-
posite structures at macro-scale include displacement, stress,
strength and natural frequency, which can be obtained based
on ply properties directly or effective properties derived
frommicro- scales (Sriramula andChryssanthopoulos 2009).
Strength analysis is of special interest due to the requirement
of structural integrity and the complicated damage patterns
of composites at bothmicro- andmeso-scales, as indicated in
Fig. 1. The study of failure mechanism in composites could
be enhanced with consideration of stochastic factors, such as
stochastic material properties (e.g., strength) and geomet-
ric randomness (e.g., fiber distribution) in the simulation
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Fig. 1 Sources of uncertainties
and stochastic analysis of failure
of composites

of intralaminar damage, including fiber breakage (Swolfs
et al. 2016; St-Pierre et al. 2017; Pimenta and Pinho 2013;
Pimenta 2017) and transverse matrix cracking (Vinogradov
and Hashin 2005; Andersons et al. 2008). Although it is
ideal to consider each failure patterns faithfully to achieve
high-fidelity simulations, nonlinear computational models
involving damage processes are too computationally inten-
sive in design applications, where multiple design variables
are involved. When reliability or risk of failure of composite
structures (Chiachio et al. 2012) is required to be assessed,
efficiency becomes particularly important and simple analyt-
ical models or linear finite element analysis are preferred.

Furthermore, stochastic finite element methods (SFEM)
have been employed to solve static and dynamic problems
(Stefanou 2009; Arregui-Mena et al. 2016). TheMonte Carlo
simulation (MCS) is a general and direct approach for gen-
erating parametric and geometric randomness. Since the
solution of large number of MC simulations via sample
problems is not computationally viable, various metamodel
or surrogate models, such as response surface methodol-
ogy, artificial neural network and kriging (Dey et al. 2017),
are alternative approaches. If only parametric uncertainties
are considered, the perturbation method and the spectral
stochastic method (Stefanou 2009) may be employed. The
perturbation method characterizes the random feature by the
Taylor series expansion of stochastic FEmatrix and response
vectors. It is relatively efficient compared toMCS and useful
in estimating the statistical moments of stochastic response.
However, the nature of Taylor series expansion means it is
only applicable to problems with small random variations.

The spectral stochastic method introduced by Ghanem and
Spanos (2003) involves not only the discretization with FE
in spatial dimension but also the approximation with poly-
nomial chaos (PC) expansion in stochastic space, the error
of which is minimized through the Galerkin approach. The
advantages of this method are that only one deterministic
equation needs to be solved and thewhole probabilistic struc-
ture of quantities of interest can then be obtained.

Early work on computational stochastic analysis of com-
posite structures was mostly conducted at ply level. Vinck-
enroy and Wilde (1995) adopted MCS combined with FE
modeling and evaluated the variation of maximum stress in
an open-hole composite plate due to randomness in material
properties (E1, E2, v12) and geometric parameters (hole size
and position). Probabilistic strength analysis was developed
by Jeong and Shenoi (2000) based onMCS and first-ply fail-
ure analysis with applied load, elastic moduli, geometric and
strength values assumed as random variables following nor-
mal and Weibull probability distributions. Spatial variation
of strength properties was considered by Wu et al. (2000)
who used a random field model with MCS and FPF based on
Tsai–Hill and Tsai–Wu criteria. The importance of including
the variability ofmaterial elastic properties in reliability anal-
ysis of laminates was demonstrated by Lekou and Philippidis
(2008) and an overestimation of reliability could be caused
without considering these variabilities. Sánchez-Heres et al.
(2014) further investigated the influence of mechanical mod-
els for laminate failure and probabilistic models for ply
properties on reliability estimation of cross-ply laminates.
Among all the factors, the definition and modeling of matrix
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cracking in mechanical models (failure criteria and ply dis-
counts) and the choice of probability distribution (normal,
Weibull and log-normal distributions) have comparatively
large influence. Other applications in composites with MCS
or related metamodels include strength analysis with spatial
variation of loading position (Karsh et al. 2018), buckling
analysis (Kepple et al. 2015), free vibration analysis (Dey
et al. 2015; Chakraborty et al. 2016) and strength analysis of
joints (Vijaya Kumar and Bhat 2015; Zhao et al. 2017).

First-order perturbation technique was adopted by Onkar
et al. (2007) to improve the efficacy in predicting the statistics
of the first-ply failure load of composite plates with random
material properties subject to uniform distributed random
load. Lal et al. (2009, 2011) studied the effect of random
system properties such as material properties and laminate
thickness on thermal buckling load and post buckling load
of composite plates using higher order shear deformation
plate theory and first-order perturbation technique. While
stiffnesses are usually taken as random variables, Noh and
Park (2011) focused on the spatial randomness of Poisson’s
ratio and statisticalmoments of displacementwere calculated
with first-order Taylor-series expansion. However, the com-
puted variation in response is not significant (coefficient of
variation is 1.0–6.0%, the input variation is 0.1), which sug-
gests the variation in Poisson’s ratio may not be critical. The
correlation among random variables for composite structures
(e.g., E11 and E22) was considered in a recent work based
on the combination of the Perturbation method and so-called
Copula function (a tie function linking the marginal cumu-
lative distribution with joint cumulative distribution), which
mitigates the defects of traditional transformation method
in terms of efficiency, accuracy and application (Cui et al.
2017). The spectral stochastic method has also attracted
many applications in modeling composite structures. Chung
et al. (2005) implemented a spectral stochastic version of
solid-like shell element within an object-oriented computa-
tional framework and applied it to fiber metal laminates with
the material properties of glass fiber epoxy layers treated as
independent random field models. Ngah and Young (2007)
compared the accuracy of the perturbation method and the
spectral stochastic method in the stochastic analysis of a
rectangular unidirectional composite panel with structural
stiffness assumed as a Gaussian random field. It shows that
the former method is only efficient for low material vari-
ability (coefficient of variation up to 10%) while the later
method can achieve accurate results with a comparatively
large material variability (24%). Chen and Soares (2008)
extended the application of spectral method to multi-layer
laminates and various moduli (E1, G12, G23, G13) were
modeled as independent random fields. The accuracy and
efficiency of this developed formulation were benchmarked
through MCS. Other recent applications include free vibra-
tion analysis (Sepahvand2016), aeroelastic response analysis

(Scarth et al. 2014) and stochastic analysis of composite
structures with both normal random and interval variables
(Chen and Qiu 2018).

In meso-scale stochastic analysis, assumptions regarding
the probabilistic characteristics of material properties are
often difficult to justify (Charmpis et al. 2007). Charmpis
et al. (2007) proposes that macro-properties be derived from
micro-mechanical stochastic information. Therefore, only
the stochastic constituent properties need to be quantified.
By casting simple analytical micro-mechanical model in a
probabilistic framework, Shaw et al. (2010) derived macro-
level statistics for reliability analysis of composites with
MCS. Stochastic fiber and matrix properties as well as vol-
ume fraction were also considered by Li et al. (2016) in
the stochastic thermal buckling analysis of laminated plates
using perturbation method. Other analytical homogenization
methods include self-consistentmodel and differentialmodel
explored by Ma et al. (2011). Although stochastic analyt-
ical homogenization method is simple and fast due to the
closed formulations, the simplified assumptions limit their
applications. Hence, stochastic computational homogeniza-
tion has received more attention recently. Perturbation-based
stochastic finite element method was first developed by
Kamiński and Kleiber (2000). Sakata et al. (2008) extended
the perturbation-based stochastic homogenization to detailed
three-dimensional analysis and considered randomness in
Young’s modulus and Poisson’s ratio of constituent mate-
rials. They conclude that the perturbation-based method
does not perform well for nonlinear stochastic problems
with large variations. A recently developed computational
homogenization method Perić et al. (2011) was imple-
mented with a second-order perturbation technique by Zhou
et al. (2016a, b) for the stochastic homogenization of uni-
directional composites and woven textile composites. The
multi-scale uncertainty issuewas later addressed in reliability
analyses for composite structures (Zhou et al. 2016c, 2017).
However, besides being inaccurate in applications with large
variation, the perturbation-based analysis is unable to pre-
dict probability distribution. The spectral stochastic method
is promising in solving this problembut related researchwork
still remains few (Tootkaboni and Graham-Brady 2010).
Other recent work includes the application of artificial neu-
ral networks (Balokas et al. 2017) and interval method (Chen
et al. 2017).

The above review has shown that although numerous
work has been conducted for stochastic analysis of com-
posites based on randomness at meso-scale with various
methods, there has beenmore recentwork exploring random-
ness at the micro-scale level. However, work on uncertainty
propagation from micro-properties to macro-response still
remains few, with the exception of recent work by Zhou
et al. (2016c, 2017) based on the perturbation method.
Considering the aforementioned advantages of the spectral
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stochastic method, we propose a computational framework
for spectral stochastic multi-scale analysis of composites
structures. The structure of this paper is organized as follows.
In Sect. 2, the formulation of spectral-based stochastic multi-
scale methods is presented for both homogenization and
macro-analysis. The numerical implementation is detailed
in Sect. 3. Section 4 shows the predicted stochastic out-
puts including stochastic effective properties and stochastic
macro-behavior. Conclusions are drawn in Sect. 5.

2 Spectral-based stochastic multi-scale
methods

In this section,wepresent the stochastic formulation of a hier-
archical multi-scale analysis of fiber-reinforced composites,
where a computational homogenization is adopted to obtain
the effective properties prior to themacro-analysis. The spec-
tral stochastic method is introduced to solve this uncertainty
propagation problem. The subsequent macro-failure analysis
is then conducted based on the stochastic effective properties
and other uncertainties obtained at meso-scale.

2.1 Stochastic formulation of asymptotic
homogenization

In computational homogenization methods, a representative
volume element (RVE) is usually adopted to calculate effec-
tive properties based on asymptotic method (Kamiński and
Kleiber 2000) and Hill–Mandel macro-homogeneity condi-
tion (Zhou et al. 2016a). As shown in Fig. 2, besides the
original scale x, another length scale y = x/ζ (ζ � 1)
is introduced to describe the fast variable, corresponding to
macro-scale and micro-scale in the context of composites,
respectively. Assuming periodic micro-structure, the stiff-
ness tensor is a function of properties at the micro-scale

D
ζ (x) = D( y) = D(x/ζ ), (1)

where superscript ζ denotes the ζ Y-periodicity in the system
of coordinates x. Considering randomness in the stiffness

Fig. 2 Illustration of homogenization method

tensor, the strong form of original boundary value problem
can be written as:

∇ζ · σ ζ (x, ξ) + b = 0, in Ω;
σ ζ (x, ξ) = D

ζ (x, ξ) : εζ (x, ξ), in Ω;
εζ (x, ξ) = ((∇ζ uζ (x, ξ))T + ∇ζ uζ (x, ξ))/2, in Ω;
uζ = û on ∂uΩ; σ ζ · n = t̂ on ∂tΩ;

(2)

where ξ is a vector of randomvariables and∇ζ = ∇x+∇ y/ζ

according to the chain rule.
A double-scale asymptotic expansion of displacement

field is expressed as:

uζ (x, ξ) = u(0)(x, y, ξ) + ζu(1)(x, y, ξ)

+ζ 2u(2)(x, y, ξ) + O(ζ 3), (3)

where u(0)(x, y, ξ) = u(0)(x, ξ). Then strain and stress can
be derived as:

εζ (x, ξ) = ζ−1ε(0)(x, y, ξ) + ε(1)(x, y, ξ)

+ ζ 1ε(2)(x, y, ξ) + O(ζ 2),

σ ζ (x, ξ) = ζ−1σ (0)(x, y, ξ) + σ (1)(x, y, ξ)

+ ζ 1σ (2)(x, y, ξ) + O(ζ 2).

(4)

With these expansions, the two-scale problem can be derived
directly by substitutingEqs. (3) and (4) intoEq. (2) or through
a variational form. The homogenized problem can then be
given by:

∇x · σ h(x, ξ) + b = 0, in Ωh;
σ h(x, ξ) = D

h(x, ξ) : εh(x, ξ), in Ωh;
εh(x, ξ) = ((∇xuh(x, ξ))T + ∇xuh(x, ξ))/2, in Ωh;
uh = û on ∂uΩ

h; σ h · n = t̂ on ∂tΩ
h;

(5)

where superscript h denotes homogenization.
Effective properties of composites can be derived from the

homogenized stiffness tensor Dh(·, ξ), which is given by:

D
h(·, ξ) = 1

|Y |
∫
Y
D( y, ξ) : (I − ∇ yχ( y, ξ))T dy, (6)

where χ( y, ξ) is the characteristic displacement tensor of
third-order which is determined by:

∇ y · (D( y, ξ) : (I − ∇ yχ( y, ξ))T ) = 0. (7)
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For the purpose of numerical solution, weak formulations
can be written as:

∫
Y

∇ yν : D( y, ξ) : (∇ yχ( y, ξ))T dy

=
∫
Y

∇ yν : D( y, ξ)dy, ∀ ν ∈ ṼY , (8)

where ṼY is the set of Y-periodic continuous and sufficiently
regular functions with zero average in Y. Equation (8) is usu-
ally solved by FEM, the matrix form of which is given by:

nele

A
e=1

(∫
Y e

BeT De(ξ)Bedyχe(ξ)

)
=

nele

A
e=1

(∫
Y e

BeT De(ξ)dy

)
,

(9)

where nele is the number of elements used for discretizing
the RVE and Be is strain displacement matrix.

The solution of Eq. (9) is then substituted into Eq. (6) and
the homogenized stiffness matrix can be obtained as:

Dh(ξ) =
nele∑
e=1

Ve
Vtot

De(ξ)(I − Beχe(ξ)), (10)

where Vtot is the volume ofRVEand Ve is the volume of a sin-
gle element. As seen from Eqs. (9) and (10), the randomness
of homogenized stiffness matrix originates in the proper-
ties of fiber and matrix De(ξ). The probability distribution
of effective properties Dh(ξ), may be directly obtained by
repeatedly generating samples of De(ξ) and solving Eqs. (9)
and (10) but it is inefficient and very time-consuming. Thus, a
non-sampling method is introduced in the following section.

2.2 Spectral stochastic homogenizationmethod

The spectral stochastic method adopts polynomial chaos
(PC) expansions to discretize random variables in stochastic
space. It is sometimes used with finite element method and
thus also termed spectral stochastic finite element method.
This method is initially developed to solve stochastic linear
static problems but is employed here for stochastic homog-
enization. Suppose the input stochastic parameters can be
expressed as a linear combination of random variables

De(ξ) =
N−1∑
i=0

De
i ξi (11)

and approximation of solution variables in Eq. (9) can be
expressed with polynomial chaos (orthogonal polynomials
in terms of random variables)

χe(ξ) = χe
0Γ0+

N∑
i=1

χe
i Γ1(ξi )+

N∑
i=1

i∑
j=1

χe
i jΓ2(ξi , ξ j )+· · · ,

(12)

where Γp denotes the polynomial chaos of order p. Equation
(12) may be truncated after the pth order polynomial chaos
terms and expressed in a compact form

χe(ξ) ≈
Pχ−1∑
j=0

Xe
jΨ j (ξ), (13)

where the stochastic basis Ψ j (ξ) satisfies

Ψ0(ξ) ≡ 1, E[Ψ j (ξ)] = 0, E[Ψ j (ξ)Ψk(ξ)] = 0 ( j > 0, j �= k),

(14)

where E[·] denotes expectation operator and the remaining
polynomial chaos terms are given by:

Pχ = (N + p)!
N !p! . (15)

The Hermite polynomial chaos expansion was used by
(Ghanem and Spanos 2003) for problems with Gaussian ran-
dom variables and generalized polynomial chaos expansion
for various types of random variables (Xiu 2010).

Substituting Eqs. (11) and (13) into Eq. (9), the approxi-
mation error can be minimized through Galerkin approach

nele

A
e=1

(keXe) =
nele

A
e=1

( f e);

kejk =
N−1∑
i=0

∫
Y e

BeT De
i B

edyci jk , ci jk = E[ξiΨ j (ξ) · Ψk(ξ)];

f ek =
N−1∑
i=0

∫
Y e

BeT De
i dydik , dik = E[ξi · Ψk(ξ)];

j, k = 0, 1, · · · , Pχ − 1.

(16)

Since Eq. (16) is a set of deterministic linear equations, it can
be readily solvedwith FE. The solution Xe is then substituted
into Eq. (13) and explicit expressions of χe(ξ) in terms of
simple random variables (e.g., normal random variable) can
be obtained. However, the stochastic homogenized stiffness
matrix still cannot be derived directly throughEq. (10),which
contains two parts of randomness De(ξ) and χe(ξ).

Employing PC expansions again to the left hand side of
Eq. (10)

Dh(ξ) =
Qχ−1∑
m=0

Dh
mΨm(ξ). (17)
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Fig. 3 Illustration of force and moment resultants on a composite lam-
inate

For the sake of simplicity, Pχ = Qχ is assumed. Substituting
Eqs. (11), (13) and (17) into Eq. (10), the coefficients of Eq.
(17) can be obtained similarly as those of Eq. (13)

c̄mm Dh
m =

nele∑
e=1

Ve
Vtot

⎛
⎝N−1∑

i=0

De
i dim −

N−1∑
i=0

Pχ−1∑
j=0

De
i B

eXe
j ci jm

⎞
⎠ ,

c̄mm = E[Ψm(ξ) · Ψm(ξ)]. (18)

With the explicit expressions given by Eq. (17), the proba-
bility distribution of stochastic homogenized matrices can be
obtained through sampling ξ . The effective properties can be
derived from compliance matrix Sh(ξ) = (Dh(ξ))−1 given
by:

Sh(ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

− v21
E2

− v31
E3

0 0 0

− v12
E1

1
E2

− v32
E3

0 0 0

− v13
E1

− v23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

2.3 Stochastic failure analysis of laminates

Failure analysis of multi-layer laminates are critical to the
design of composite structures. With complicated failure
mechanisms presented in composites, various methods have
been developed based on advanced finite elements (Tay et al.
2008). In design, classical lamination theory combined with
a suitable failure criterion are used for reliability analysis
of laminate plates (Nakayasu and Maekawa 1997; Lopez
et al. 2014). Consider a laminate plate with n layers of
fiber orientation θi (η), i = 1, 2, . . . , n, where η denotes the
randomness due to fiber misalignment at ply level. In Fig.
3, N = {Nx , Ny, Nxy}, M = {Mx , My, Mxy} are resul-
tant forces and moments per unit length applied along the
edge. Based on Kirchhoff’s hypothesis, the displacements
can be parametrized by a translation and a rotation. The lam-
inate strain in the global coordinate x–y–z is expressed as

ε = ε0 + zκ , where ε0 and κ are midplane strains and cur-
vatures (Kaw 2005). For the ith layer, the strain in the local
material coordinate 1–2–z is εloc = T1(η)ε,

⎡
⎣ ε1

ε2
γ12

⎤
⎦ =

⎡
⎣ c2 s2 cs

s2 c2 −cs
−2cs 2cs c2 − s2

⎤
⎦

⎡
⎣ εx

εy
γxy

⎤
⎦ , (20)

where c = cos(θi ) and s = sin(θi ). Similar transformation
in terms of stress is given as σ = T2(η)σ loc,

⎡
⎣σx

σy

τxy

⎤
⎦ =

⎡
⎣c2 s2 −2cs
s2 c2 2cs
cs −cs c2 − s2

⎤
⎦

⎡
⎣σ1

σ2
τ12

⎤
⎦ . (21)

The homogenized constitutive relationship is given by:

σ loc = Q(ξ)εloc, (22)

where Q(ξ) is the reduced stiffness stiffness matrix

Q(ξ) =

⎡
⎢⎢⎣

E1
1−v12v21

v21E1
1−v12v21

0

v12E2
1−v12v21

E2
1−v12v21

0

0 0 G12

⎤
⎥⎥⎦ . (23)

For the i th layer, the stress–strain relationship in global coor-
dinates is given as:

σ = Q̄i (ξ , η)ε = T2(η)Q(ξ)T1(η)ε. (24)

Integrating Eq. (24) in each layer through the thickness, we
obtain the relationship between force/moment resultants and
midplane strain/curvature as:

[
N
M

]
=

[
A(ξ , η) B(ξ , η)

B(ξ , η) D(ξ , η)

] [
ε0

κ

]
, (25)

where A, B and D are extensional, coupling, and bending
stiffness matrices (Kaw 2005). Note the randomness in the
stiffnessmatrices includes stochastic effective properties and
stochastic fiber orientation, denoted by the random vectors ξ

and η, respectively.
Failure criteria may be applied with the stresses calcu-

lated from Eqs. (24) and (25). Some commonly used failure
theories include the maximum stress failure theory

XC < σ1 < XT , YC < σ2 < YT , |τ12| < S (26)
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and the Tsai–Wu failure theory

F11σ
2
1 + 2F12σ1σ2 + F22σ

2
2 + F66τ

2
12 + F1σ1 + F2σ2 < 1

F11 = 1

XT XC
, F22 = 1

YT YC
, F66 = 1

S2

F1 = 1

XT
− 1

XC
, F2 = 1

YT
− 1

YC
, F12 = −1

2

√
F11F22,

(27)

where XC and XT are longitudinal compressive and tensile
strength, YC and YT are transverse compressive and tensile
strength, S is shear strength in the 1–2 plane. As the lam-
inate is composed of multiple layers, the failure process is
progressive and involves stress redistribution. Although the
failure mechanisms are generally complex, a conservative
approach of ply discounts of failed plies are often used in
design from first-ply failure (FPF) to ultimate failure (UF).
The FPF strength is the load at which the initiation of fail-
ure in the first ply, determined by the failure criterion. In the
following stress analysis, the stiffness matrix of a partially
failed layer is partially discounted as:

Q(ξ) =
⎡
⎣

E1
1−v12v21

0 0
0 0 0
0 0 0

⎤
⎦ , (28)

if fiber direction stress is below the failure strengths in the
fiber direction, i.e., XC < σ1 < XT . If fiber failure has
occurred, full degradation is adopted, i.e., Q = 0. The pro-
cess of ply discounting continues as successive plies fail,
until the last ply has failed, whereupon it is deemed to have
reached its ultimate failure (UF) load.

3 Numerical implementation

The section describes the implementation of stochastic
homogenization and failure analyses. Traditionally, it is dif-
ficult to implement spectral-based finite element method
(SSFE) in a commercial FE package because its formulation
is usually developed at the global stiffness matrix (Stefanou
2009). To overcome this difficulty, SSFE at element stiffness
level has been formulated and implemented in UEL (user-
defined elements) in ABAQUS�. FromEq. (16), the element
stiffness, force matrices and solution variables can be written
as:

ke =

⎡
⎢⎢⎣

ke0,0 · · · ke0,Pχ −1
.
.
.

. . .
.
.
.

kePχ −1,0 · · · kePχ −1,Pχ −1

⎤
⎥⎥⎦ , f e =

⎡
⎢⎢⎣

f e0
.
.
.

f ePχ −1

⎤
⎥⎥⎦ , Xe =

⎡
⎢⎢⎣

Xe
0
.
.
.

Xe
Pχ −1

⎤
⎥⎥⎦ .

(29)

The size of sub-matrices kei j is equivalent to that of standard
solid element, 8× 8. Thus, the design of this new stochastic
element requiresmore degrees of freedom,which is achieved
by defining a superelement (called ‘stochastic element’ here)
containing extra sets of nodes (8 nodes per set). The number
of node sets is Pχ , which depends on the truncated terms in
polynomial chaos expansion. Since the force matrix in Eq.
(16) contains six column vectors, a linear perturbation step
is adopted for the solution and six load cases in total are
applied.

As shown in Fig. 4, a numerical model of single-fiber
representative volume element with periodic boundary con-
ditions is first created. Then the input file is modified for
the purpose of spectral stochastic analysis and a UEL file
is generated with a MATLAB� program. With the solution
of Eq. (16), an explicit formulation of stochastic homoge-
nized stiffness matrix is derived based on Eqs. (17) and (18).
The probabilistic distribution of the effective properties can
be reproduced through post-processing and sampling gen-
eration by Monte Carlo simulation (MCS). The up-scaled
stochastic effective properties and other stochastic parame-
ters are then provided as the input for the stochastic failure
analysis. Sensitivity analysis could be performed by calcu-
lating the correlation of the input parameters with the output,
which is a by-product of the stochastic analysis.

4 Results and discussion

In this section, a quasi-isotropic AS4/3501-6 laminate with
lay-up of [90o/ ± 45o/0o]s has been analyzed with uncer-
tainties at both micro- and meso-scales. Based on the
aforementioned methods, the probabilistic characteristics of
effective properties of the lamina and strength values of the
laminate are calculated.

4.1 Stochastic effective properties

Effective elastic properties of AS4/3501-6 composites were
firstly estimated based on the constituent material proper-
ties. The fiber is transversely orthotropic and the matrix
is isotropic, elastic properties of which are given as fol-
lows (average values): E f

1 = 225GPa, E f
2 = 15GPa,

G f
12 = 15GPa, v

f
12 = 0.2, v

f
23 = 0.07; Em = 4.2GPa,

vm = 0.34 (Soden et al. 1998; Zhou et al. (2016c)). The
uncertainties in micro-scale properties are introduced uni-
formly in the stiffness matrices of fiber and matrix as:

D(ξ) = D0 + D1ξ1 + D2ξ2 =
{
D f + Cv D f ξ1 fiber

Dm + Cv Dmξ2 matrix,

(30)
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Fig. 4 Flow chart of stochastic
two-scale analysis framework

Table 1 Polynomial chaos from order 1 to 3 (Ψ0 = 1)

p j Ψ j (ξ1, ξ2)

1 1–2 ξ1, ξ2

2 3–5 ξ21 − 1, ξ1ξ2, ξ22 − 1

3 6–9 ξ31 − 3ξ1, ξ2(ξ21 − 1), ξ1(ξ22 − 1), ξ32 − 3ξ2

where Cv is the coefficient of variation (COV) and ξ1, ξ2
are two independent random variables of standard normal
distribution. Two cases were studied with small variation
(Cv = 0.1) and large variation (Cv = 0.2), respectively. The
truncated order in the PC expansion is tested from p = 1
to p = 3. Although higher accuracy is achieved with more
terms, it also increases computational burden. The polyno-
mial chaos corresponding to each order is given in Table 1.
To verify the results by the method developed, Monte Carlo
simulations were conducted with 104 samples. The conver-
gence of the results (mean value and coefficient of variance of
Dh(1, 1) is shown in Fig. 5. The total CPU time for the MCS
is 0.8 × 104 s (with a computer: four processors of Intel�

CoreTM i5-2400CPU@3.10GHz, 8GBmemory) while that
for the spectral-based method with up to third-order terms is
6.74 s, which illustrates the efficiency of spectral stochastic
homogenization method.

The coefficients in Eq. (13) are firstly calculated as the
main solution variables as shown in Eq. (16). According to
the properties of Ψ j (ξ), X0 is the mean value of stochastic
characteristic displacement χ(ξ). An example of X0 is given
in Fig. 6, which shows the deformations of theRVE subjected
to tension in each of the three directions (X ,Y , Z) and shear
in each of the three planes (X − Y ,Y − Z , X − Z). Having
obtained X j , the coefficients in the expansion of stochastic
homogenized stiffness matrix can be calculated through Eq.

Fig. 5 Statistical convergence of a mean(Dh(1, 1)), b Cov(Dh(1, 1))
with MCS

(18). Through post-processing, the probability distribution
of effective properties is plotted in Fig. 7 and compared with
the results by MCS. It can be seen that high accuracy is
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Fig. 6 The mean value of stochastic characteristic displacement for the case (Cv = 0.2) a 1st, b 2nd, c 3rd, d 4th, e 5th and f 6th column of X0
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Fig. 7 Probability distribution of stochastic effective properties by spectral-based method and MCS a E1, b E2, c G12, d G23, e v12, f v23

achieved with the new method for both cases (Cv = 0.1,
0.2) when second-order and third-order PC expansions are
adopted. Only very small differences from the MCS results
are found for the Poisson’s ratios v12 and v23 with p = 1.
The reason is that the first-order PC expansion in Table 1
is only capable of reproducing a linear combination of two
Gaussian random variables. The statistics including mean
value and standard deviation for the case with large variation
are listed in Table 2 and comparisons are shown in Fig. 8.
The coefficient of variation in E1, E2, G12 and G23 are all
smaller than the input variation (0.2) and the variations in

v12 and v23 are extremely small, which illustrates that the
randomness considered in stiffness matrix (due to moduli)
hardly propagates to effective Poisson’s ratio. Similarly, only
the standard deviation in Poisson’s ratio with p = 1 deviates
from MCS results.

Besides the probability characteristic of individual effec-
tive properties, another feature that can be captured with
stochastic analysis frommicro-scale is the correlation among
different properties. The correlation coefficients calculated
by MCS and spectral-based method (p = 2) are given in
Table 3. Strong correlation (defined as the absolute value of
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Table 2 Statistics of effective properties by MCS (Cv = 0.2, moduli
in GPa)

Properties Mean STD COV

E1 136.409 26.911 0.197

E2 9.358 1.380 0.148

G12 4.598 0.724 0.157

G23 3.004 0.473 0.157

v12 0.253 0.002 0.008

v23 0.258 0.001 0.005

Fig. 8 Statistics of stochastic effective properties by spectral-based
method and MCS (Cv = 0.2): a normalized mean value, b normalized
standard deviation (results by MCS are adopted as baseline)

correlation coefficients larger than 0.5) can be found in pairs
E1/E2, E1/v12, E2/G12, E2/G23, G12/G23 and v12/v23.
This information is usually absent in the stochastic analysis
directly based on meso-scale, where the effective proper-
ties are assumed independent random variables (Zhou et al.
2016c). It should also be noted the correlation coefficients
depend on the input random variables considered in the con-
stituent properties. To evaluate the effect of variation of input
parameters (ξ1, ξ2) on the stochastic effective elastic proper-

Table 3 Correlation of effective properties from results (Cv = 0.2)
by MCS and spectral-based method with p = 2 (MCS-upper right
triangular, spectral-lower left triangular)

Properties E1 E2 G12 G23 v12 v23

E1 0.736 0.407 0.408 −0.706 0.417

E2 0.738 0.915 0.916 −0.109 0.344

G12 0.404 0.914 1.000 0.287 0.157

G23 0.405 0.914 1.000 0.286 0.159

v12 −0.708 −0.112 0.291 0.290 −0.566

v23 0.443 0.330 0.120 0.121 −0.608

Fig. 9 Sensitivity factors of effective elastic properties with respect to
variation of fiber and matrix properties

ties, sensitivity analysis can be conducted as a by-product of
spectral homogenization, the results of which are plotted in
Fig. 9. It can be observed that E1 is sensitive to the variation
of fiber properties while E2 is correlated with both fiber and
matrix constituents. The shear moduli are more influenced
by randomness of matrix than that of fiber and v12 is more
sensitive to constituent properties than v23.

4.2 Stochastic strength predictions

The uncertainties of composites at micro-scale are prop-
agated to meso-scale through stochastic homogenization,
which results in the randomness in effective elastic proper-
ties. Since the elastic properties can affect the stress analysis
of composite structures, these uncertainties are included in
the stochastic strength calculation. For the sake of clarity,
only the case with large variation (Cv = 0.2) analyzed in
the previous section is studied here. Furthermore, additional
uncertainties considered at meso-scale include ply strength
properties and ply misalignment. The statistical properties
are listed in Table 4, where strength parameters are treated
as log-normal variables and misalignment angle is assumed
normally distributed. The total thickness of the laminate with
lay-up of [90o/ ± 45o/0o]s is h = 1.1 mm and each ply is
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Table 4 Statistical properties of
random variables at meso-scale
(Zhou et al. 2016c; Chamis
2004)

Random variable Mean value (μ) Standard deviation (σ ) Distribution

Strength XT 1969MPa 0.1μ Log-normal

XC 1480 MPa 0.12μ Log-normal

YT 48 MPa 0.06μ Log-normal

YC 200 MPa 0.08μ Log-normal

S 79 MPa 0.11μ Log-normal

Ply misalignment θ̂ 0o 0.9o Normal

Fig. 10 Statistical convergence of a mean value, b coefficient of vari-
ation of FPF load and UF load (uniaxial tension, Nx/h)

of equal thickness. Two loading conditions are considered:
one for uniaxial tension (Nx > 0) and the other for biaxial
tension (Nx = 2Ny > 0). The first-ply failure (FPF) and
ultimate failure (UF) loads are calculated with 104 samples
(MCS). The statistical convergence of the mean and COV for
the uniaxial tension case is illustrated in Fig. 10.

As shown by the distribution of the FPF load and UF load
in Fig. 11, it can be observed that the scatter of UF load is
larger than that of FPF load since the FPF load only depends
on the strength of the weakest ply and progressive failure of
all the plies influences the final failure. In addition, the Tsai–
Wu criterion is more conservative in evaluating the UF load
thanmaximumstress criterion but the difference in prediction

Fig. 11 Probability distribution of FPF load andUF load of the laminate
subject to a uniaxial loading, b biaxial loading (Nx = 2Ny) based on
maximum stress and Tsai–Wu failure theory

of FPF load is small. With the stochastic strength and given
load variation, reliability factor of the composite plates can
be evaluated for a limit state design. Furthermore, sensitivity
analysis is implemented for understanding the effect of elas-
tic properties (E1, E2, G12 and v12), strength properties (Xt ,
Xc, Yt , Yc and S) and ply angles (θi , i = 1, 2, . . . , 8) on the
failure load. The results for two loading cases based on two
criteria are given in Fig. 12. The FPF load is strongly corre-
lated with E1 and v12 among elastic properties and Yt , which
indicates transverse matrix crack occurs at first-ply failure.
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Fig. 12 Sensitivity factor of
FPF and UF load with respect to
variations in inputs a unaxial
loading, maximum stress
criterion; b biaxial loading,
maximum stress criterion; c
unaxial loading, Tsai–Wu
criterion; d biaxial loading,
Tsai–Wu criterion

123



116 Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:103–118

As for the ultimate failure, longitudinal tensile strength Xt

plays an important role. Moreover, the effect of ply misalign-
ment on failure load is not significant in the current study
involving tensile loading, which indicates this type of geo-
metric uncertainties can be ignored in future development
of non-sampling-based stochastic methods at meso-scale.
However, fiber misalignment and waviness may affect the
compressive failure strength (Liu et al. 2004), but a more
sophisticated model should be established.

An important feature of stochastic analysis from micro-
scale is the correlation among effective elastic properties.
To study the effect of the correlation on stochastic failure
load, further analysis was conducted with uncorrelated E1,
E2, G12 and v12, which are generated by random sampling
from previous results with the same probability distribution
as shown in Fig. 7. The predicted results and previous ones
are compared in Fig. 13 based on Tsai–Wu criterion. It can
be observed that the probability distribution of the FPF load
without considering the correlation becomes flatter than the
results considering correlation while the predicted UF load
distribution is very close. This observation agrees well with
the sensitivity results in Fig. 12c that the UF load is not
sensitive to the elastic properties. But for biaxial cases, the
FPF load and UF load are both affected and the scatter of
both becomes larger. The results illustrate the relevance of
a proper characterization of the correlation information of
material properties at ply level, which is usually absent in a
meso-scale stochastic analysis.

5 Conclusion

In this paper, a spectral-based stochastic multi-scale method
is proposed for computational structural analysis of compos-
ites with multi-uncertainties. Classical asymptotic homoge-
nization method is employed to connect material properties
at micro-scale and meso-scale. Uncertainty propagation
between these two scales are achieved by combing asymp-
totic homogenization with the spectral stochastic finite
element method. With two random variables standing for
uncertainties in fiber and matrix taken into account, the
probability structure of effective elastic properties is fully
predicted with polynomial chaos expansion. The statistical
results including probability distribution, statisticalmoments
and correlation are compared with converged results by
Monte Carlo simulations, which shows good agreements.
By incorporating stochastic effective properties and other
uncertainties at meso-scale, stochastic strength analysis of a
quasi-isotropic composite laminate has been conducted with
analytical approach and Monte Carlo simulations. Probabil-
ity distribution of first-ply failure and ultimate failure load
values are predicted, which can provide a basis for reliabil-
ity analysis of composite structures. Furthermore, sensitivity

Fig. 13 Probability distribution of FPF load andUF load of the laminate
subject to a uniaxial loading, b biaxial loading (Nx = 2Ny) based on
Tsai–Wu failure theory and correlated and uncorrelated effective elastic
properties

analysis shows that parameters such as E1, v12, Xt and Yt
are critical while the parameters θi hardly affect stochas-
tic outputs in current analysis of tensile strength, which
indicates the dimension of this stochastic problem can be
reduced for the uniaxial and biaxial tensile load cases studied
here. Besides, a further analysis with uncorrelated effective
properties shows larger scatter in the stochastic failure load
prediction. It implies that a meso-scopic stochastic analysis
cannot achieve reasonable prediction unless the correlations
among material properties are quantified in advance.

In conclusion, this work proposes a computational frame-
work combining different mechanics models and probabil-
ity methods and illustrates stochastic multi-scale analysis
of composite structures through numerical examples. As
regards the uncertainty propagation from micro-scale to
meso-scale, the spectral stochastic finite element method
is efficient, however, the application of which is usually
limited in engineering due to its intrusive formulation. To
this end, a specific type of element with variable nodes is
developed and implemented in a commercial FE package.
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Although only Gaussian random distribution is considered in
this work, other types of distribution can be included in this
framework by employing generalized polynomial chaos (Xiu
2010). Future development of this framework with nonlinear
mechanics may consider the collocation method (Panayirci
and Schuëller 2011), which is promising in stochastic anal-
ysis of complicated problems. Finally, to build an integral
framework of stochastic analysis of composite structures,
frequency statistics of large amount of test data or stochas-
tic inverse analysis based on limited available experimental
data is necessary for the quantification of uncertainties in the
input of current analysis.
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Kamiński M, Kleiber M (2000) Perturbation based stochastic finite ele-
ment method for homogenization of two-phase elastic composites.
Comput Struct 78(6):811–826

Karsh PK, Mukhopadhyay T, Dey S (2018) Spatial vulnerability analy-
sis for thefirst ply failure strength of composite laminates including
effect of delamination. Compos Struct 184:554–567

Kaw Autar K (2005) Mechanics of composite materials. CRC Press,
Boca Raton

Kepple J, Herath MT, Pearce G, Prusty BG, Thomson R, Degenhardt
R (2015) Stochastic analysis of imperfection sensitive unstiffened
composite cylinders using realistic imperfection models. Compos
Struct 126:159–173

Lal A, Singh BN, Kumar R (2009) Effects of random system properties
on the thermal buckling analysis of laminated composite plates.
Comput Struct 87(17):1119–1128

Lal A, Singh BN, Kale S (2011) Stochastic post buckling analysis of
laminated composite cylindrical shell panel subjected to hygrother-
momechanical loading. Compos Struct 93(4):1187–1200

Lekou DJ, Philippidis TP (2008) Mechanical property variability in
FRP laminates and its effect on failure prediction. Compos B Eng
39(7–8):1247–1256

Li JQ, Tian XP, Han ZJ, Narita Y (2016) Stochastic thermal buckling
analysis of laminated plates using perturbation technique. Compos
Struct 139:1–12

Liu D, Fleck NA, Sutcliffe MPF (2004) Compressive strength of fibre
composites with random fibre waviness. J Mech Phys Solids
52(7):1481–1505

Lopez RH, Miguel LFF, Belo IM, Cursi JES (2014) Advantages of
employing a full characterization method over form in the reli-
ability analysis of laminated composite plates. Compos Struct
107:635–642

Lorca JL, González C, Molina-Aldareguía JM, Segurado J, Seltzer R,
Sket F, RodríguezM, Sádaba S, Muñoz R, Canal LP (2011) Multi-
scale modeling of composite materials: a roadmap towards virtual
testing. Adv Mater 23(44):5130–5147

Ma J, Temizer I, Wriggers P (2011) Random homogenization analysis
in linear elasticity based on analytical bounds and estimates. Int J
Solids Struct 48(2):280–291

Nakayasu H, Maekawa Z (1997) A comparative study of failure criteria
in probabilistic fields and stochastic failure envelopes of composite
materials. Reliab Eng Syst Saf 56(3):209–220

Ngah MF, Young A (2007) Application of the spectral stochastic finite
element method for performance prediction of composite struc-
tures. Compos Struct 78(3):447–456

Noh HC, Park T (2011) Response variability of laminate composite
plates due to spatially random material parameter. Comput Meth-
ods Appl Mech Eng 200(29):2397–2406

Onkar AK, Upadhyay CS, Yadav D (2007) Probabilistic failure of lami-
nated composite plates using the stochastic finite element method.
Compos Struct 77(1):79–91

Panayirci HM, Schuëller GI (2011) On the capabilities of the polyno-
mial chaos expansion method within SFE analysis—an overview.
Arch Comput Methods Eng 18(1):43–55
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