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Abstract
After effective investigation on various exploration activities, from a geothermal prospect, stakeholders are constantly anxious
to know of its potential. Geothermal resource assessment is estimation of the amount of thermal energy that is stored beneath
the earth’s surface and can be extracted from a geothermal reservoir and used economically for a time frame, normally
a very long while. A study was undertaken to calculate energy potential of the Dholera Geothermal Field. Using various
parameters from the geoelectrical model, the resource potential beneath the subsurface was calculated by applying Monte
Carlo simulation. Using various parameters from the geoelectrical model and applying Monte Carlo simulation, the resource
potential beneath the subsurface was calculated. It was calculated considering all uncertain parameters (random values) within
the span of the minimum, the most likely and the maximum triangular distribution. The result shows the frequency distribution
of energy values. Energy estimated at 3 km depth in Dholera is 3.73 × 1010 J (P50 Case). Energy estimated for P90 case is
2.90 × 1010 J and for P10 case is 3.73 × 1010 J.

Keywords Volumetric method · Monte Carlo simulation · Geothermal energy · Resource estimation

List of Symbols

μ Mean
σ 2 Variance
QT Total thermal energy (kJ/kg)
Qr Heat in rock (kJ/kg)
Qs Heat in steam (kJ/kg)
Qw Heat in water (kJ/kg)
A Area of the reservoir (m2)

h Average thickness of the reservoir (m)
Cr Specific heat of rock at reservoir condition

(kJ/kgK)
Cl Specific heat of liquid at reservoir condition

(kJ/kgK)
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Cs Specific heat of steam at reservoir condition
(kJ/kgK)

φ Porosity
Ti Average temperature of the reservoir (◦C)

Tc Final or abandonment temperature (◦C)

Sw Water saturation
ρsi Steam density at reservoir temperature (kg/m3)

ρwi Water density at reservoir temperature (kg/m3)

Hsi Steam enthalpy at reservoir temperature (kJ/kg)
Hwi Water enthalpy at reservoir temperature (kJ/kg)
Hwf Final water enthalpy (kJ/kg)

1 Introduction

MonteCarlo simulation is a numerical demonstratingmethod
named after the city ofMonte Carlo inMonaco, where funda-
mental attractions are the gambling clubs. These clubs offer
various games of chance like roulette wheels, slot machines,
dice and card games (Sarimiento and Bjornsson 2007; Kalos
andWhitlock 2007). There are different methods to estimate
themaximumandminimumgeothermal energy of a reservoir
based on the laws of conservation of mass and energy. These
methods used for resource assessment vary depending upon
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the available information at different stages of geothermal
development and the accuracy of the methods depends upon
the certainty of available information (Zarrouk and Simiyu
2013). The methods are listed below:

• Power density method
• Surface thermal flux method
• Magmatic heat budget method
• Numerical reservoir modeling
• Stored heat or volumetric assessment
• Lumped parameter models
• Decline analysis
• Natural state matching
• History matching
• Probabilistic and deterministic method
• Genetic algorithm.

All of the above methods have been applied determinis-
tically or through some form of probabilistic approach, but
most of them have disadvantages or limited applicability.
Assessment of available energy output based on surface heat
flow method is likely to lead to an unrealistically low num-
ber for the sustainable extraction rate over a typical project
life. Using summation of well output methods alone is not
at all clearly defined or formulated. But if this method is
combined with decline analysis method based on a suitable
history of well performance it gives a better idea of resource
estimation. The areal estimate method is useful in the early
stages of exploration, but should not be used for anything
more definitive than inferred resources. Well decline analy-
sis is likely to be useful only in special circumstances, like
in projects with a long production history and where the cur-
rent production and reinjection regime is expected to remain
unchanged.

Lumped parameter modeling technique is most often
used in fields where only water is present. For multiphase
system, this method is not reliable. Therefore, only the vol-
umetric methods and reservoir simulation are the preferred
methods for defining proven and probable reserves. How-
ever, numerical simulation method is not applicable in early
stages of exploration as it is applicable only when actual
well data are available. Based on aforementioned points,
stored heat and volumetric methods are used for the resource
estimation of geothermal reservoir. In volumetric methods,
Monte Carlo method is the most reliable method for resource
estimation.

The volumetric method is chosen for estimating the ther-
mal energy of the system. In volumetric calculation, the
reservoir is normally considered as a single body or it is
divided into layers which are then subdivided into blocks.
Each block contains one unique value for each parameter
assigned. Main parameters of a reservoir are temperature,
porosity, area, thickness, density, and heat capacity of the

fluid and rock matrix (Martinez 2009). Quantification of
uncertainties in the parameters of the probability distribution
can be dealt quite well using the Monte Carlo simulation
method (Gauxuan 2008).

The arbitrary conduct in a session/game of chance is
the manner by which Monte Carlo chooses the event of
an unknown variable in one calculation. The calculation is
repeatedmany times until the specified iteration cycle is com-
pleted. In nutshell, Monte Carlo is a practical method which
solves problems by numerical operations on random num-
ber. For instance, while playing dice, 1, 2, 3, 4, 5 or 6 are
probable outcomes, yet we do not know the possible result
of each roll. The same is legitimate for the distinctive param-
eters (area, thickness, porosity, and reservoir temperature)
utilized as a part of computing the geothermal reserves. They
vary within a certain range of values, which is uncertain for
a particular sequence in the calculation. To deliver qualita-
tive and accurate results, obscure variables for each reservoir
property are fitted into a picked demonstrate dispersion (e.g.,
normal, triangular, uniform and log normal) which is based
on some predetermined conditions or criteria of the geother-
mal field being evaluated. The simulation then continues to
extract numbers representing the unknown variable and uti-
lizing these as input to the cells in the spreadsheet until the
process is complete (Sarimiento and Steingrimsson 2008).
So with a combination of sampling theory and numerical
analysis, the Monte Carlo method is a special contribution
to the science of computing different properties (Baalousha
2016).

The Monte Carlo method uses stochastic techniques to
evaluate the effect of measurements and uncertainty on
the petro-physical results. Monte Carlo technique is chosen
because it involves processing the interpretation model sev-
eral times with randomly varying parameters. The method is
frequently utilized when a model is perplexing, nonlinear or
includes uncertain parameters. The method utilizes distinc-
tive approaches; however, every one of themhas a tendency to
followaparticular pattern.With the help ofMonteCarlo tech-
nique, all the possible of results for shale volume, porosity,
water saturation, etc. are obtained with a cumulative distri-
bution function for total heat in place, for each iteration, in
the form of P10, P50 and P90 cases. It also generates a range
for hydrocarbon in place, net-to-gross ratios, average porosi-
ties and saturations for the percentile cases selected by the
interpreter (Stoian 1965).

The important steps in Monte Carlo calculation are:

• Selecting or designing a probability model by statistical
data reduction, analogy and theoretical considerations.

• Generating random numbers and corresponding random
variables.

• Designing and implementing variance-reducing tech-
niques.
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Fig. 1 Probabilistic performance forecast work flow

The preliminary use of the Monte Carlo method for
simulation of a system is that the final output from the soft-
ware/program must be able to describe the system in terms
of a probability density function (PDF).

2 Salient characteristics of Monte Carlo
method

Salient characteristics of the Monte Carlo method are as fol-
lows:

1. The Monte Carlo method is associated with the prob-
ability theory. So the relationships of probability theory
have been derived from theoretical considerations.Monte
Carlomethod uses probability to find answers to physical
problems that may or may not be related to probability.

2. The application of the Monte Carlo method offers a pen-
etrating insight into the behavior of the systems being
studied.

3. The results of Monte Carlo computations are treated as
estimates within certain limits rather than true exact val-
ues.Allmeaningful physicalmeasurements are expressed
in this way.Monte Carlo techniques can be used to obtain
approximations too.

4. The method is flexible to the extent that it elaborates the
complexity of a problem. This is reflected by a fact that a
greater number of parameters or complicated geometry
does not alter its basic character and the penalty paid
for complexity is increased computing time and costs
(McGlade et al. 2013).

5. A practical consideration is that the iterative calculations
necessary for attaining a certain level of confidence can
be distributed among several computers, working simul-
taneously in one or more places.

6. The Monte Carlo solutions are approximate and they can
be upgraded with time.

7. Solutions of the Monte Carlo method are numerical and
apply only to the particular case studies (Dur 2005).

3 Methodology

Monte Carlo uses different stochastic techniques and proba-
bilistic approach to properly estimate the range of reservoir’s
generating capacity, to identify major uncertainties, and to
quantify the risks associated with the proposed expansion.

Weapplied the followingprocess for probabilistic approach
(Fig. 1).

1. We have to define the reservoir’s performance-dependent
variable and perform screening process to identify vari-
ous parameters’ uncertainties.

2. Use the different experimental methodology to create a
series of dynamic reservoir simulationmodelswhich cap-
ture the full range of reservoir performance.

3. Calibrate and validate these models by history matching
and natural state matching.

4. Create the response for reservoir performance usingmul-
tiple regression analysis.

5. Then apply this to the Monte Carlo simulation to gen-
erate full probabilistic performance and derive P10, P50
and P90 model, and also verify Monte Carlo simulation
results.

6. Use the P10, P50 and P90models for future development
like in energy calculation and plan size (Hoang et al.
2005).

Following flowchart shows the whole process:
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Fig. 2 Workflow for Monte
Carlo simulation

4 Workflow of Monte Carlo method

The Monte Carlo methods vary, but they follow a particular
pattern (Fig. 2):

(a) Define a domain of possible inputs: each Monte Carlo
simulation begins off with developing a deterministic
model which intently looks like the genuine situation. In
this deterministic model, we utilize the most likely value
of the input parameters. The domain of these parameters
is defined around an initial value, used in the standard
deterministic module. This part is the core of Monte
Carlo simulation. The distribution must also be speci-
fied (Square, Triangular or Gaussian) for generation of
random values.

(b) Generate inputs randomly from a probability distribu-
tion over the domain: once the distributions have been
identified, the random numbers are generated. At the
start of each simulation, every parameter is changed
using a random number. If the random number gener-
ator comes up with a value outside of the selected range,
then another random number will be chosen. This is done
to try and keep the distribution within reasonable limits,
because very large shifts in parameters can give ambigu-
ous results. This may cause difficulty for the model to
run.

(c) When a satisfactory deterministic model is obtained, the
risk components are added to it. Since, risk originates
due to stochastic behavior of input parameters; the dis-
tribution that can represent the input parameter correctly
is identified. If historical data are available for the input
parameter, history matching is done by fitting the data
to obtain a discrete or continuous distribution. Some of
the standard procedures for fitting data to distributions
are method of maximum likelihood, method of moments
and nonlinear optimization.

(d) Perform a deterministic computation on the inputs:
parameters for each simulation iteration, IP will run the
interpretation modules, like clay volume, porosity and
saturation, cut-off parameters and summations, in the
order displayed (in the given order)

(e) Aggregate the results: parameters for each simulation
are saved. Iterations are carried out to obtain the val-
ues for every desired parameter ranking from low to high
probability. Result is described in terms of mean and a

Fig. 3 Normal distribution

percentile for each parameter. Sample output is collected
and statistical analysis is performed. The output is usu-
ally displayed in the form of frequency histogram which
gives an idea about the probability density function of the
output parameter (Raychaudhuri 2008).

5 Monte Carlo model distributions

This section describes how to generate a procedure for vari-
ous single variate continuous distributions.

Major model distributions are as follows:

1. Normal distribution
2. Lognormal distribution
3. Uniform distribution
4. Triangular distribution

5.1 Normal distribution

It is the most commonly used distribution model. It is a bell-
shaped curve and has a continuous probability distribution
curve. Figure 3 shows a typical Normal distribution curve.

A random variable “X” has a normal distribution if its
probability distribution function is defined as

Fx (X) = 1

σ
√
2π

exp

(−(x − μ)2

2σ 2

)
, −∞ ≤ x ≤ ∞

It is denoted by N (μ, σ 2), where μ is the mean and σ 2 is
the variance (Rubinstein 1981).
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Fig. 4 Lognormal distribution

Fig. 5 Uniform distribution

5.2 Lognormal distribution

It is a continuous probability distribution and skewed in either
direction as shown in Fig. 4. The skewness describes/means
that a random variable has a small chance of occurrence as
compared to the other direction of the shape. Let “x” be form
of N (μ, σ 2). Then Y = ex has the lognormal distribution
with the probability distribution function (Rubinstein 1981).

Fy(y) =
{

1
σ y

√
2π

exp
(−(lny−μ)2

2σ 2

)
, 0 ≤ y ≤ ∞

0, otherwise

5.3 Uniform distribution

It is a continuous probability distribution function and
describes a random variable in which any numerical value
has an equal chance of occurrence. Mean and median values
are concurrent and occur at midpoint of the random variable
as can be seen in Fig. 5 (Rubinstein 1981).

5.4 Triangular distribution

It is a continuous distribution and is in a shape of triangle.
The triangle can be symmetrical or skewed in both direc-
tions and is defined by specifying minimum, most likely and
maximum values of variables (Fig. 6) (Rubinstein 1981).

Fig. 6 Triangular distribution

6 Guidelines for the determination of
reservoir parameters

Current developments within the geothermic trade need
guidelines on how reserve estimation is to be drawn closer.
Sanyal andSarmiento (2005) had anticipated three classes for
booking of reserves: proven, probable andpossible. These are
all the more appropriately estimated by volumetric methods.
The reserves can be expressed in kW-h and/or barrels of fuel
oil equivalent (BFOE) (Sanyal 2003) (Table 1).

7 Application of Monte Carlo in geothermal

The estimation of the geothermal energy reserves in view of
the different reservoir parameters could be carried out using
Monte Carlo simulation. It uses a probabilistic approach for
evaluating geothermal energy reserves or resources. Due to
the complexity and heterogeneity of the geologic formations
and geological arrangement of most geothermal reservoirs.
Monte Carlo simulation method is the preferred determinis-
tic approach. It assumes a single value for each parameter
to represent the whole reservoir. Instead of assigning a fixed
value to reservoir parameters, a range of values are randomly
selected and drawn for each cycle of calculation over a thou-
sand iteration (Ofwona 2011).

Understanding and managing the range of uncertainty in
reserves and resources estimation are important aspects of the
business of exploration and production of geothermal energy.
Geothermal professionals want to capture this uncertainty to

1. Make development plans that can cover the range of pos-
sible outcomes.

2. Provide a range of production forecasts to evaluate the
expected outcome of their ventures.

3. Measure exploration, appraisal, and commercial risks.
4. Ensure that they can handle an unfavorable outcome.
5. Understand and communicate the confidence level of

their reserves estimate.
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There are two distinct methods of volumetric resource esti-
mation

1. Probabilistic method.
2. Deterministic method.

7.1 Probabilistic method

In the probabilistic method, we use the full range of val-
ues that could reasonably occur for each unknown parameter
(from the geosciences and engineering data) to generate a
full range of possible outcomes for the resource volume. To
do this, we identify the parameters that make up the reserves
estimate and then determine a so-called probability density
function (PDF). The PDF describes the uncertainty around
each individual parameter based on geosciences and engi-
neering data. Using a stochastic sampling procedure, we
then randomly draw a value for each parameter to calculate
a recoverable or heat in-place resource estimate (Lawless
2010).

7.2 Deterministic method

The deterministic method uses a single value for each param-
eter, based on a well-defined description of the reservoir,
resulting in a single value for the resource or reserves esti-
mate. Typically, three deterministic cases are developed to
represent either low estimate (1P or 1C), best estimate (2P
or 2C), or high estimate (3P or 3C), or proved, probable, and
possible estimates. Each of these categories can be related
to specific areas or volumes in the reservoir and a specific
development plan.

Advantages of the deterministic method are

• The method describes a specific physical case; physi-
cally inconsistent combinations of parameter values can
be spotted and removed.

• The method is direct, easy to explain, and manpower
efficient.

• The estimate is reproducible.
• Because of the last two advantages, investors and share-
holders like this method, and it is widely used to report
proved reserves for regulatory purposes.

A feature and potential weakness of the deterministic
model is that it handles each resource category in isolation
and does not quantify the likelihood of mid, high and low
case. (Swinkles 2011).

Deterministicmodels use a certain number of input param-
eters in few equations to give a set of outputs. They give the
same results no matter how many times the calculation is
repeated. Stochastic models, on the other hand, use variable
(random) inputs and give different results depending on the

distribution functions of the input parameters. They are often
used when the model is complex, nonlinear or has uncer-
tain parameters. The random numbers turn the deterministic
model into a stochasticmodel (Sarimiento andSteingrimsson
2008; Pandey and Joshi 2015).

In Monte Carlo method the objective is to determine how
random variation performance sensitivity or reliability of the
system is being modeled. The inputs are randomly generated
from probability distributions. General steps of the Monte
Carlo simulation are:

1. Create a parametric deterministic model, y = f (x1,
x2, . . ., xq).

2. Generate a set of variable inputs, xi1, xi2, . . ., xiq.
3. Evaluate the model and store the results as yi.
4. Repeat steps 2 and 3 for i = 1 to n.
5. Analyze the results using different statistical methods.

8 Deterministic model for volumetric stored
heat

The volumetric method is used for the calculation of total
thermal energy in place of the rock and fluid which could
be extracted for a specified reservoir volume and reservoir
temperature (Muffler 1978).

The equations used in calculating the thermal energy for
liquid-dominated reservoirs are as follows:

QT = Qr + Qw, (1)

where

Qr = A h[ρrCr(1 − φ)(Ti − T f )] (2)

Qw = A h[ρwCwφ(Ti − Tf)] (3)

If two-phase system (water vapor system) exists in the
reservoir, it is sensible to calculate the heat component of
both the liquid and the two-phase or steam-dominated zone.

This approach is illustrated by the following set of
equations to separately account for the liquid and steam com-
ponents in the reservoir:

QT = Qr + Qw + Qw, (4)

where

Qr = A h[ρrCr(1 − φ)(Ti − Tf)] (5)

Qr = A h[ρsiφ(1 − Sw)(Hsi − Hwf)] (6)

Qw = A h[ρwi Swφ(Hwi − Hwf)] (7)
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Fig. 7 Geological map and tectonic framework of Gujarat. This figure also shows the detailed fault distribution system, MT profiles, gravity lines,
hot springs, oil and gas field locations in the area (Sircar et al. 2015)

9 Monte Carlo simulation software

The Monte Carlo simulation performs the calculation of
reserves’ estimates by extracting eachof the uncertain param-
eters (random value) within the span of the minimum, most
likely and maximum values (triangular distribution). The
random sampling and calculations are done for 100–10,000
iterations and each result is sent to the bin to be compiled for
the frequency distribution. Knowing the range of minimum,
most likely and maximum values from the various input
parameters, we could thus evaluate the risk and the prob-
ability of occurrence (Sarimiento and Steingrimsson 2008).

The reserves’ estimation is done using commercial soft-
ware which provides for a probabilistic approach. The most
common commercial softwares are Crystal Ball (2007) and
@Risk; these are used in assessing risks in investment,
geothermal assessment, pharmaceuticals, petroleum reserves
and mining evaluation. The Monte Carlo simulation can also
be programmed using an Excel or Lotus spreadsheet, but
using a commercial software allows the user to take advan-
tage of many features such as

1. Graphs of input parameters, output frequency, cumulative
frequency, linear plot, etc.

2. Statistics: minimum, mean, median, mode, and maxi-
mum values; skewness, standard deviation, etc.

3. Sensitivity test.

10 Monte Carlo output

Output of a Monte Carlo simulation is a histogram for each
iteration of the output value, at every depth. The strength of
simulation can be determined if these histograms are uni-
modal. P10, P50 and P90 curves are also calculated. To
observe the characteristics of each zone of the reservoir, zonal
averages for each output parameter are also produced. It is a
proven fact that simulation is a perfect reflection of reservoir
under study, if geology of reservoir is not too complex. Even
if the number of iterations is reduced in this case, the uni-
formdistribution obtainedwill have aminor differencewhich
can be neglected. And in case a complex reservoir is dealt
with, more number of iterations are required (Sarimiento and
Bjornsson 2007).
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Fig. 8 MT profiles at Dholera.
MT survey with six different
profiles and their orientation

Fig. 9 Resistivity distributions at the depth of 3 km bsl. Scale 1: 100,000

11 Study area

The present study area is located in the Ahmedabad district
of Gujarat state in India. The Dholera Geothermal Field, an
ancient port city in the Gulf of Khambhat (Fig. 7), lies 30
km to the southwest of the Dhandhuka village in the Ahmed-

abad district and is around 60 km to the north of the city
of Bhavnagar. Dholera is in close proximity to the coast. It
is surrounded by water on three sides, namely on the east
face by Gulf of Khambhat, on the north side by Bavaliari
creek and on the southern side by Sonaria creek (Aghil
et al. 2014). The Dholera Special Investment Region will
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Table 2 Input parameters for energy calculations at 3 km depth at Dholera

Parameters Min value Most likely value Max value Simulation results

Area, A (km2) 2 19 36 19

Pay, H (m) 18 20 30 22.67

Porosity, φ 0.03 0.05 0.1 0.06

Density of rock, ρr (kg/m3) 2700 2800 2900 2800

Density of water, ρw (kg/m3) 970 980 1000 983.33

Heat capacity of rock, CPr (J/kg ◦C) 600 800 1000 800

Heat capacity of water, CPw (J/kg ◦C) 3000 4000 4200 3733.33

Temp reservoir, TR (◦C) 170 180 190 180

Surface temp, TS (◦C) 40 44 49 44

Volume matrix, Vm A priori values A priori values A priori values 99.43

Volume fluid, Vf A priori values A priori values A priori values 6.35

Energy, Et (J) A priori values A priori values A priori values 3.73 × 1010 (P 50)

Fig. 10 Cumulative energy distributions

be a major new industrial hub located on a greenfield site
about 100 km to the south of Ahmedabad and about 130 km
from Gandhinagar. The project is the first investment region
to be designated under the proposed Delhi–Mumbai Indus-
trial Corridor project (DMIC), a joint Indian and Japanese
Government initiative to create a linear zone of indus-
trial development nodes along a dedicated freight corridor
(DFC).

Dholera thermal springs are located along the margin
of Saurashtra Peninsula and lie in the vicinity of West-
ern Marginal fault of Cambay basin as shown in Fig. 7.
The Saurashtra peninsula is one of the three conspicu-
ous physiographic divisions of the Gujarat state and lies
between20◦30′Nto22◦30′Nlatitude and69◦00′E to72◦30′E
longitude. The Saurashtra Peninsula is located along the
northwestern margin of the Indian Shield, occurs as a horst
block between the three intersecting rifts, namely Kachchh,
Cambay and Narmada (Biswas 1987, 1988).

Cambay basin rests on the Deccan trap, which lies at a
depth of 500–600 m. Quaternary alluvial deposits of a thick-
ness up to 100 m occur by the side of the basin (Sircar
et al. 2015). Villages here show an easterly trend in elevation
changes, wherein the low-lying plain falls gradually from the
8-m contour on the western boundary to 4m in the East. The
area is marked by the presence of old mud flats, flood plains
and salt flat areas. The soil in this region mainly consists of
alternate layers of gravels, fine to coarse grained sand and
clay. Chemically the soil is loamy, mixed montmorillonitic,
calcareous andmostly saline. The subsurface lithology of the
area is mostly sand dominant consisting of alternating layers
of coarse and fine sand.

To analyze various physicochemical properties of the
reservoir fluid and subsequently establish the basic idea of
the subsurface geology, prevalent temperature and other cru-
cial reservoir parameter, geochemical analysis of the water
from hot spring at Dholera was carried out. Gravity, mag-
netic and magnetotelluric (MT) studies were carried out to
recognize the areal extension of the geothermal prospect. The
Landsat imagery study was carried out to trace the candidate
zones for drilling based on small Vegetation Index and posi-
tive anomalies in surficial temperature (Kumar and Shekhar
2016).

2-D magnetotelluric (MT) and audio-frequency magne-
totelluric (AMT) surveys were undertaken for geothermal
exploration along six profiles in the study area. Field AMT
and MT measurements were performed in Dholera at 66
MT/AMTsounding stations along six profiles (Fig. 8).Orien-
tation of five profiles wasWSW–ENE and one was normal to
five profiles. Frequency of the MT/AMT data is in the range
of 0.001–10,000 Hz. Simultaneously synchronized measure-
ments on reference station located in Kamalpura (Fig 7c)
were carried out. The shallow geoelectric maps along with
the deep maps portray that the reservoir is shale or sandstone
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Fig. 11 Resistivity distribution at the depth of 4 km bsl. Scale 1: 100,000

Table 3 Input parameters for energy calculations at 4 km depth at Dholera

Parameters Min value Most likely value Max value Simulation results

Area, A (km2) 2.5 14.5 27.5 14.83

Pay, H (m) 18 20 30 22.67

Porosity, φ 0.03 0.05 0.1 0.06

Density of rock, ρr (kg/m3) 2700 2800 2900 2800

Density of water, ρw (kg/m3) 970 980 1000 983.33

Heat capacity of rock, CPr (J/kg ◦C) 600 800 1000 800

Heat capacity of water, CPw (J/kg ◦C) 3000 4000 4200 3733.33

Temp reservoir, TR (◦C) 170 180 190 180

Surface temp, TS (◦C) 40 44 49 44

Volume matrix, Vm A priori values A priori values A priori values 99.43

Volume fluid, Vf A priori values A priori Values A priori values 6.35

Energy, Et (J) A priori values A priori values A priori values 3.82 × 1010 (P 50)

body packed between excessively resistive basalts. 2-D data
have been used to prepare cross-sectional APS at deep and
shallow levels (PBG 2014) .

In addition to the magnetotelluric studies, gravity data
were obtained along the same profiles with offset at some
stations. Residual Bouguer gravity was modeled subsequent
to application of corrections. The gravity-derived subsur-

face picture shows low-density zones sandwiched between
high-density zones providing further evidence of the pic-
ture derived from MT cross sections presented in this paper.
Integration of the gravity and magnetotelluric interpreta-
tion supports that beneath the surface manifestations (hot
springs), less resistive geophysical anomaly with low den-
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sity is present which indicates that a geothermal reservoir
might be existent.

Resistivity closures in shallow as well as deep cross sec-
tions observed around the hot springs are true affirmation of
the model postulated. Sections showing areal resistivity dis-
tribution at the depth of 3 and 4 km verify the same. Hence,
the results give an optimistic idea of the study area being a
promising geothermal prospect. Exploitation of this energy
can be put to wide range of small-scale domestic to large-
scale commercial uses. The resource potential of the prospect
and the temperature gradient of the subsurface can be better
described by drilling of wells and running temperature log.

12 Geothermal resource estimation: Dholera

12.1 Stored heat calculation at 3 km depth:

Figure 9 shows the resistivity distribution at the depth of 3
kmbelowsea level atDholera.Also low-resistivity anomalies
were found between the 2nd and 3rd profiles, i.e., D2 and D5
(Fig. 8).

Various input parameters to this analysis are summarized
in Table 2. Most likely estimates are given as well as esti-
mated probability distributions and minimum and maximum
values for different input parameters. Two most sensitive
parameters for energy calculations are area and temperature.
These input parameters are used in Monte Carlo simulation
in Excel spreadsheet. The simulation runs can be as many as
time and computer allows. More runs give accurate results.
In this case the runs were 100. The thermal energy is usually
plotted using the relative frequency histogram and the cumu-
lative frequency distribution. The vertical axis represents the
cumulative frequencies greater than or equal to given values
of the random variable. The cumulative frequency greater
than or equal to the maximum value is always 1 and the
cumulative frequency greater than or equal to the minimum
value is always 0 (Mwarania 2014; Ofwona 2011). The result
shows the frequency distribution for energy values. Energy
estimated at 3 km depth in Dholera is 3.73 × 1010 J (P50
Case) (Proven + Probable). Energy estimated for P90 case
is 2.90 × 1010 J (proven) and for P10 case is 3.73 × 1010 J
(Proven + Probable + Possible) (Fig. 10).

12.2 Stored heat calculation at 4 km depth

Figure 11 shows the resistivity distribution at the depth of
4 km below sea level. Also low-resistivity anomalies were
found between the 2nd and 3rd profiles, i.e., D2 and D5
(Fig. 8).

Various input parameters to this analysis are summarized
in Table 3. Most likely estimates are given as well as esti-
mated probability distributions and minimum and maximum

Fig. 12 Cumulative energy distributions

values for different input parameters. Two most sensitive
parameters for energy calculations are area and temperature.
These input parameters are used in Monte Carlo simula-
tion in Excel spreadsheet. The simulation runs can be as
much as time and computer allows. More runs give accu-
rate results. In this case, the runs were 100. The result shows
the frequency distribution for energy values. Energy esti-
mated at 4 km depth in Dholera is 3.82 × 1010 J (Proven +
Probable) (P50 case). Energy estimated for P90 (proven)
case is 2.812 × 1010 J and for P10 case is 3.852 × 1010 J
(Proven + Probable + Possible) (Fig. 12).

13 Conclusion

The preferred method for reservoir assessment in the early
phases of geothermal development is the volumetric method.
The volumetric method refers to the calculation of thermal
energy in the rock and the fluid which could be extracted
based on specified reservoir volume, reservoir temperature,
and reference or final temperature. Monte Carlo simula-
tion is one of the best methods generally used for resource
estimation. In this study, resource potential of the Dholera
geothermal system has been estimated based on the geo-
scientific information available. The method was applied to
estimate the resource of identified Dholera prospect and the
energy was estimated to be 3.7 × 1010 J (P50 case). Esti-
mation of power potential for Dholera Geothermal Field by
Monte Carlo method produces reasonable and realistic esti-
mates .This method has been applied in other geothermal
fields around the world and will be appropriate for the esti-
mation of power potential in geothermal fields in India.
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