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Abstract 
Dealloying has been recognized as a universal strategy to fabricate various functional electrode materials with open net-
works, nanoscale ligaments, tunable pore sizes and rich surface chemistry, all of which are very attractive characteristics for 
rechargeable lithium batteries. In particular, lithium ion insertion/extraction in metal anodes is naturally associated with the 
alloying/dealloying mechanism. The past decade has witnessed rapid growth of this research field with enormous progress. 
In this review article, we first summarize the recent development and microstructural regulation of dealloyed materials. Next, 
we focus on the rational design of nanoporous electrodes for rechargeable lithium batteries and related structure-performance 
correlations. Finally, some critical issues and perspectives are presented to guide the future development directions of such 
promising technology for high-energy batteries.
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1 Introduction

Dealloying, or selective leaching, is an alloy corrosion pro-
cess in which less noble elements in alloy precursors are 
preferentially etched away to generate three-dimensional 
(3D) open frameworks with interconnected backbones (liga-
ments) and nanoscale pore channels. The constituent ele-
ments in the alloy precursors are usually of significant dif-
ference in their oxidation potentials. During the dealloying 
process, the residual atoms remain connected to their neigh-
boring atoms and the pores stay open, finally creating a self-
assembled spongy structure. As the dissolution proceeds, 
the volume fraction (porosity) of the resulting structures can 
typically evolve within a range of 40%–80%, as determined 
by the alloy parting limit and the percolation threshold 
[1, 2]. Homogeneous nanopore/ligament distributions are 
determined by the rates of dealloying and surface diffusion, 

and their length scales can range from a few nanometers to 
micrometers by rationally tuning the precursor alloys, etch-
ing parameters, and subsequent post-annealing treatments 
[3, 4]. Hierarchical networks with multimodal pore sizes 
can also be achieved through stepwise structuring of the 
parent-phase alloys [5].

Nanoporous metals (NPMs) are among the most studied 
dealloyed materials [6–11]. Compared with their bulk coun-
terparts, they exhibit novel mechanical, physical, chemical, 
and biological properties arising from their unique architec-
tures, which have been widely utilized in actuators [12–14], 
sensors [15–17], water splitting [18, 19], energy storage and 
conversion [2, 10, 20], drug loading and release [21–23], and 
so forth. It should be noted that there are various strategies 
to prepare porous metals [24], such as templating [25], ano-
dization [26], laser etching [27, 28], combustion synthesis 
[29, 30], chemical reduction [31] and thermal decomposition 
[32]. Among them, dealloying is probably one of the most 
promising routes for immediate commercialization feasibil-
ity due to its very low manufacturing costs and ease of mass 
production. For example,  Raney® nickel (Ni), which is an 
active hydrogenation catalyst produced by dealloying Ni-
based alloys such as NiSi and NiAl in alkaline solutions, 
has been used in the chemical industry for nearly a cen-
tury [33, 34]. In 2017, the global production of Raney Ni 
reportedly reached ~ 28000 tons with a market value of ~ 630 
million USD, thus remaining the most important industrial 
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catalyst for hydrogenation and desulfurization reactions [35]. 
The key advantages of  Raney® nanostructures include the 
abundant porosity and large specific surface area derived by 
etching MAl-type alloys, where M can be Ni, Cu, Ag, Co, 
Fe, and even the corresponding alloys. The simple treat-
ment in alkaline solution enables very scalable production 
of  Raney®-type metals worldwide, and the  H2 byproduct can 
also be collected for other applications. NPMs prepared in 
this manner also possess the following compositional and 
structural advantages [36–38]: (1) rich compositional possi-
bilities (metals, alloys, oxides, sulfides, and semiconductors) 
with predetermined composition accuracy; (2) inherent 3D 
ligaments/channels; (3) controllable porosity and intercon-
nectivity through the tuning of corrosion conditions and pre-
cursor compositions, or combination with post-treatments 
such as thermal heating. These remarkable merits endow 
NPMs with great potential to satisfy the structural and func-
tional demands of a large variety of practical applications.

To date, most efforts have been dedicated to the fabrica-
tion and processing of noble NPMs. For example, dealloyed 
nanoporous Pt, Pd, Au, and Ag can possess unique bicon-
tinuous structures that have demonstrated great potentials 
on catalytic and electrocatalytic properties [2, 8]. However, 
little attention had been focused on applications of NPMs 
in lithium ion batteries (LIBs) until non-noble materials (Si, 
Ge, Sn, Sb,  Fe2O3,  Mn2O3, and so on) emerged recently as 
promising anodes with higher specific capacities than the 
commercial graphite anodes [37]. In fact, there is an essen-
tial correlation between Li-ion extraction/insertion and the 
formation of porous structures in oxide/alloy electrodes 
[39–42]. Hu et al. [39] first noticed that nanoporosity can 
be formed with metal and metal oxide anodes via a template-
free lithiation/delithiation process. Further studies by Chen 
and Sieradzki [41] revealed porous Sn with typical bicon-
tinuous structure could be constructed by delithiation from 
Li–Sn alloys. The structures can be readily tuned by control-
ling the amount of lithium extracted from the alloys. For 
example, the as-obtained Sn particles with 30 at.% Li exhib-
ited a roughened sinusoidal-like surface structure, whereas 
further increase in the Li content to > 75 at.% results in a 
typical structure as seen in nanoporous gold (NPG). Two 
mechanisms (percolation dissolution and solid-state diffu-
sion) can account for the Li segregation process in this sys-
tem [41]. In principle, the slight tuning of the alloy composi-
tion and particle size can remarkably affect the final porous 
morphologies. Thus, this versatile template-free method 
for the synthesis of porous architectures can essentially be 
applied to any solid elements that can form alloys with Li or 
other guest ions over a wide composition range. Several tran-
sition metals and even metal compounds with characteristic 
nanoporosity and large surface area have been successfully 
developed based on the above electrochemical insertion/
extraction process [43–48]. Inspired by this finding, there 

are ever-increasing relevant publications and the annual cita-
tion rate has also grown rapidly in the past decade [33, 38].

Overall, a few efforts have been devoted to reviewing 
research progress on dealloyed NPMs, including the struc-
tural and compositional regulations [38, 49–51], and poten-
tial applications in catalysis, supercapacitors, sensors, and 
optical devices [2, 10, 52–54]. Nonetheless, there is still a 
lack of systematic summarization of dealloyed materials for 
battery applications [37, 55]. In this connection, we attempt 
to provide an overview of the recent progress on dealloyed 
materials in rechargeable lithium batteries (Fig. 1). First, 
this work will present typical fabrication and microstruc-
tural regulations. Subsequently, this review will focus on 
key applications of nanoporous materials in rechargeable 
lithium batteries, including LIBs and lithium metal batteries 
(LMBs). Finally, several critical challenges and opportuni-
ties are discussed to provide insights into the future develop-
ment of this research area.

2  Fabrication and microstructural 
regulation

The practical performance of NPMs in batteries is signifi-
cantly influenced by their compositions and microstructures. 
Thus, the fabrication and post-treatment processes are criti-
cal for NPM electrodes. In this section, four typical deal-
loying routes to fabricate nanoporous materials are summa-
rized, and the key parameters affecting pore formation and 
growth are discussed, including precursor design, reaction 

Fig. 1  Schematic of the applications of dealloyed nanoporous materi-
als in rechargeable lithium batteries
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parameter control, and post-treatment. Besides, modifica-
tion strategies that can further enhance the compatibility of 
NPMs in rechargeable lithium batteries are presented.

2.1  Dealloying fabrication methods

Dealloying refers to a process in which one or more less 
stable components are selectively removed from an alloy 
precursor and the remaining relatively stable components 
evolve into a porous network [6, 56, 57]. The current main-
stream routes can be classified into four categories: chemi-
cal, electrochemical, liquid metal, and vapor phase dealloy-
ing [2, 36].

Chemical and electrochemical dealloying technologies 
are the most employed approaches. Because the alloy com-
ponents possess different standard electrochemical poten-
tials, the less noble components are selectively etched away 
by an appropriate electrolyte (i.e., a strong acid/alkali solu-
tion), and the remaining components form a porous struc-
ture. This process can be driven by spontaneous chemical 
reactions (chemical dealloying) or an external electrical 
current (electrochemical dealloying) between the counter 
electrodes and precursor alloys. Due to the ease of opera-
tion and tunable porosity, this technique has been widely 
utilized to produce various NPMs, alloys, and compounds 
[5, 58]. A typical example is the fabrication of NPG from 
Au–Ag binary alloy. During chemical dealloying, Ag can 
be selectively removed in the concentrated  HNO3. The ini-
tial reaction occurs at the interior grain regions, in which 
residual Au ligaments and void networks are generated at 
the grain boundaries to eventually induce a 3D bicontinuous 
NPG composed of nanoscale ligaments [59]. Alternatively, 
NPG can also be generated through an electrochemical pro-
cess in various electrolytes such as  HClO4 or  KNO3. The 
anodic potential leads to the electrochemical dissolution of 
Ag from the Au–Ag alloy with more controllable rates and 
thus allows the formation of more refined ligaments [59]. 
These two methods produce NPMs with different charac-
teristic length scales and even microstructures. Compared 
with chemical dealloying, the electrochemical treatment is 
more controllable due to the tunable applied potential [60]. 
However, these two approaches are only applied to alloy sys-
tems with sufficient potential difference between the metal 
components, such as noble metals, stable compounds, and 
easily passivated transition metals. Moreover, additional 
costs are also inevitable due to the waste disposal process 
of the environmentally hazardous etchants and the recovery 
of the dissolved elements in the corrosion process.

Although the traditional etching process is efficient to 
prepare nanoporous structures, alternative approaches such 
as liquid metal and vapor phase dealloying have recently 
emerged to reduce the utilization of corrosive acids/alkalis. 
Furthermore, liquid metal route provides additional viability 

for some special systems composed of constituents that are 
sensitive to the environment [36, 61, 62]. In general, the liq-
uid metal route involves the selective removal of elements by 
using a liquid metal melt as an extraction medium in place of 
the traditional electrolyte. The selected liquid metal should 
possess a high mixing enthalpy with one of the elements in 
the alloy precursor. Upon the dissolution of miscible ele-
ments, the immiscible phase simultaneously organizes and 
forms a nanostructure after the subsequent solidification and 
phase excavation steps. A good example is the fabrication 
of nanoporous Si (NPSI) from SiMg binary alloy using a 
Bi melt [63]. This material system is suitable because Mg 
and Bi are highly miscible at a desired temperature, and Si 
and Bi are non-soluble with each other. Nevertheless, liquid 
metal dealloying requires relatively high temperatures, and 
the subsequent phase etching process is still inevitable to 
remove the solidified metal melts.

Alternatively, physical vacuum dealloying is a relatively 
neat process to obtain a pure high-boiling-point phase by 
sublimating one or more low boiling point components in 
the precursor. The structural formation is the consequence 
of the Kirkendall effect, where the different diffusion rates 
of metal atoms cause the motion of the interface between 
two metals [64, 65]. The selected temperature for vacuum 
dealloying should be lower than the precursor melting point 
to allow for pore maintenance. For example, nanoporous 
Cu (NPC) can be obtained through the sublimation of Zn in 
brass (Cu–Zn alloys) at 500 °C under vacuum [65].

Overall, the selection of suitable methods to fabricate 
desired NPMs requires the comprehensive consideration 
of the characteristics of different fabrication methods and 
the feasibility to meet the requirements of the relevant 
applications.

2.2  Microstructural regulation

To understand the pore formation mechanisms, several 
important factors need to be considered for the microstruc-
tural regulation of NPMs, including the design of alloy pre-
cursors, control of etching parameters, and post-treatment 
procedures.

Dealloyed NPG is a well-researched prototype case. Rel-
evant investigations based on this system suggest that the 
rational design of alloy precursors should comply with four 
basic criteria [4, 56, 60, 66, 67]. (1) The potential to dissolve 
the pure alloy component must be of significant difference, 
up to a few hundred millivolts, namely the targeted alloy 
should be composed of a relatively active metal and a rela-
tively inert one. (2) The chemical composition of the inert 
metal must be below its parting limit, which is its maximum 
concentration in an alloy precursor. Otherwise, the dealloy-
ing cannot proceed throughout the whole process to obtain a 
desired structure. (3) The alloy must possess a homogeneous 
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phase distribution to avoid phase separation prior to disso-
lution. Ideally, the alloy precursor should be a single-phase 
solid solution or intermetallic phase. The dealloying of a 
single-phase structure can endow products with a uniform 
3D morphology. A complicated two-phase or multiphase 
precursor is conducive to the fabrication of NPMs with mul-
tilevel and multiscale microstructures. (4) The diffusion of 
inert elements must be sufficiently fast at the alloy/interface, 
which can facilitate their surface rearrangement after the 
selective dissolution of the active components. Based on 
the above design principles, many alloy precursors have also 
been explored, such as Cu-based alloys [68], Al-based alloys 
[24], and Zn-based alloys [69].

In general, the dealloying process involves several steps 
and parameters [46]. Here, we primarily analyze the influ-
ence of crucial parameters on the formation process of 
NPMs, including solution, temperature, and applied poten-
tial. First, a dealloying solution with proper composition 
and concentration is important to selectively remove the less 
noble element. For example, dealloying of  Al2Au can be car-
ried out in an acidic or alkaline solution and the length scale 
of the ligaments/channels in NPMs can be simply adjusted 
by selecting an appropriate solution (60–80 nm in 5 wt% 
HCl vs. 10–20 nm in 20 wt% NaOH) [24]. Second, the 
atomic diffusion rate at alloy/electrolyte interfaces strongly 
relies on the reaction temperature. A low-temperature treat-
ment can significantly reduce the interfacial diffusivity of 
the noble element and result in an ultrafine porous network. 
In contrast, a high dealloying temperature would coarsen the 
length scale of the ligaments/channels, but simultaneously 
reduce cracking in the produced NPMs. Third, to drive the 
selective dissolution, the applied potential during electro-
chemical dealloying must be between the critical potential 
of the active element and the equilibrium corrosion poten-
tial of the inert one. A higher applied potential accelerates 
the dealloying process duration. Meanwhile, more cracks/
defects will form in the products owing to the fast reaction 
rates. Thus, the potential must be optimized to balance the 
reaction rate and duration. In addition, dealloying steps [5, 
70], atmosphere [71], and applied magnetic field [72, 73] 
can also modulate the microstructure/morphology of NPMs. 
As a result, all the relevant parameters should be reasonably 
considered during processing to obtain ideal NPMs.

To further regulate the morphologies, compositions, 
and microstructures of NPMs, post-treatment procedures, 
especially annealing, are frequently adopted. Specifically, 
the annealing of NPMs at certain temperatures maintains 
the initial nanoporosity but coarsens the ligaments/chan-
nels to different length scales via a self-similar process [74, 
75]. Moreover, several investigations on the 3D evolution 
of nano-ligaments in NPG suggest that both the surface ori-
entation and scaled surface curvature of the nano-ligaments 
would evolve with coarsening time [76]. Based on this 

phenomenon, a unique Pt-rich surface layer coating on an 
alloy backbone can be obtained by combining the dealloy-
ing method with a subsequent annealing treatment. Such a 
structure can greatly improve the utilization of precious Pt 
for important catalytic reactions [77, 78]. Therefore, rational 
post-dealloying treatment can be used to effectively control 
NPM properties and facilitate their customized applications.

2.3  Modification for rechargeable lithium batteries

NPMs with 3D bicontinuous architectures and abundant 
nanopores greatly facilitate electrolyte permeation, reduce 
the Li-ion diffusion length, and accommodate large volume 
expansion during cycling, all of which are desirable char-
acteristics in rechargeable lithium batteries. Nevertheless, 
typical dealloyed NPMs also face critical challenges in bat-
tery applications. For example, NPMs usually possess pore 
channels of ~ 10 nm, which are too narrow for electrolyte 
permeation. Moreover, these small pores usually imply a 
large specific surface area that would generate more solid-
electrolyte interface (SEI) and lead to low Coulombic effi-
ciency (CE) [37]. For certain materials, because the poor 
electrical conductivities could significantly affect their prac-
tical performance in electrodes, it is necessary to optimize 
the porous structures and compositions of dealloyed NPMs 
for different applications. In this section, three efficient strat-
egies are summarized, including post-annealing treatment, 
incorporation of a carbon buffer matrix, and electrochemical 
deposition of active species.

As mentioned above, the pore and ligament sizes derived 
from direct dealloying processes are usually too small. Kun-
duraci [37] reported that the desired pores/ligaments should 
be in range of 100 nm for NPM-based alloy anodes. To 
resolve this problem, a quick post-annealing process can be 
applied to increase the ligament/channel size by increasing 
the surface diffusivity of the nobler elements. The annealing 
process only alters the corresponding length scale but main-
tains the topological structure of NPMs [75]. Meanwhile, 
the orientation distribution of the ligament surfaces during 
the coarsening treatment becomes more anisotropic, as evi-
denced by the increasing facet exposure with a lower sur-
face energy [76]. In addition, annealing in an air atmosphere 
could even produce a layer of metal oxides on NPM surfaces, 
which can be actively involved in the subsequent redox reac-
tions. For example, cuprous oxide  (Cu2O) is in situ generated 
on the surface of NPC during the annealing treatment. When 
tested in LIBs, thus-fabricated  Cu2O@NPC anodes show 
superior electrochemical performance, which is ascribed to 
the favorable combination of a novel structure from NPC and 
high specific capacity from the surface  Cu2O [79].

Depending on their electrochemical functions in LIBs, 
the applications of NPMs in LIBs can be classified as 
active anode materials (electrochemically active) or as 
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novel scaffolds (electrochemically inert). For electro-
chemically active materials, such as nanoporous Si (NPSI), 
Sn (NPSN), and Ge (NPGE), as well as the correspond-
ing metal oxides (NPMO) and metal sulfides (NPMS), 
the alloying/conversion mechanism offers high theoreti-
cal specific capacities. For these active materials, their 
practical performance is mainly determined by the large 
volume variation and electron conduction problems during 
cycling. From this viewpoint, the abundant nanoporosity 
is beneficial to the accommodation of significant volume 
expansion [80–82]. Besides, carbon decorations are usu-
ally to promote electrode conductivity and further toler-
ate the volume influence. In most cases, commonly used 
carbon-coating strategies in LIBs are also generally appli-
cable to NPMs, such as ball milling [83], chemical vapor 
deposition (CVD) [84, 85], hydrothermal [86], ultrasonic 
[87], and chemical reduction methods [88].

For NPMs without electrochemical activity such as NPG 
and NPC, the deposition of electrochemically active spe-
cies including active metals, metal oxides, and metal sulfides 
onto the ligament surface of the NPMs is indispensable for 
ion storage. As we know, Sn could be a promising anode 
material for LIBs due to its high theoretical capacity (990 
mAh  g−1 for  Li4.4Sn). However, substantial volume change 
over 200% during the charge/discharge process greatly hin-
ders the practical implementation of metallic Sn in LIBs 
[89]. Considering that NPMs possess plentiful pores and 
superior electrical conductivity, they can be utilized as 3D 
substrates, which can effectively relieve the substantial vol-
ume expansion during cycles. Indeed, a 3D NPG-supported 
Sn nanocrystalline thin foil was reported as an anode for 
rechargeable LIBs with enhanced electrochemical perfor-
mance [90]. Considering the high cost of NPG, NPC with 
more affordable price and excellent cycling stability is a suit-
able alternative [91]. These investigations demonstrate the 
outstanding potential of NPMs as novel scaffolds to deposit 
various active components for rechargeable lithium batteries.

To summarize, it has been well-established that the deal-
loying route, microstructural regulation, and post-synthetic 
modification would significantly influence the resulting 
structures and phase constitutions of NPMs. All these fac-
tors need to be adequately taken into account during NPM 
preparation. The rational design of alloy precursors and 
careful tuning of the dealloying process can lead to desired 
morphologies and structures. For example, hierarchical 
structures with novel physicochemical properties and supe-
rior electrochemical performance for energy storage can be 
fabricated either by controlling the alloy precursor composi-
tion or by multiple-step dealloying and annealing [92, 93]. It 
is noted, however, the majority of discussions on NPMs are 
still limited to several relatively inert elements [8]. It is thus 
urgent to develop more rational dealloying methodologies 
for use in rechargeable lithium batteries.

3  Applications in rechargeable lithium 
batteries

Owing to the intrinsic correlation between the Li-ion 
insertion/extraction and the formation of porous elec-
trodes, great efforts have been devoted to the applica-
tions of dealloyed materials in rechargeable lithium bat-
teries. In principle, NPMs can be simply categorized 
in terms of their functions in batteries as electrodes or 
scaffolds. The former refers to electrochemically active 
metals, metal oxides, semiconductors, and their compos-
ites. They are attractive for anodes in LIBs owing to the 
large capacities and unique porous structures for volume 
variation accommodation during cycling. To date, metal 
anodes including Si, Ge, Sn, Sb, Bi, and commonly used 
metal oxides/sulfides have been successfully developed 
through the dealloying process. In addition, binary alloys 
that are difficult to prepare via regular routes can also be 
obtained by this technique. Actually, this is one of the key 
advantages of the dealloying method, where the design 
of complex alloy systems with desired compositions and 
structures is very straightforward. The other application 
of NPMs in batteries is to serve as scaffolds to support 
active ingredients, where they can be either a free-standing 
film/membrane or on a substrate. A well-known example 
is the utilization of NPG membrane in Li–O2 batteries 
(LOBs). Indeed, metals with good flexibility can maintain 
the membrane continuity up to hundreds of centimeters. 
The abundant porosity, tunable architectures, and excellent 
electron conduction make such metallic membranes suita-
ble catalyst scaffolds when applied to rechargeable lithium 
batteries. Furthermore, nanoporous graphene (NPGR) can 
be fabricated by templating preformed NPMs, and it has 
been recently demonstrated as a promising scaffold for 
LOBs and lithium–sulfur (Li–S) batteries. Here, our dis-
cussion is primarily focused on the progress of nanoporous 
materials in LIBs and LMBs because the aforementioned 
unique properties are critical to promote the practical per-
formance of these battery systems.

3.1  Applications in LIBs

LIBs with high energy density, long cycle life, and low 
self-discharge properties have achieved great success in 
the past two decades [94–96]. However, current commer-
cial graphite anodes have a low theoretical specific capac-
ity of 372 mAh g−1, which is not very competitive among 
various novel high-capacity anodes. Alternatively, alloy 
anodes show attractive high theoretical capacities of 2–10 
times higher than that of graphite anodes. Meanwhile, the 
moderate operation potentials of alloy anodes offer better 
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safety [97, 98]. Nonetheless, the enormous electrode vol-
ume variation during cycling results in poor cell stability 
caused by particle pulverization. NPMs with bicontinu-
ous porous structures and large specific surface areas can 
efficiently mitigate the serious volume expansion during 
lithiation, and the open porous structure and high elec-
trical conductivity accelerate electrolyte percolation and 
electron transfer. A wide variety of dealloyed nanoporous 
materials have been explored in LIBs in recent years. In 
this section, the design principles of such electrodes and 
their performance in LIBs are summarized and discussed.

3.1.1  Nanoporous anodes

3.1.1.1 Nanoporous silicon (NPSI) Among various metal 
and alloy anodes, Si has been considered as one of the most 
promising candidates, owing to its high theoretical capac-
ity (4200 mAh  g−1), suitable operation potential, and cost 
advantage [80, 99–101]. However, two fatal flaws impede 
its commercialization in LIBs. One is that the Li-concen-
tration-dependent volumetric change (∼ 300%) induces 
rapid capacity degradation during long-term cycling. The 
other is that the poor electrical conductivity (6.7 × 10−4 S 
 cm−1) and sluggish Li-ion diffusivity lead to inferior rate 
performance [102–104]. Thus, the primary motivation for 
the development of NPSI is its possibility in accommo-
dating the severe volume expansion upon lithiation. NPSI 
electrodes with rational structure regulation would therefore 
improve cycling performance [105–107]. Considering that 
simply dealloyed Si electrodes are insufficient to achieve the 
desired battery performance [104, 108–112], in this section, 
we first introduce the direct application of NPSI in LIBs 
with favorable electrochemical performance after rational 
structure regulation. Then, for those NPSI electrodes with 
additional modifications, we attempt to summarize their 
feasible applications based on two efficient strategies: the 
optimization of battery configuration and the composition 
control by constructing Si composites with other buffering 
matrices. Finally, the synthetic approach, morphology, and 
electrochemical performance of the selected NPSI-based 
anodes are compared to better understand the correlation 
between their composition/structure and electrochemical 
properties.

By adjusting the dealloying parameters to acquire appro-
priate porosity and ligament dimension, the NPSI electrode 
itself can efficiently alleviate the adverse effects of serious 
volume expansion/contraction, thus exhibiting good elec-
trochemical performance in LIBs. Based on different alloy 
precursors (Fe–Si and Mg–Si alloys), Tian et al. and Zhu 
et al. first prepared porous Si by acid-etching in HCl solu-
tion [105, 106]. Even in the absence of carbon coating, these 
electrodes delivered high rate capacities owing to the unique 
and well-organized porous structures. To further adjust the 

porosity, Sohn et al. [107] developed 3D porous Si micro-
particles by two-step etching. The specific synthetic routes 
can be illustrated by Fig. 2a. First, the Si/metal-alloy com-
posite was fabricated by melting pure Si and densely packed 
Al–Cu–Fe matrix. NPSI was then obtained by selectively 
removing the metallic matrix from the Si/Al–Cu–Fe com-
posite in an acidic solution. After the wet alkaline etching in 
NaOH solution to enlarge the preexisting pores and reduce 
the size of the Si grains, microstructure-controlled porous 
Si microparticles were generated with interconnected Si 
networks. The specific surface area and pore volume of the 
3D porous Si were also higher than those of Si alloy and 
one-step dealloyed Si, indicating an increase in free voids 
during the double chemical etching process. When applied 
in LIBs, the resulting 3D porous Si anode with an intercon-
nected network exhibited initial Coulombic efficiency (ICE) 
of 76.5% and high Li-ion storage capacity of 1222 mAh g−1 
at 500 mA g−1 over 200 cycles.

The aforementioned chemical dealloying is a simple 
yet efficient strategy to tune nanoporosity and grain size, 
but this process usually relies on strong corrosive chemi-
cals that may cause severe environmental issues. An et al. 
[113] developed a novel acid/base-free method to synthesize 
NPSI by vacuum distillation from a commercial  Mg2Si alloy. 
Mg with its relatively low boiling point of 1107 °C would 
undergo sublimation and diffusion to generate voids, eventu-
ally producing the continuous NPSI skeleton (Fig. 2b). By 
regulating the distillation temperature and time, the NPSI 
with optimized pore size exhibits a greatly enhanced perfor-
mance. The vacuum distillation method provides new insight 
into the design and fabrication of nanoporous materials, and 
it could possibly be extended to other complex alloy systems 
composed of metals with distinct melting/boiling points. The 
above examples reveal that NPSI can be obtained by dif-
ferent dealloying methods with different alloy precursors. 
The excellent electrochemical performance of NPSI anodes 
without additional optimizations is reasonably attributed to 
their intrinsic structure, which could alleviate the serious 
volume change to a large extent.

In addition to the traditional chemical dealloying and 
vacuum distillation dealloying technologies, Wada et al. 
[114] produced bulk 3D NPSI by a top-down liquid metal 
dealloying method. This method effectively compensates 
for the drawbacks of traditional approaches in the applica-
ble elements, especially for less noble metals. The whole 
process is based on the metallurgical reaction between an 
alloy precursor solid and a liquid melt rather than the tradi-
tional corrosion in an aqueous solution. A Si–Mg precursor 
and Bi melt are selected owing to the miscibility of Mg–Bi 
and the immiscibility of Si–Bi, where Si acts as the porous 
structure-forming element, Mg functions as the sacrificial 
element, and Bi works as the dealloying melt medium. Fig-
ure 2c highlights the evolution schematic of the 3D porous 
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structure during dealloying, which is supported by the cor-
responding scanning electron microscopy (SEM) images 
and energy-dispersive X-ray (EDX) elemental maps. The 
dynamic observation of the precursor shows a typical hyper-
eutectic structure with primary dendritic grains anchored 
in the eutectic matrix. Transmission electron microscopy 
(TEM) image shows they are composed of interconnected Si 
grains, which have diamond cubic structures as verified by 
the corresponding selected-area electron diffraction (SAED) 
observation. When charged/discharged with the high capac-
ity of 2000 mAh  g−1, this anode suffers from severe capacity 
fading within a few hundred cycles. However, by restricting 
the lithiation capacity to 1000 mAh  g−1 below the accom-
modation volume limit, the NPSI anode can demonstrate a 
long span life of 1500 cycles at 3.6 A  g−1. A similar strat-
egy to enhance the cycling life was also reported by Saager 
et al. [115]. These results indicate that the abundant poros-
ity of Si anodes could not completely avoid volume expan-
sion under practical cycling conditions. Synchrotron X-ray 
nano-tomography studies have been performed to explore 
the lithiation/delithiation process in NPSI anodes. The Chen-
Wiegart group found that cell failure could be ascribed to the 

structural deformation of NPSI anodes from mesoporosity to 
macroporosity, accompanied by progressive volume expan-
sion and delamination. In particular, the reduced cell life in a 
high-capacity cycling mode was caused by particle agglom-
eration [116]. Overall, the nanoporosity could mitigate the 
local volume expansion to a certain level, but the structural 
evolution eventually leads to a heterogeneous stress distribu-
tion with faster delamination. Therefore, further optimiza-
tion is necessary to realize long cycling durability of NPSI 
electrodes.

Other strategies toward electrolytes and binders have 
also been proposed to promote cell cycling stability. Jiang 
et al. [117] obtained porous Si powder by etching Al–Si 
alloy in HCl solution. The intertwined Si nanobars con-
stitute a spongy structure with homogeneously distrib-
uted pores. When applying an electrolyte containing 15% 
ethylene carbonate (FEC), the ICE and corresponding 
electrochemical cycling stability are greatly enhanced. 
Apart from the innovative spongy structure, FEC is ben-
eficial for generating a thin and robust “primary SEI” on 
the anode surface during the initial cycle, which inhibits 
the breakdown and pulverization of active materials in 

Fig. 2  Different fabrication 
methods for NPSI electrodes. 
a Schematic illustration and 
SEM images of 3D porous Si 
by chemical etching: Si alloy; 
dealloyed Si; and 3D porous Si 
particles. Scale bar: 150 nm. 
Reproduced with permission 
from Ref. [107]. Copyright 
2018, Wiley–VCH. b Structural 
evolution of the  Mg2Si alloy by 
the vacuum distillation method. 
Reproduced with permission 
from Ref. [113]. Copyright 
2018, American Chemical 
Society. c Fabrication schematic 
of 3D NPSI by a liquid–metal 
dealloying process: the initial 
Si–Mg precursor; upon the 
immersion in Bi melt; 3D NPSI 
after etching Bi. Reproduced 
with permission from Ref. 
[114]. Copyright 2014, Ameri-
can Chemical Society
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the electrodes [118, 119]. Another efficient technology to 
stabilize NPSI anodes is to develop advanced polymeric 
binders. Hwang et al. [120] first introduced the ecofriendly 
and naturally abundant agarose as an aqueous binder for 
NPSI anodes, which is obtained by dealloying Al–Si. The 
agarose binder contains functional groups, such as ether 
and hydroxyl groups, which could strengthen the adhesion 
between the Si active material and Cu current collectors, 
and meanwhile minimize the large volume variation dur-
ing repeated charge/discharge cycles.

The construction of NPSI composites with buffering 
matrices is another research direction to improve cell cycling 
stability, and typical choices include carbons, metal oxides, 
and active/inactive metals. Furthermore, carbon coatings 
could function as a protective layer to control SEI forma-
tion on the electrode surface [121, 122]. As a result, NPSI/C 
composite anodes exhibit much improved electrochemical 
performance compared with pristine NPSI anodes. Different 
carbonaceous materials including reduced graphene oxide 
(RGO), carbon nanofibers, and graphitic carbon, have been 
employed to fabricate NPSI/C composites [123, 124]. As 
expected, the incorporation of carbons greatly enhanced the 
electron transfer and improved the electrochemical kinetic 
performance during cycling.

Si dispersion into metal matrices is regarded as another 
efficient strategy to tolerate volume expansion and improve 
electronic conductivity. Zhou et al. [125] prepared nano-
structured Si spheres by etching the eutectic Al–Si. By 
carefully controlling the etching conditions, a ~ 5% Al 
residual is maintained in the Si crystal lattice. Moreover, 
 Al2O3 deposited on the Si surface is proved to function as 
an efficient protection layer. These modifications can signifi-
cantly enhance cycling stability owing to the suppression of 
the side reactions between the Si electrode and electrolyte 
[126–128]. Hwang et al. [128] prepared micron-scale Si/
Al2O3 foams by a further selective thermal oxidation pro-
cess (Fig. 3a). Due to the different diffusion kinetics of the 
chemical etchant from the surface to the core,  Al2O3 protec-
tion layer can be homogeneously formed on the NPSI in the 
outer shell along with most  Al2O3 particles located at the 
core. The Al content could be readily adjusted by tuning 
etching time, while the  Al2O3 layer thickness could also be 
controlled by exposing in water vapor for certain time. The 
massive void spaces in the Si/Al2O3 foam are functionalized 
as buffer layers, while the superficial  Al2O3 protective layers 
reduce interface side reactions.

Compared with the Al residual, Ag with its much higher 
electrical conductivity and negligible effects on the Li stor-
age behavior is also a promising buffer matrix of Si-based 
anodes. Hao et al. [129] fabricated a micro–nano bimodal 
pore size distribution Si/Ag composite by etching a well-
designed Si–Ag–Al ternary alloy in HCl solution (Fig. 3b). 
The rich porosity and incorporation of highly conductive 

Ag could promote the electrochemical performance of the 
composite electrode.

Low-cost Cu with its high electrical conductivity is also 
a good candidate. Nanoporous Si/Cu composites with con-
trollable components could be easily fabricated by deal-
loying the Si–Cu–Al ternary alloy [130, 131], where Si 
nanoparticles are anchored in the Cu–Si–Cu rigid frame-
work (Fig. 3c). After optimization, the as-prepared NPSI/
Cu0.83Si0.17/Cu composites (denoted as  SiSERE) exhibit 
highly improved cycling stability and rate capability for Li 
storage. In order to study the impact of a porous skeleton 
upon the volume expansion, a nanobattery is assembled to 
observe the charge/discharge process by in situ TEM. As 
illustrated in Fig. 3d, the Si nanoparticle gradually expands 
during discharging, but no evident structural degradation or 
particle pulverization occurs after 10 min of lithiation. A 
high-resolution image suggests that the SEI film with a uni-
form thickness of ~ 5 nm covers the surface of the lithiated 
Si grain. The crystalline LiCuSi nanoparticles in the amor-
phous  LiSix matrix could effectively maintain the structural 
integrity during repeated lithiation/delithiation. Moreover, 
ex situ SEM/TEM shows that the Si electrode almost main-
tains its original morphology, even after long-term cycling. 
Crystal LiCuSi particles closely packed with amorphous 
 LixSi are still observed in the lithiated state, and CuSi parti-
cles within the ligaments also appear in the delithiated state. 
These results confirm that the CuSi phase undergoes a highly 
reversible expansion/contraction process during cycling. 
Therefore, the robust framework with sufficient void space 
and the existence of the CuSi phase are both responsible for 
the stability of the composite electrode. It should be noted 
that most dealloying studies to date are limited to binary 
systems. It is expected that multicomponent precursors may 
offer more opportunities to further adjust the microstructures 
of nanoporous electrodes with desired functions.

The incorporation of conductive Li-alloyed metals into 
Si has also been carried out. The design of such composite 
anodes is based on the following considerations [132–135]: 
(1) the integration of highly conductive Li-alloyed metals 
and Si can enhance the kinetics of Li transport and improve 
the rate capability; (2) different active components are 
lithiated at different onset potentials, avoiding simultane-
ous expansion and facilitating the gradual release of the 
strain–stress; (3) one can function as a buffer matrix when 
Li is inserted into the other active component.

Among various alloy systems, Ge has attracted much 
attention owing to its high capacity (1384 mAh  g−1 for 
 Li15Ge4), favorable electronic conductivity (100 times 
higher than Si), and rapid  Li+ mobility (400-fold faster 
than that in Si) [136]. Yang et al. [137] synthesized a 3D 
SiGe alloy by dealloying a ternary Al–Si–Ge precursor in 
HCl solutions. The morphology and porosity are control-
lable by adjusting the sacrificial Al content in the precursor. 
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The optimized electrode has a coral-like structure with 
hierarchical micropores/mesopores and uniform ligaments. 
Benefitting from the addition of Ge into Si, the innovative 
porous architecture could not only efficiently accommodate 
the volume change but also accelerate the electron transfer 
and Li-ion migration kinetics. Similarly, Sn and  TiO2 have 
also been utilized as a buffer matrix to reduce the extreme 
volume change and enhance the lithiation/delithiation kinet-
ics, thus boosting both the cycling stability and the CE of 
the dealloyed NPSI electrodes [92, 138]. Obviously, differ-
ent optimization strategies can be applied simultaneously 
to maximize the synergistic effects on electrochemical 

performance. For example, the co-incorporation of carbon 
matrix and metal elements into NPSI has been reported by 
different groups [87, 139, 140].

The representative NPSI anodes in LIBs are summarized 
in Table 1. In general, NPSI can be fabricated by three deal-
loying techniques including chemical, liquid metal, and 
vapor phase dealloying. Meanwhile, abundant Si-based alloy 
systems covering binary, ternary, and even quaternary alloys 
have been explored for compositional and structural control. 
Among them, Al is the most used sacrificial element, owing 
to its active chemical property and low price. After etching 
in an acidic or alkaline solution, they readily exhibit rich 

Fig. 3  Morphologies and compositions of representative metal-sup-
ported NPSI anodes. a Thermally oxidized Al–Si powder. Repro-
duced with permission from Ref. [128]. Copyright 2015, Royal 
Society of Chemistry. b Dealloyed Si/Ag composite. Reproduced 
with permission from Ref. [129]. Copyright 2015, Royal Society of 

Chemistry. c  SiSERE composite. d In  situ TEM images of  SiSERE at 
the initial stage (left) and upon discharging (right); HRTEM images 
showing the phase boundary of the SEI film/the anode (highlighted 
with light blue dashed lines). Reproduced with permission from Ref. 
[131]. Copyright 2016, Royal Society of Chemistry
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Table 1  Synthetic approach, morphology, and electrochemical performance of selected NPSI-based anodes. (Each box section includes two 
example studies. Left and right images correspond to the top and bottom studies in each box, respectively)

Mater. Synthesis Morphology ICE Cyclability (mAh 
 g−1)

Rate (mAh  g−1) Ref.

Micro-sized porous Si Fe–Si alloy in HCl 
and HF

88.1% 1250 at 
500 mA g−1 
after 100 cycles

558 at 5 A  g−1 [105]

Nanoporous Si Mg–Si after airoxida-
tion in HCl

88% 1200 at 
1800 mA g−1 
after 400 cycles

1000 at 36 A  g−1 [106]

Nanoporous Si Mg–Si by vacuum 
distillation

85% 2034 at 
200 mA g−1 
after 100 cycles

855 at 5A  g−1 [113]

3D porous Si Al–Cu–Fe/Si alloy in 
HCl and NaOH

76.5% 1222 at 
500 mA g−1 
after 200 cycles

– [107]

3D NPSI Mg–Si precursor in Bi 
melts

– 1000 at 3.6 A  g−1  
after 1500 
cycles

– [114]

Porous Si Zn–Si layers by 
vacuum annealing

– 2000 at 
360 mA g−1 
after 150 cycles

– [115]

Porous Si Al–Si alloy in HCl 
solutions

60.1% 1368 at 
100 mA g−1 
after 258 cycles

– [117]

Nanoporous Si Al–Si alloy in HCl 68% 1400 at 
100 mA g−1 
after 60 cycles

750 at 4.2A  g−1 [119]

Si/RGO Al–Si alloy in GO and 
HCl

75% 1942 at 
100 mA g−1 
after 100 cycles

1521 at 4 A  g−1 [88]

Si/graphene paper Al–Si in HCl and 
graphene coating

56% 1500 at 
100 mA g−1 
after 100 cycles

400 at 2 A  g−1 [141]

CNF/NPSI hybrids Al–Cu–Fe/Si alloy 
in HCl

82.31% 1184 at 
360 mA g−1 
after 100 cycles

– [123]

Porous Si spheres Al–Si in HCl under 
the ice bath

~ 75% 1150 at 
200 mA g−1 
after 60 cycles

1180 at 3.2 A  g−1 [125]
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porous morphology with interconnected networks. When 
evaluated in LIBs, the rationally designed NPSI anodes 
exhibit enhanced cycle stability with high reversible capaci-
ties (> 1000mAh  g−1), good rate capabilities, and high ICE 
(> 75%). Nonetheless, further optimization such as carbon 
decoration is necessary for the sake of electron conduc-
tion and volume expansion. However, it is noted that NPSI 
composite electrodes could result in low ICE, which is a 

principal challenge for the application of NPSI anodes in 
practical cells.

3.1.1.2 Nanoporous germanium (NPGE) and tin (NPSN) Ge 
and Sn in the same group as Si in the Periodic Table are also 
promising alternatives to commercial graphite. Although 
their theoretical capacities (1600 and 994 mAh  g−1 for 
 Li4.4Ge and  Li4.4Sn, respectively) are lower than that of Si 

Table 1  (continued)

Mater. Synthesis Morphology ICE Cyclability (mAh 
 g−1)

Rate (mAh  g−1) Ref.

NPSI/Al2O3 foam Al–Si in HCl and 
thermal oxidation

83.1% ~ 750 at 
720 mA g−1 
after 300 cycles

– [128]

Bimodal porous Si/Ag 
composite

Ag–Al–Si ternary 
alloy in HCl

79.3% 1656 at 
200 mA g−1 
after 150 cycles

960 at 1 A  g−1 [129]

NPSI/Cu composites Cu–Al–Si ternary 
alloy in HCl

78.4% 820 at 
1000 mA g−1 
after 200 cycles

900 at 1.5 A  g−1 [130]

3D NPSI/CuSi/Cu Cu–Al–Si by Sulfur-
dealloying

70.5% 1186.9 at 
1500 mA g−1 
after 180 cycles

160.3 at 48 A  g−1 [131]

Nanoporous SiGe 
Alloy

Ge–Al–Si ternary 
alloy in HCl

75.6% 1158 at 
1000 mA g−1 
after 150 cycles

577 at 8 A  g−1 [137]

Macroporous Si/Sn 
composite

Sn–Al–Si ternary 
alloy in NaOH

75.0% 748.2 at 
1000 mA g−1 
after 100 cycles

620 at 4 A  g−1 [92]

Porous Si@TiO2 Ti–Al–Si alloy in 
NaOH solutions

73.3% 1338.1 at 
200 mA g−1 
after 120 cycles

815 at 4 A  g−1 [138]

Macroporous Si/Ni/C Ni–Al–Si in NaOH 
and C-coating

68.2% 1113 at 
200 mA g−1 
after 120 cycles

775.9 at 3 A  g−1 [87]

Micro-sized porous Si Al–Si in HCl and 
carbon coating

61% ~ 600 at 
500 mA g−1 
after 300 cycles

200 at 10 A  g−1 [139]

Al/Na-doped Si 
nanorods@C

Al–Na–Si in HCl and 
C coating

87% ~ 700 at 
1000 mA g−1 
after 1000 
cycles

420 at 4 A  g−1 [140]
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(4200 mAh  g−1), the concomitant volume change is accord-
ingly lower during the Li insertion/extraction process. In 
addition, in contrast to the anisotropic swelling and surface 
fracture resulting from the anisotropic lithiation in crystal-
line Si, crystalline Ge exhibits isotropic lithiation and swell-
ing behaviors. More importantly, the metallic characteristics 
are increasingly obvious from Si, Ge, and Sn in sequence, 
which is beneficial for electrode conduction and electron 
migration. For example, the room temperature Li-diffusion 
rate in Ge is 400 times faster than that in Si anode [142–144]. 
All of these properties make Ge and Sn durable, high-capac-
ity, and high-rate anode candidates for next-generation LIBs 
[145]. Nonetheless, capacity degradation is still inevitable 
for these anodes, owing to the drastic pulverization of bulky 
particles and hence the electrical isolation problem from the 
current collector. To solve these problems, the dealloying 
technique has been extended to fabricate NPGE and NPSN 
to control volume expansion.

Building on the experience from NPSI electrodes, NPGE 
has been fabricated by the vapor phase dealloying process. 
Such anodes deliver stable cycling for 50 cycles with a cut-
off discharge capacity of 500 mAh  g−1 [146]. Liu et al. [147] 
also prepared NPGE by chemical dealloying Al–Ge in HCl. 
The ex situ SEM and corresponding X-ray diffraction (XRD) 
measurements verify this evolution process. The obtained 
NPGE shows a high reversible capacity (1191 mAh  g−1 after 
160 cycles at 160 mA g−1) and good rate capability (767 
mAh  g−1 at 1600 mA g−1).

In addition, the incorporation of one or more conduc-
tive substances into NPGE is an effective method to fur-
ther enhance the Li storage performance. Hao et al. [148] 
designed NPGE/Cu3Ge composites by dealloying the 
Ge–Cu–Al precursor alloy, which could simultaneously 
acquire rich porosity and an efficient  Cu3Ge buffer matrix. 

This composite anode exhibits improved Li storage per-
formance compared with pure NPGE anodes in terms of 
both the enhanced cycling stability and rate capability. It 
should be noted that most investigations tend to completely 
remove sacrificial elements when preparing desired porous 
electrodes to achieve high capacities. However, recent stud-
ies reveal selective etching could result in the formation of 
special alloy compounds that facilitate electron/ion transfer, 
tolerate volumetric changes, and promote the mechanical 
stability of the whole electrode [149–151]. For example, a 
3D nanoporous Cu–Ge–Al anode exhibits interesting tem-
perature-dependent Li storage performance [152]. Despite 
the great success, the relevant studies on Ge anodes are far 
fewer than those on Si. It is very likely that the performance 
of NPGE anodes could be further improved by integrating 
other optimizations such as carbon coating to solve the con-
duction problems in the electrodes.

Sn has a relatively low theoretical capacity among the 
three anodes, with a theoretical volume expansion up to 
260% during cycling. By selectively etching Sn-Mg binary 
alloy in ammonium sulfate, Cook et  al. [153] prepared 
NPSN powders composed of clustered Sn nanocrystals. 
Synchrotron transmission X-ray microscopy shows that 
the NPSN electrode with plentiful inner space could effec-
tively accommodate volume expansion. Specifically, areal 
(~ 20%) and volume expansion (~ 30%) of NPSN after lithi-
ation is much smaller than that of dense Sn (Fig. 4a). More 
importantly, NPSN particles could also contract back to the 
original sizes upon delithiation (Fig. 4b). Compared with 
the rapid deteriorating performance of dense Sn, the NPSN 
anode exhibits better cycling stability of 200 cycles (Fig. 4c) 
[154], although the large strain during lithiation/delithiation 
may still cause pore collapse and pore size reduction [155, 
156].

Fig. 4  a Transmission X-ray microscope absorption images of NPSN 
and dense Sn at initial and lithiated states. b Areal expansion of 
dense Sn and NPSN at different lithiation voltages. c Cycling per-

formance comparison of NPSN and dense Sn at a current density of 
250 mA g−1. Reproduced with permission from Ref. [154]. Copyright 
2017, American Chemical Society
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Thus, the incorporation of an extra matrix into Sn anodes 
has been proposed to generate a more ductile porous Sn–M 
alloy [157–159]. Liu et al. [158] reported the synthesis 
of a CuSn alloy by selectively etching Al from a ternary 
Cu–Sn–Al precursor, in which the active Sn is adhered to 
the conductive Cu framework. By tuning the dealloying 
time and media, the as-prepared nanoporous CuSn alloy 
displays good cycle stability (673 mAh  g−1 after 50 cycles 
at 334 mA g−1) and rate performance (566 mAh  g−1 at 
1670 mA g−1) whereas the rigid Cu framework provides 
extra protection for the anodes as well as efficient electron 
pathways. It is noted that the inactive nature and high mass 
density of Cu would sacrifice the energy density of the 
overall electrode. Inspired by the investigations of the Li-
alloyed metals as the buffer matrix [160–162], Fan et al. 
[86] designed a nanoporous  SnOxSb alloy by dealloying a 
Sn–Sb–Al ternary alloy to address this issue. The coexisting 
Sn and Sb elements, both as Li-active metals and frame-
works, could react with Li by a two-step alloying process, 
which efficiently accommodate the volume expansion and 
electrode strain caused by lithiation/delithiation. Further-
more, tin phosphide  (Sn4P3) with its high theoretical specific 
capacity (1255 mAh  g−1) and a lower cost has also attracted 
much attention as an anode for Li storage [163, 164].It could 
reduce the risk of Li dendrites and enhance safety in case of 
overcharging owing to the higher potential than that of Li 
deposition [165]. For example, a porous Sn/Sn4P3 compos-
ite was fabricated by electrochemical dealloying of  Sn80P20 
alloy, followed by protective carbon coating via the pyroly-
sis of encapsulated dopamine, which indeed demonstrated 
improved overall performance upon cycling [166].

3.1.1.3 Nanoporous metal oxides (NPMO) Metal oxides 
have drawn considerable attention as anode materials for 
LIBs on account of their high theoretical capacities arising 
from a conversion mechanism [96, 167, 168]. Different from 
Li storage by intercalation or alloying chemistry, the conver-
sion reaction involves the reversible reduction/oxidation of 
metal nanoparticles along with the formation/decomposi-
tion of  Li2O. Multiple-electron transfer could be involved 
in this process to provide exceptionally high capacities. The 
initial reduction by Li induces the generation of metal nan-
oparticles anchored into the  Li2O matrix, followed by the 
crystal structure destruction (amorphization of the lattice). 
The metal oxides are recovered during the reversible oxida-
tion process as a consequence of  Li2O decomposition [156]. 
Similar to alloy anodes, particle swelling/shrinking is one of 
the most serious challenges for metal oxide anodes, which 
results in poor cycling life owing to the pulverization of the 
active materials [169, 170].

As mentioned above, dealloyed NPMs are efficient to 
regulate the volume variation of electrodes with plenti-
ful nanopores and tunable morphology. Furthermore, the 

traditional chemical/electrochemical dealloying process 
can also be applied for the production of nanostructured 
transition metal oxides. With alloys containing metals of 
different activities against alkaline solutions, the sacrificial 
atoms are selectively etched. Meanwhile, the remaining less-
coordinated metal atoms are directly exposed to the  OH− and 
oxygen-containing atmosphere. In such an alkaline environ-
ment, these active fresh metal sites would undergo sponta-
neous oxidation at the metal/electrolyte interface to form 
nanostructured metal oxides [171]. The structures of the as-
obtained metal oxides can be readily controlled by selecting 
suitable precursor compositions and etching conditions.

Considering the versatility in fabricating various low-cost 
transition metals, a large variety of material systems have 
been studied to fabricate metal oxide anodes. It is worth 
noting that dealloyed metal compounds do not always evolve 
into the typical bicontinuous open structures upon the dis-
solution of alloy components, revealing that metal oxidation 
could significantly affect the rates of dealloying and surface 
diffusion. Nonetheless, the morphology and pore architec-
tures are highly tunable in such oxide anodes to optimize 
favorable electrochemical performance in LIBs. For exam-
ple, the compositions of NPMO can be easily controlled by 
retaining one or more metal species to fabricate single-ele-
ment, bimetallic, or composite oxides. For oxides composed 
of a single-metal element, the Li storage mechanism can be 
described by the following reaction:  MxOy+ 2yLi+ + 2ye− ↔ 
yLi2O + xM, where the capacity primarily depends on the 
number of electrons involved in the reaction. More electrons 
transferred upon the reduction/oxidation process offer higher 
capacities, but meanwhile the anode suffers from severer 
volume expansion.

The inverse spinel  Fe3O4 exists in nature as the mineral 
magnetite. It is a promising anode owing to its high theoreti-
cal capacity (928 mAh  g−1), low cost, and environmental 
benignity [96]. Jia et al. [172] synthesized regular  Fe3O4 
octahedra by leaching out the Al from Al–Fe alloy ribbons 
consisting of α-Al(Fe) and  Al13Fe4 phases in NaOH solu-
tions. Galvanostatic charge–discharge cycling of the  Fe3O4 
octahedra in half cells with Li exhibited deteriorating elec-
trochemical performance, which could be attributed to the 
intrinsic inferior electronic conductivity and the serious vol-
ume swelling during the conversion reaction process.

By introducing a conductive buffer matrix, such as Ag 
or Cu [173, 174], the capacity of the  Fe3O4/Cu electrode 
can increase to 512.6 mAh  g−1 at the 500th cycle, which is 
ascribed to a long-term activation process associated with 
the formation of a stable SEI layer and the typical nanopo-
rous structure during the repeated lithiation and delithia-
tion processes [41, 175]. Similarly, carbon materials with 
good electrical conductivity could also function as an effi-
cient buffer matrix to maintain the structural integrity and 
suppress the aggregation of porous  Fe3O4 during cycling, 
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finally enhancing the electrochemical activity and revers-
ibility [176, 177]. Other successful examples within this 
scope include octahedral  Mn3O4 [178],  Mn3O4 octahe-
dra@graphene [179],Mn3O4/Ag@graphene [180],  MnOx 
microspheres [181],  Co3O4 nanosheets [182], and  Co3O4/
Ag composites [183]. Apart from conversion-based metal 
oxide anodes,  TiO2 is a well-investigated intercalation/dein-
tercalation anode material that exists in several polymorphs. 
During the lithiation process, the phase transformation could 
considerably affect the electrical and ionic conductivity 
[184]. Indeed, dealloyed  TiO2 from an Al–Ti binary alloy 
shows a 3D amorphous network structure with enhanced 
performance [185].

Bimetallic oxides are composed of one transition metal 
and another electrochemically active/inactive metal. 
Their conversion storage mechanism is slightly different 
from that of metal oxide anodes with a single component 
[186]. Benefitting from the complementary properties 
and synergetic activities arising from the substituted ele-
ment, bimetallic oxides usually perform much better than 
simple oxides. A good example is cobalt-based bimetal-
lic oxides with other low-cost transition metals such as 
Mn and Fe. Micro/nanostructured  MnCoOx and  CoFe2O4 
nanoplates can be fabricated by dealloying the respective 
ternary alloys [187, 188]. EDX and XRD analyses prove 
the existence of mixed valence in the as-prepared sam-
ples. As expected, the  MnCoOx microspheres and  CoFe2O4 
nanoplates deliver much better electrochemical perfor-
mance than their corresponding pure metal oxides, since 
the novel nanostructure could accelerate the diffusion of 
electrolyte and offer extra space for conversion reactions. 
The fabrication of bimetallic oxides is greatly dependent 
on the atomic ratio between the different transition metal 
elements in the alloy precursors.

It is noted that the dealloyed product essentially retains 
the elemental proportion of the alloy precursors. Thus, it is 
easy to obtain desired compositions of oxide anodes sim-
ply by tuning the precursors. Owing to this advantage, the 
assembly of complex metal oxides has been achieved by 
dealloying multi-element alloy precursors. Nonetheless, it is 
difficult to accurately predict whether the dealloyed products 
will be a single phase or a composite. Additional caution 
should be used when designing alloy precursors to avoid the 
generation of bimetallic/trimetallic oxides with a pure phase. 
Other dealloying parameters such as etching conditions also 
have a critical effect on the structures and compositions of 
the final products. A common strategy to fabricate such 
nanocomposite anodes is the employment of ternary alloys 
with one active element. Hao et al. [189] reported a  Co3O4/
CuO nanocomposite with a controllable component by 
directly dealloying a  Co13Cu2Al85 precursor in NaOH solu-
tions. The as-prepared sample exhibits a porous flower-like 
microstructure with abundant interconnected nanosheets. 

The  Co3O4/CuO nanocomposite displays high capacities 
along with excellent cycling stability owing to the innova-
tive hierarchical architecture and the synergistic effect of 
two active electrode materials. A similar concept has been 
extended to other mixed metal oxide systems, including 
binary and even ternary mixed metal oxides [190–197].

Table 2 summaries the specific synthetic approach, mor-
phology and electrochemical performance of selected deal-
loyed metal oxides. Most single-metal oxides with porous 
structure exhibit good electrochemical performance with a 
high utilization of theoretical capacity. With the incorpora-
tion of carbon buffers or metal matrixes, the rate capacity is 
greatly improved due to the enhanced electrical conductivity 
and structural integrity. Nanosheet-like metal oxides usu-
ally possess a better comprehensive performance than that 
of polyhedron-like metal oxides since their large specific 
surface area and interconnected porous structure facilitate 
electrolyte transfer and accelerate the ion diffusion kinetics. 
Besides, complex oxides composed of multiple metal ions 
demonstrate much better comprehensive Li storage prop-
erties compared to their single-metal counterparts. These 
good results are usually attributed to both componential 
and structural improvement. Indeed, diverse metallic ions 
show synergistic effects on electron and charge transport as 
well as structural stability. Further tailoring should focus on 
the incorporation of the conductive metal/carbon matrix to 
enhance rate performance.

3.1.1.4 Nanoporous metal sulfides (NPMSs) Compared 
to metal oxides, their sulfide counterparts usually possess 
higher electrical conductivity, enhanced interface stabil-
ity, and more rapid ion diffusion kinetics during charge/
discharge reactions [186, 198]. Meanwhile, they also have 
other advantages including low cost, low redox poten-
tial vs. Li/Li+, and high theoretical capacity. Thus, metal 
sulfide anodes have attracted much attention as promis-
ing conversion-type electrodes in recent years. Wang et al. 
[199] synthesized a CuS nanowire-on-nanoplate network by 
a modified dealloying route. Specifically, a  Ti40Cu60 ingot 
is sequentially etched in high-concentration  H2SO4 solu-
tions at 90 and 10 °C. The initial process at high tempera-
ture produces the CuS nanoplate matrix, while the following 
low-temperature treatment generates CuS nanowires on the 
nanoplates. With a hierarchical nanostructure and enhanced 
electrical conductivity, the obtained CuS anode displays an 
exceptional performance toward Li storage. It’s expected 
that this simple processing strategy can be applied to the 
fabrication of different morphology and structures, such 
as mixed metal sulfides [200]. For example,  Fe3S4/Co9S8 
sulfide composites are fabricated through the hydrother-
mal sulfurization procedure. Compared with  Fe2O3/CoO 
electrodes, the  Fe3S4/Co9S8 sulfides exhibit much higher 
reversible capacity, superior cycling performance, and bet-
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Table 2  Synthetic approach, morphology and electrochemical performance of selected dealloyed metal oxides. (Each box section includes two 
example studies. Left and right images correspond to the top and bottom studies in each box, respectively)

Mater. Synthesis Morphology ICE Cyclability (mAh 
 g−1)

Rate (mAh  g−1) Ref.

Fe3O4 octahedra Fe15Al85 alloy in 
NaOH

68.0% 365 at 
50 mA g−1after 38 
cycles

– [172]

Fe3O4/Ag material Fe12Ag3Al85 alloy in 
NaOH

72.6% 613.2 at 
1000 mA g−1 after 
500 cycles

310 at 3 A  g−1 [173]

Fe3O4/Cu nanocom-
posites

Fe12Cu4Al84 alloy in 
NaOH

– 512.6 at 
1000 mA g−1 after 
500 cycles

505.8 at 1 A  g−1 [174]

Fe3O4 octahedra @
graphene

Fe10Al90 alloy in 
NaOH and GO

65.0% 523.2 at 
1000 mA g−1 after 
300 cycles

350.5 at 2 A  g−1 [176]

Fe3O4/Cu @graphene Fe12Cu3Al85 alloy in 
NaOH and GO

56% 442.6 at 
2000 mA g−1 after 
800 cycles

~350 at 3 A  g−1 [177]

Mn3O4 octahedra Mn15Al85 alloy in 
NaOH

57.3% 638 at 300 mA g−1 
after 500 cycles

240 at 1.5 A  g−1 [178]

Mn3O4 @graphene Mn10Al90 alloy in 
NaOH and GO

52.0% 625.3 at 
1000 mA g−1 after 
200 cycles

430 at 3 A  g−1 [179]

Mn3O4/Ag @graphene Mn9Ag1Al90 alloy in 
NaOH and GO

62.1% 763.5 at 
1000 mA g−1 after 
200 cycles

522 at 3 A  g−1 [180]

Porous  MnOx micro-
spheres

Mn5Al95 alloy in 
 H2O2–NaOH

68.0% 757 at 500 mA g−1 
after 100 cycles

420 at 1 A  g−1 [181]

Co3O4 nanosheets Co15Al85 alloy in 
NaOH

– 630 at 600 mA g−1 
after 50 cycles

470 at 1 A  g−1 [182]

Co3O4/Ag nanosheets Co12Ag3Al85 alloy in 
NaOH

79.7% 467.3 at 
1000 mA g−1 after 
1000 cycles

390 at 3 A  g−1 [183]

TiO2 nanowires Ti15Al85 alloy in 
NaOH

72.0% 215 at 500 mA g−1 
after 500 cycles

175 at 1 A  g−1 [185]
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ter rate capability. The lower EIS resistances also suggest 
enhanced electrical conductivity. The development of deal-
loyed metal sulfides is still on the early stage, but the above 
results highlight the attractive application prospect of such 
anode candidates with unique energy storage properties and 
facile fabrication procedures. In-depth studies on structural 
and compositional optimization should be implemented 
to further promote the applications of the dealloyed metal 
sulfides in future.

In summary, nanostructured alloy and oxide/sulfide 
anodes in LIBs could promote electrochemical performance 
by efficiently accommodating volume variation during 
cycling. The practical behaviors of such anodes are highly 
correlated to the design of the morphology, structures, 
and compositions. The most prominent merit of nanopo-
rous materials is the rich selectivity of precursors and the 
highly tunable dealloying process, which provide a reliable 

technique to design products with desired electrodes. For 
example, for certain anodes with enormous volume expan-
sion, such as Si and Ge, the fabrication of sufficient porosity 
is the primary task. In terms of Sn anodes that have mechani-
cal strength problems, the design of reinforced structures 
with an extra matrix seems to be more important to inhibit 
the rapid capacity fading. The incorporation of binary or 
more complicated metals in nanostructured alloy/oxide 
anodes is challenging for conventional synthetic routes. 
However, this issue can be easily solved by rational design 
through the dealloying method. Furthermore, post-treat-
ments including carbon decoration as a conductive coating 
or a buffer matrix (graphene, carbon fibers, or amorphous 
carbon) can be readily achieved with dealloyed samples as 
well, which ensures that dealloying is a very competitive 
technology to fabricate high-energy anodes for LIBs.

Table 2  (continued)

Mater. Synthesis Morphology ICE Cyclability (mAh 
 g−1)

Rate (mAh  g−1) Ref.

Co3O4/CuO composites Co13Cu2Al85 alloy in 
NaOH

75.6% ~ 600 at 
1000 mA g−1 after 
400 cycles

500 at 2.5 A  g−1 [189]

TiO2/Fe2O3 composites Fe4Ti2Al94 alloy in 
NaOH

60.4% 838.8 at 
200 mA g−1 after 
400 cycles

339 at 2 A  g−1 [190]

TiO2/Co3O4 compos-
ites

Ti7Co3Al90 alloy in 
NaOH

50.2% 180 at 
300 mA g−1after 
500 cycles

152 at 1 A  g−1 [191]

TiO2/MoOx composites Ti10.5Mo4.5Al85 alloy 
in NaOH

47.3% 321.6 at 
300 mA g−1 after 
500 cycles

167 at 1 A  g−1 [192]

Mn3O4/Fe3O4 com-
posites

Mn5Fe5Al90 alloy in 
NaOH

66.2% 1040 at 300 mA g−1 
after 200 cycles

321 at 1.5 A  g−1 [193]

Fe3O4/NiFe2O4 com-
posites

Fe12Ni2Al86 alloy in 
NaOH

– ~ 500 at 
200 mA g−1 after 
750 cycles

– [194]

GeO2/Cu/Cu2O com-
posites

Cu17Ge1.3Al81.7 alloy 
in NaOH

83.5% 504 at 1600 mA g−1 
after 150 cycles

552 at 3.2 A  g−1 [195]

CoNi/CoO/NiO com-
posites

Ni13.4Co14.6Al72 alloy 
in NaOH

73.0% 578 at 200 mA g−1 
after 600 cycles

260 at 2 A  g−1 [196]
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3.1.2  Nanoporous scaffolds

In consideration of their high electrical conductivity and 
3D bicontinuous structure, dealloyed materials can also 
function as novel scaffolds to anchor electrochemically 
active species including metals, alloys, metal compounds, 
and even insertion materials. During the charge/discharge 
process, scaffolds accelerate electron/charge transfer and 
accommodate volume expansion to enhance the Li storage 

properties of the composite electrodes. In this section, we 
introduce the application of dealloyed nanoporous materials 
as scaffolds/substrates in LIBs.

3.1.2.1 Nanoporous gold (NPG) As the most studied model, 
NPG has high electrical conductivity, robust mechanical 
rigidity, high corrosion resistance, and rich surface chemis-
try for further functionalization. NPG has been widely used 
in the energy storage and conversion fields, such as hetero-

Fig. 5  a Synthetic scheme and corresponding SEM images of an 
NPG substrate and supported nanocrystalline Sn; cycling perfor-
mance at 0.1 C with different voltage windows; rate capacity between 
0.005 and 1.0 V. Reproduced with permission from Ref. [90]. Cop-
yright 2011, Wiley–VCH. b TEM and HRTEM images of an NPG/

MnO2 composite; high-angle annular dark-field scanning transmis-
sion electron microscopy (HAADF-STEM) images of the gold/MnO2 
interface; the atomic model of the NPG/MnO2 interface. Reproduced 
with permission from Ref [203]. Copyright 2015, Royal Society of 
Chemistry

Table 3  Synthetic approach, morphology, and electrochemical performance of selected NPG-based composites (all the capacity values have had 
the Au contributions subtracted)

Materials 3D NPG-supported 
nanocrystalline Sn

3D bicontinuous Au/amor-
phous–Ge thin films

NPG/MnO2 composites NPG/TiO2 core/shell 
samples

Synthesis approach Chemically dealloying and 
chemical reduction

Chemically dealloying 
and thermal evaporation 
technique

Chemically dealloying 
and potential dynamic 
electroplating method

Chemically dealloying and 
atomic layer deposition

Morphology

Au content 20% 60% 20% –
Theoretical specific capac-

ity (mAh  g−1)
992 1600 1230 335

Voltage window (V) 0.005–1.0 0.005–1.2 0.25–3.2 1.0–3.0
ICE 82% 70% 63% 73.2%
Cyclability (mAh  g−1) 620 at 100 mA g−1 after 

140 cycles
1066 at 320 mA g−1 after 

100 cycles
650 at 50 mA g−1 after 240 

cycles
~175 at 1680 mA g−1 after 

500 cycles
Rate capability (mAh  g−1) 260 at 8 A  g−1 360 at 96 A  g−1 400 at 1.5 A  g−1 ~ 125 at 8.4 A  g−1

Reference [48] [114] [115] [116]
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geneous catalysis, electrocatalysis, and fuel cell applications 
[2, 8, 201]. It has also been introduced in LIBs as a novel 
scaffold to support high-capacity active materials such as 
metal/alloys and metal oxides.

Yu et al. [90] first reported NPG-supported Sn-based 
nanocomposites as high-performance anodes for LIBs 
(Fig. 5a). Sn nanoparticles are plated on the NPG surface 
to fabricate the Sn/NPC composite. When cycled in the 
optimum voltage window of 0.005–1.0 V, the as-prepared 
anode exhibits high reversible capacities and good rate per-
formance. The superior performance is ascribed to the inno-
vative Sn/NPG nanostructures, which offer adequate void 
space to tolerate significant volume variations and enable a 
large contact area between the electrode and the electrolyte 
to accelerate electron/charge transfer. A similar concept was 
also applied to Ge on an NPG matrix for high-performance 
LIB anode [202], where Ge overlayers are deposited onto 
NPG substrates by thermal evaporation.

The decoration of metal oxides onto the surface of NPG 
can be achieved by electroplating followed by an annealing 
treatment. Guo et al. [203] fabricated NPG/MnO2 hybrid 
anodes by such a route, where  MnO2 nanocrystals are grown 
epitaxially on the Au ligament surface and uniformly distrib-
uted within the network without changing the nanoporosity 
(Fig. 5b). Ye et al. [204] designed 3D NPG/TiO2 core/shell 
electrodes and systematically studied the effects of their 
length scale on the electrochemical performance. It is found 
that a thinner TiO2 coating could reduce the  Li+ diffusion 
pathway, enhance the  Li+ solid solubility, and minimize the 
voltage drop across the electrode/electrolyte interface. The 
optimized electrode shows supercapacitive power density 
and high energy densities.

Table 3 summarizes the synthetic approach, morphol-
ogy, and electrochemical performance of these NPG-based 
composites. Because gold is electrochemically very stable, 
its modification by active materials is readily manageable, 
such as by chemical reduction, thermal evaporation, electro-
plating, and atomic layer deposition (ALD). In most cases, 
the bicontinuous structure of NPG can be well-maintained 
after the decoration treatment. Owing to the excellent elec-
tron transfer kinetics of NPG, the composite anodes tend 
to exhibit nearly perfect capacity as well as improved rate 
performance if only active materials are counted. Moreover, 
rigid NPG skeletons with sufficient nanoporosity accelerate 
ion diffusion and accommodate volume expansion. Thus, the 
multifunctional NPG is an ideal model substrate for high-
capacity alloy/oxide anodes in LIBs. The only concern for 
its practical application is the high cost of Au. Nonetheless, 
NPG is a powerful and reliable material to study the struc-
ture-performance correlation considering the well-defined 
and elegant network topology, or can be used for high-per-
formance on-chip micro-batteries.

3.1.2.2 Nanoporous copper (NPC) As mentioned above, the 
high price undoubtedly restricts the commercial applica-
tions of NPG. Thus, low-cost NPC substrates with similar 
physical and chemical properties have been developed as 
an alternative. Among the commonly used, cost-effective 
metals, copper has excellent ductility and electrical conduc-
tivity, which makes it feasible to fabricate nanoporous sub-
strates for LIBs. Here, we introduce the fabrication of NPC-
based electrodes and their electrochemical performance in 
LIBs. Metal-coated NPC, mainly Sn-coated NPC, is first 
discussed based on different NPC fabrication methods, 

Fig. 6  Self-supporting NPC-based composites with high mechanical 
strength. a Photograph of a flexible NPC/MnO2 hybrid bulk elec-
trode (2 cm × 3 cm). Reproduced with permission from Ref. [211]. 
Copyright 2013, Nature Publishing Group. Schematic diagrams of the 
proposed novel synthesis methods to create self-supporting NPC.b 
Partial dealloying and heat treatment method; reproduced with per-

mission from Ref. [209]. Copyright 2018, American Chemical Soci-
ety. c Pack-cementation method; reproduced with permission from 
Ref. [210]. Copyright 2019, Elsevier. d Rolling/folding method; 
Reproduced with permission from Ref [212]. Copyright 2019, Else-
vier. e Magnetron sputtering method. Reproduced with permission 
from Ref. [211]. Copyright 2013, Nature Publishing Group
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including structural and componential optimization. Then, 
a series of NPC-supported copper oxides and several other 
metal oxides are also discussed to show the unique functions 
of NPC scaffolds.

Upon structure optimization, NPC could accelerate the 
ion transport, enhance the electronic conductivity, and alle-
viate large mechanical strains, thus enhancing the cycling 
stability of Sn anodes. Zhang et al. [91] first prepared NPC 
by a simple one-step dealloying of Al–Cu in NaOH solu-
tions. Based on the Al–Cu phase diagram and experimental 
results, it is speculated the  CuAl2 phase first crystallizes into 
an island-like structure, and then the mixed Al and  CuAl2 
phases precipitate together into a lamella-like structure. 
When Al is completely etched out, several island-like struc-
tures are uniformly distributed in the periodic structure of 
alternating channels and walls. After the electroless plating 
of Sn on the NPC, no morphology variation is evident. Com-
pared with Sn-coated planar Cu foil (Sn@CF), the obtained 
Sn@NPC anode exhibits higher capacity retention and better 
CE after the initial several cycles. Similarly, Liu et al. [205] 
reported monodispersed Sn nanoparticles upon monolithic 
3D NPC by dealloying Al–Cu binary alloy sheets in HCl 
solution and a subsequent low-temperature electroless plat-
ing technique. To further alleviate the serious volume expan-
sion of Sn during the lithiation process, ultrafine Sn–Ni alloy 
nanoparticles could be deposited on the NPC by chemical 
dealloying of the as-cast Al–Cu alloy in HCl followed by 
pulsed electrodeposition [206]. The obtained electrode pos-
sesses a large porous skeleton similar to that of the NPC 
substrate. Moreover, Ni and Sn are uniformly distributed 
throughout the whole 3D NPC substrate, which further pre-
vents cracking or detaching of active materials from the cur-
rent collector during long-term cycling.

Although the hierarchical nanoporous structure can par-
tially accommodate volume expansion, pure NPC is brittle 
as a free-standing substrate in LIBs. Meanwhile, it would 
possibly result in the generation of cracks and the collapse 
of the porous structure upon cycling. To further enhance 
the practicability and cycling stability, it is necessary to 
construct robust substrates with higher ligament hardness 
by component optimization (Fig. 6a). For example, a 3D 
NPC-supported Sn thin film with a sandwich-type structure 
was prepared by the partial chemical dealloying of an Al–Cu 
alloy [207]. By controlling the dealloying time, a uniform 
porous layer with complete Al removal could be formed on 
the outmost surface, while the central alloy layer with the 
Al–Cu phase is retained, thus resulting in a tri-layer micro-
structure composed of alternating porous and alloy layers. 
After electroless plating, a uniform and smooth Sn layer 
covers the surface and the interior of the bilateral porous 
structure. Meanwhile, the sandwich-type morphology with 
an open bicontinuous nanoporous network could be well-
preserved in the resulting anode. Luo et al. [208] fabricated 

NPC layers by a molten-metal infiltration method using 
spherical  SiO2 as space holder and subsequent dealloying in 
HCl. Next, particle-like Sn was uniformly deposited on the 
surface of the resulting 3D bimodal porous NPC substrate 
by electroless plating. Considering that a Cu–Zn–Al ternary 
alloy in the β or γ phase possesses a satisfactory conductiv-
ity and a higher hardness than pure Cu, Luo et al. [209] 
also fabricated a hierarchical porous Cu-based composite 
consisting of a layer of nanocrystalline Cu, β-(CuZn), and 
γ-(CuAl) phases by further heat treatment after chemical 
dealloying of Cu–Zn–Al (Fig. 6b). Through the electroless 
plating of Sn, particle-like Sn is uniformly distributed on the 
surface of porous Cu. In order to improve the mechanical 
properties of NPC, Han et al. [210] reported the innova-
tive pack-cementation process for the precursor preparation 
to avoid the formation of metal powders after dealloying 
(Fig. 6c). Specifically, a Cu–Al alloy precursor could be 
obtained through the coating of a uniform thin Al layer onto 
the as-prepared Cu foil using a pack-cementation method 
and NPC could be obtained by leaching Al. After Sn coat-
ing, the resulting integrated anode exhibits a four-fold higher 
capacity than that of traditional graphite and better cycle 
stability during the charging/discharging process.

It is known that Cu has little activity with lithium to form 
Li–Cu alloys, but its oxides including  Cu2O and CuO have 
been extensively studied as high-capacity anodes [156]. 
The preparation of CuO@NPC is straightforward by ther-
mal treatment of NPC in the presence of oxygen. Liu et al. 
[79] first reported 3D NPC-supported copper oxide  (Cu2O@
NPC) composites. During the in situ thermal oxidation pro-
cess, uniform  Cu2O layers are formed on the NPC surface. 
Nanoporous CuO/Cu hybrid electrodes are obtained either 
by ball milling NPC in water or by electrochemical oxidation 
[213, 214]. With the improved electrical conductivity, they 
exhibit stable cycling performance and good rate capabil-
ity. By combining rolling/folding technology with the deal-
loying (Fig. 6d), Liu et al. [212] fabricated a novel NPC 
substrate with high mechanical stability. After single-side 
oxidation and dehydration, nanostructured CuO nanoflake 
arrays with a highly open microstructure on the NPC sub-
strate are obtained. The above examples suggest that  Cu2O/
CuO coating on NPC can be readily achieved by in situ oxi-
dation, during which the high adhesive force between CuO 
and the NPC substrate maintains the structural stability and 
enhances the electrical conductivity at the interface.

Depending on the specific preparation process, the as-
made CuO electrodes usually display different morpholo-
gies, such as uniform layer coating and nanoflake array dis-
tribution. Both structures effectively tolerate strain and stress 
during cycles, and the NPC skeleton provides excellent Li-
ion and electron transfer pathways. Considering the low-
cost fabrication, notable structural stability, and enhanced 
charge transfer processes, CuO/NPC hybrid anodes with 
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superior electrochemical performance hold great promise 
for advanced LIBs.

Magnetron sputtering is also a promising technology 
to fabricate alloy precursors (Fig. 6e). After removing the 
active phase, the as-dealloyed NPC is seamlessly integrated 
with the robust solid Cu matrix, showing typical nanoporous 
morphology and excellent free-standing properties. Other 
metal oxides such as  MnO2 and  SnO2 can be deposited 
on NPC scaffolds to fabricate composite electrodes [211]. 
Both of them can deliver high energy at ultrahigh rates with 
superior stability. Qualitative analyses of CV curves at dif-
ferent scan rates show that capacitance contribution plays 
an important role in the high-rate capacity. Meanwhile, the 
innovative integration of solid and nanoporous hybrid archi-
tecture could effectively reduce the primary resistance, and 
density functional theory (DFT) calculations demonstrate 
that the strong binding energy between Cu/SnO2 coherent 
interfaces greatly enhances the electron transfer. Moreover, 
 Li4Ti5O12 has been encapsulated as a zero-strain insertion 

anode into interdigitated NPC by chemical deposition and 
annealing treatment [215]. The bicontinuous Cu/Li4Ti5O12 
nanocomposite exhibits significantly promoted rate capabil-
ity. The procedures to fabricate heterogeneous NPC anodes 
are relatively complicated. However, the highly conductive 
NPC network offers great opportunity for high-capacity 
anodes compared with conventional Cu current collectors. 
It is one of the most promising nanoporous candidates to be 
utilized in practical Li-ion cells.

Table 4 summaries the synthetic approach, morphology 
and electrochemical performance of NPC-based compos-
ites. In general, Sn is the most used active material that can 
be readily incorporated with NPC substrates by electroless 
plating or electrodeposition. These NPC/Sn electrodes show 
much promoted electrochemical performance, indicating a 
more affordable NPC is a good alternative to NPG. None-
theless, the brittle ligaments of pure NPC usually fail to 
endure large stress from volume expansion on long-term 
cycling. Some progress has been made to solve this issue by 

Table 4  Synthetic approach, morphology, and electrochemical performance of selected NPC-based composites (Each box section includes two 
example studies. Left and right images correspond to the top and bottom studies in each box, respectively)

Mater. Synthesis Morphology ICE Cyclability (mAh  g−1) Ref.

Sn-film coated on NPC Dealloying Al–Cu alloy 
in NaOH solutions and 
electroless plating

~ 70% ~ 0.62 at 150 mA g−1 after 50 
cycles

[91]

Sn nanoparticles on NPC Dealloying Al–Cu alloy in 
HCl solutions and electro-
less plating

– 0.254 at 0.1 mA cm−2 after 
500 cycles

[205]

Sn–Ni particles on NPC Dealloying Al–Cu alloy in 
HCl solutions and pulse 
electrodeposition

51% 0.25 at 0.1 mA cm−2 after 200 
cycles

[206]

Sn on NPC with sphere 
channels

Dealloying Cu–Al–Mn 
by in HCl solutions and 
electroless plating

75.2% 1.29 at 500 mA cm−2 after 100 
cycles

[208]

Sn on NPC with Cu/β/γ 
phases

Dealloying Cu–Zn–Al in 
HCl solutions and electro-
less plating

~ 85% 0.93 at 0.1 mA cm−2 after 100 
cycles

[209]

Sn-coated hierarchical Cu Dealloying Cu–Al alloy by 
pack-cementation in HCl 
and electroless plating

77.3% 7.4 at 1000 mA cm−2 after 20 
cycles

[210]

3D NPC@Cu2O Dealloying Al–Cu in NaOH 
and in situ thermal oxida-
tion

69% 1.45 at 0.175 mA cm−2 after 
120 cycles

[79]
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implementing novel electrode structural designs or introduc-
ing alloy phases to reinforce the structures [121, 122, 125].

3.1.2.3 Nanoporous nickel (NPN) Nanoporous nickel 
(NPN) is another alternative to the NPG scaffold, because 
of its similar physical and chemical properties to those of 
copper. Typically, NPN could be obtained by dealloying 
Ni–Al alloys in NaOH solutions, a standard Raney catalyst 
processing. The NiO layer was in situ formed on the surface 
of NPN upon exposure to air and water, thus generating a 
core/shell Ni/NiO nanoporous structure [216]. When used 
as an anode in LIBs, it shows excellent Li storage perfor-
mance during the initial several cycles, but severe capacity 
deterioration to a negligible level after 150 cycles. The poor 
cycling performance is ascribed to the detachment of the 
active components from current collectors and the unstable 
SEI generation on the electrode surface. The former leads 
to the mechanical and conductive failure of electrodes, and 
the latter not only consumes the electrolyte but also impedes 
ion/electron transport.

To tackle the durability problem, Li et al. [217] reported 
Li-ion breathable hybrid electrodes with a unique 3D archi-
tecture (Fig. 7a). Cu-Ni alloy films are first electrodeposited 
on Ni foil and then the Cu component is electrochemically 
dealloyed in the same electrolyte to fabricate Ni nanotube 
arrays (NTAs). Subsequently,  Fe3O4 nanoparticles encap-
sulated by the birnessite-type  MnO2 (δ-MnO2) film are 
uniformly anchored onto the NTAs through the consecu-
tive electroreduction of  Fe3+ and  Mn7+. SEM characteriza-
tion shows that high-density tube-like NTAs are vertically 
aligned on the Ni foil.  Fe3O4 nanoparticles uniformly grow 
along internal and external walls of the nanotubes and are 
then further coated by δ-MnO2 layers with much smoother 
surface. Structural and compositional characterizations 

including HRTEM, XRD and X-ray photoelectron spec-
troscopy (XPS) further confirm the successful fabrication 
of hybrid electrodes. The Ni/Fe3O4@MnO2 anode in LIBs 
exhibits a reversible capacity 1450 mAh  g−1 at 1 A  g−1 after 
1000 cycles and a high-rate performance of 890 mAh  g−1 at 
8 A  g−1 (Fig. 7b). The excellent electrochemical durability is 
also evidenced by the similar electrode morphologies before 
and after cycling.

Compared to NPC, studies on NPN are still in the very 
early stage. It is generally accepted that Ni has more environ-
mental issues than Cu during the electrode fabrication pro-
cess. More importantly, the high reactivity of Ni at moderate 
potentials might limit its applications as anode current col-
lectors. Nevertheless, Ni-based porous substrates including 
Ni foam have been widely used in laboratory research. The 
simple fabrication process and the tunable porous architec-
tures make NPN highly competitive among various porous 
Ni substrates.

3.1.2.4 Nanoporous graphene (NPGR) Most metallic 
porous frameworks have a notable electron transfer capabil-
ity, but their high mass density results in substantial com-
promise in the energy density of the overall electrodes. In 
contrast, lightweight carbonaceous materials are promising 
candidates from the viewpoint of practical applications, 
especially those highly conductive carbons such as gra-
phene. Graphene has been extensively explored in energy 
storage devices, owing to its high electrical conductivity, 
intrinsic electrochemical activity, low mass density, and 
excellent mechanical flexibility. NPGR can also be fab-
ricated by CVD using dealloyed NPMs as scaffolds. For 
example, NPN obtained by etching a Ni–Mn alloy is utilized 
as a both catalyst and porous template for the CVD growth 
of graphene with pyridine as the precursor. After dissolving 

Fig. 7  a Schematics of the fabrication process and the lithiation/
delithiation process of a Ni/Fe3O4@MnO2 NTA hybrid electrode. b 
Capacity retention and CE of a Ni/Fe3O4@MnO2 NTA electrode in 

a long-term cycling test at 1 A  g−1; comparison of rate capabilities 
from 0.2 to 8 C. Reproduced with permission from Ref [217]. Copy-
right 2017, Wiley–VCH
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the NPN substrates in HCl, 3D bicontinuous NPGR sheets 
are fabricated, possessing inverse porous features of the 
dealloyed NPMs [84, 85].

Han et  al. [218] fabricated 3D bilayer electrodes in 
LIBs by electrochemically plating thin molybdenum oxide 
 (MoO3) stacking films on the NPGR. Figure 8a shows the 
preparation procedure and porous architecture. After pulsed 
voltage deposition, a uniform and quasi-continuous  MoO3 
film is formed on the internal surface of the NPGR with 
well-preserved 3D nanoporosity. By controlling the  MoO3 
content based on the cycle number of pulsed voltage depo-
sition, the optimized anode exhibits excellent rate perfor-
mance (Fig. 8b). The cycling life and rate behaviors are com-
parable to those of electrochemical supercapacitors, but the 
capacity is over ten times higher than that of conventional 
supercapacitors. This exceptional performance is most likely 
attributable to the novel bilayer structure of the 3D nano-
porous MoO3/graphene composite, which could retain the 
active material in a thin-film structure tightly bonded with 
the highly conductive graphene, even at a high loading level.

Similarly, amorphous titanium dioxide (a-TiO2) was fab-
ricated by ALD to grow on the surface of dealloyed NPGR 
[219]. The obtained a-TiO2@NPGR could also deliver a 
large capacity at high rates by the intercalation pseudo-
capacitive mechanism (Fig.  8c). Further studies reveal 
anatase-like local structures in a-TiO2 are truly functional 
for Li-intercalation by local phase transformation. Extended 
X-ray absorption fine structure (EXAFS) analysis confirms 
a-TiO2 had a similar lithiation-induced phase transforma-
tion as crystalline-TiO2 (c-TiO2). The local ordering in both 
pristine and lithiated a-TiO2 is also verified by the distinct 

symmetric spots, and the Angstrom-beam electron diffrac-
tion (ABED) patterns match well with the simulated ones 
(Fig. 8d). Thus, a-TiO2 and c-TiO2 have similar Li storage 
mechanisms at the unit-cell level, while the local structure 
variation in a-TiO2 with pseudocapacitive behaviors could 
not cause much constraint on the overall charge storage 
kinetics. In general, crystalline or amorphous metal oxides 
based on dealloyed 3D bicontinuous NPGR substrates can 
deliver high energy and power densities. Compared with 
2D graphene, 3D NPGR with its preserved large specific 
surface area and high electric conductivity allows sufficient 
ion and current delivery for rapid electrode reactions. These 
investigations show that NPGR could be an efficient scaf-
fold for other active materials to realize high-performance 
graphene-based porous electrodes in LIBs.

3.2  Applications in LMBs

Large demand for future energy storage urges on-going 
scientific and technological breakthroughs beyond LIBs. 
Among various alternatives, lithium metal batteries 
(LMBs) based on lithium metal anodes have attracted 
much attention. Lithium metal is a high-energy anode with 
ultrahigh capacity (3860 mAh  g−1) and the most nega-
tive electrochemical potential (− 3.04 V versus standard 
hydrogen electrode) [220]. Combined with high-capacity 
oxygen or sulfur cathodes, the Li–O2 and Li–S batteries 
are of great interests due to their high theoretical energy 
densities, low costs and high availability. In the past dec-
ade, great progress has been achieved with these new sys-
tems [221, 222], but several issues still exist before their 

Fig. 8  a Fabrication of the bilayer  MoO3/graphene composite. b Rate 
performance of the nanoporous  MoO3/graphene electrode. Repro-
duced with permission from Ref. [218]. Copyright 2018, Elsevier. c 
CV curves collected at 0.2 and 5 mV s−1 with hatched portions show-
ing the capacitive contributions and capacitive contribution analysis 

with a-TiO2and c-TiO2. d Representative experimental ABED and 
simulated ABED patterns for pristine and lithiated a-TiO2; local 
structure models of pristine and lithiated a-TiO2 and c-TiO2. Repro-
duced with permission from Ref. [219]. Copyright 2018, Elsevier
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commercialization. For LOBs, the high thermodynamic 
stability and the intrinsic insulating character of dis-
charge products could cause the low round-trip efficiency 
and the surge of polarization during cycles. In terms of 
Li–S batteries, large sulfur volume expansion and the 
serious polysulfide shuttle significantly affect the cycling 
and rate performance. At the anode side, Li metal faces 
crucial challenges of progressive corrosion and dendrite 
morphology on cycling. Nanoporous materials have been 
successfully applied to both oxygen/sulfide cathodes and 
lithium anodes, with the aim to solve the above issues. In 
this context, such substrates are first discussed to prepare 
advanced LOB and Li–S cathodes. Next, the fabrication 
of nanoporous current collectors, especially NPC-based 
materials, is summarized with respect to the newly emerg-
ing research area of Li-metal anode protection.

3.2.1  Nanoporous substrates for oxygen cathodes in LOBs

LOBs hold promise as a high-energy system owing to 
their large theoretical and estimated energy densities. The 
dominant cathode reactions  [2Li+ + 2e− + O2 ↔  Li2O2 
(E0 = 2.96  V vs. Li/Li+)] are based on the formation/

decomposition of  Li2O2 upon the discharge/charge process 
[222–224]. Typical configurations of aprotic LOBs include 
the air-breathing cathode, the non-aqueous electrolyte, and 
the Li-metal anode [225–227]. Tremendous efforts have 
been devoted to exploring new cathode materials with 
great success. Critical challenges include high discharge/
charge overpotentials and severe capacity loss in the course 
of cycling, which mainly result from cathode degradation 
[228]. A durable substrate against electrolytes and external 
corrosion is vital for long-term cycling of LOBs. Other fun-
damental properties of a good substrate include high electri-
cal conductivity and high surface area to maximize catalytic 
activities and hence the conversion kinetics of oxygen in 
the cathodes. Dealloyed NPMs including NPG, NPN, and 
Ti (NPT) have attracted increasing attention as promising 
air-breathing cathodes, owing to the following advantages. 
First, 3D NPMs with natural chemical affinity for oxides 
can dramatically enhance the electron transfer of insulat-
ing oxides in composite electrodes. Second, their intrinsic 
high catalytic efficiency and electrochemical/mechanical 
stability facilitate the reversible formation/decomposition 
of the  Li2O2 product. Third, the open framework structures 
can accelerate electrolyte penetration, assure the arrival of 

Fig. 9  DEMS of the NPG cath-
ode during a discharge and b 
charge in 0.1 M  LiClO4-DMSO. 
Linear potential scans at 
0.1 mV s−1 (corresponding to 
a low discharge/charge rate) 
between 2.3 and 4.0 V were 
used. Reproduced with permis-
sion from Ref. [229]. Copyright 
2012, American Association for 
the Advancement of Science
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active species, and provide enough space for the storage of 
discharge products such as  Li2O2.

Among these NPMs, NPG as an active catalyst itself or 
an substrate (core/shell metal oxides/NPG composites) has 
been well-studied as cathodes in LOBs. Peng et al. [229] 
first reported pure NPG as a cathode in LOBs, which was 
made by dealloying the Ag–Au leaf. Coupled with a novel 
 LiClO4-dimethyl sulfoxide (DMSO) electrolyte system, the 
NPG-based cell exhibits much improved stability over 100 
cycles compared with a carbon configuration. By normal-
izing the capacity value to the Au mass, the NPG cathode 
can deliver a moderate capacity of 300 mAh  g−1. Differen-
tial electrochemical mass spectrometry (DEMS) measure-
ment shows that the charge-to-mass ratio on the discharge/
charge process is determined to be  2e−/O2, confirming that 
the reversible formation and decomposition of  Li2O2 on the 
NPG surface are the dominant reactions during cell opera-
tion (Fig. 9). The discharge products on the 100th cycle have 
a high purity of  Li2O2 (more than 99%) and nearly all of 
them could be reversibly decomposed upon charging. More-
over, the NPG electrode itself exhibits considerable catalytic 
kinetics toward  Li2O2 decomposition, with a decomposition 
rate of nearly 100% below 4 V and 50% below 3.3 V, which 
is ~ 10 times faster than that with carbon materials. The 
excellent electrochemical performance could be ascribed 
to their intrinsic catalytic activity and unique nanoporous 
structure. However, the poor charge transfer between the 

 Li2O2 particles and the solid electrode surface results in 
serious voltage polarization during the charging processes. 
The charge potential is still high (up to 4.0 V), even with a 
low charge plateau at 3.3 V, which is a serious problem in 
aprotic LOBs. To solve this issue, Chen et al. [230] further 
introduced a redox mediator of tetrathiafulvalene (TTF) into 
the DMSO electrolyte and NPG cathodes. Even under a high 
current density of 1 mA cm−2, the cell with the TTF additive 
could still function well for 100 cycles, assisted by the excel-
lent electrical conduction of the NPG cathode substrate.

Several operando characterizations have been conducted 
to study the NPG interface in LOBs [231, 232].For example, 
Gittleson et al. [231] monitored the Au electrode surface by 
operando surface-enhanced Raman spectroscopy and elec-
trochemical impedance spectroscopy (EIS) during typical 
discharge and charge processes to explore the formation and 
evolution process of the discharge product in practical LOBs. 
Raman signals from the electrode itself, discharge products, 
and the electrolyte could be clearly distinguished to offer 
insight into the stoichiometry, product flux, and proximity 
to the catalyst surface (Fig. 10a). In contrast to several inves-
tigations that suggest Li superoxide  (LiO2) is a mere inter-
mediate in the formation of  Li2O2, the stable and reversible 
precipitation of  LiO2 is observed, which is consistent with 
the reduced overpotentials during discharge. Then,  Li2O2 
reduced by  LiO2 produces an insulating layer that passivates 
the Au electrode. In turn, a superficial oxidized coating 

Fig. 10  a Operando Raman spectra of an Au–Ni foam electrode 
with a DMSO-based electrolyte during the first discharge and charge 
cycle (front to back). b Representative phase angle versus log(freq) 
of in situ EIS spectra. Reproduced with permission from Ref. [231]. 
Copyright 2014, American Chemical Society. c In situ AFM topogra-
phy images of an NPG electrode upon ORR and OER in a Li–O2 cell. 

Reproduced with permission from Ref. [232]. Copyright 2014, Royal 
Society of Chemistry. d Galvanostatic discharge/charge curves of dif-
ferent cathodes in LOBs; rate dependence and cycling performance of 
 RuO2-NPG-based batteries. Reproduced with permission from Ref. 
[233]. Copyright 2015, Royal Society of Chemistry
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generated at low charging overpotentials (< 0.6 V) renders 
residual products in poor contact with the electrode surface. 
In situ EIS measurements have been utilized to distinguish 
 LiO2 and  Li2O2 products by analyzing the frequency- and 
potential-dependent real resistance, and correlate the reduc-
tion and oxidation potentials to the formation mechanism of 
 Li2O2 (Fig. 10b). In addition, in situ electrochemical atomic 
force microscopy (AFM) has been carried out to observe the 
nucleation, growth, and decomposition of discharge products 
on NPG substrates in LOBs (Fig. 10c) [232]. It is found 
that the strong interaction between discharge products and 
NPG could greatly minimize side reactions and stabilize the 
reaction system. These operando investigations confirm the 
critical role of NPG substrates in the reversible conversion 
of the discharge product  Li2O2.

In addition to electrolyte optimization, several other strat-
egies on the architecture and composition design of NPG-
based cathodes in LOBs have also been exploited to further 
improve the electrochemical performance and develop their 
potential applications [93, 233, 234]. For example, NPG 
with higher porosity affords more  Li2O2 for higher capacity, 
and the larger accessible surface area accelerates the reac-
tion kinetics of  Li2O2 formation and decomposition during 
cycling. Guo et al. [93] designed a hierarchical NPG with 
secondary nanopores in the ligaments by a two-step deal-
loying approach. In the first step, Ag residual of ~ 70 at.% is 
retained in the Au–Ag precursor with an average pore size 
of ~ 20 nm. Subsequently, an annealing treatment in air is 
conducted to coarsen the structure with pore and ligament 
sizes of 80–100 nm. Finally, Ag in the coarsened product 
is further etched by a second dealloying step, thus generat-
ing hierarchical NPG with a high porosity of 80–82 vol% 
and large effective surface area of ~ 82.9 m2 g−1.With the 
addition of the redox mediator TTF, the as-prepared NPG 
cathode in LOBs exhibits a greatly enhanced reversible 
capacity and long cycling stability with low charge/discharge 
overpotentials.

Another optimization strategy is to introduce low-cost 
metal oxides to construct hybrid NPG electrodes. Compared 
with noble metal-based electrodes, metal oxides also exhibit 
great oxygen reduction reaction (ORR) and hydrogen evo-
lution reaction (OER) activity, and have been extensively 
studied as potential cathode materials in LOBs. NPG can be 
utilized as an efficient scaffold to support metal oxide elec-
trocatalysts as advanced composite cathodes, which demon-
strate high electrical conductivity, excellent electrochemical/
mechanical stability, and strong chemical affinity between 
NPG and oxides [233]. The preparation process usually 
involves chemical dealloying, electrochemical plating, and 
subsequent heat treatment. A series of metal oxide/NPG 
hybrid catalysts are fabricated through such a process includ-
ing  RuO2/NPG,  MnO2/NPG, and  Co3O4/NPG. Bright-field 
TEM characterization demonstrates that  RuO2 is uniformly 

distributed on the NPG surface, generating a 3D core/shell 
nanostructure. The 3–5 nm oxide coating is well-bonded to 
the NPG substrate.  MnO2/NPG and  Co3O4/NPG compos-
ites also have similar microstructures. When processed in 
LOBs, these metal oxide/NPG hybrid catalysts exhibit syn-
ergetic performance of the highly conductive NPG scaffold 
and catalytically active metal oxides. The voltage profiles 
(Fig. 10d) show lower average charge potential (3.6–3.8 V) 
for the composite anodes as compared to pure NPG (approx-
imately 3.9 V), suggesting the efficiently enhanced decom-
position kinetics of  Li2O2. Meanwhile, the average discharge 
potentials of these metal oxide-deposited cathodes are close 
to 2.8 V, slightly higher than that of bare NPG. The charge 
and discharge overpotentials are strongly associated with the 
metal oxides, among which  RuO2/NPG electrode displays 
the best rate and cycling performance. In addition, electro-
chemical synthesis of NPG thin films (< 100 nm) on vari-
ous low-cost substrates is a feasible method to improve the 
economic applicability of NPG [234]. Specifically, NPG on 
a glassy carbon substrate shows good cycling stability with 
significantly reduced voltage hysteresis.

In spite of the high cost, NPG frameworks provide new 
insights into the exploration of reaction mechanisms in 
LOBs. The well-defined porosity, elegant network topol-
ogy, and highly stable nature are key advantages of NPG 
substrates. In a lab-scale model system, NPG-based carbon-
free cathodes demonstrate great opportunity to precisely 
understand catalyst-electrolyte interfacial phenomena and 
describe the chemical and electrochemical reactions dur-
ing cycles. In addition, new technologies have shown great 
potential to reduce its use level in oxygen cathodes, which 
is critical for the practical development of NPG.

The dealloying method has been exploited to prepare 
low-cost transition metal substrates such as NPN and NPT. 
Similar to NPG, these dealloyed substrates exhibit abun-
dant porosity, large specific surface area, and high electrical 
conductivity. However, the poor electrochemical stability 
of these nanoporous transition metals upon charging limits 
their direct application in LOBs. To overcome this issue, 
Gao et al. [235] employed atomic-level N-doped graphene 
coatings to enhance the electrochemical stability of NPN in 
LOBs. The NPN prepared by chemical dealloying shows a 
typical bicontinuous open structure, which serves as both the 
template and catalyst for graphene growth through CVD.N-
doped graphene is uniformly coated on NPN ligaments 
under a mixed atmosphere of  H2 and Ar gas, with pyridine 
as the carbon and nitrogen source. With a cut-off capacity of 
280 mAh  cm−2 (55% of the maximum discharge capacity), 
the free-standing N-doped graphene@NPN cathode exhibits 
excellent cycling performance of 100 cycles with the charge 
potential of < 4.30 V. Moreover, the charge potential gradu-
ally decreases upon cycling, whereas the discharge poten-
tial does not change evidently. The rate dependence is also 
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studied based on the cut-off capacity of 155 mAh  cm−2. As 
the current density is increased from 0.03 to 0.2 mA cm−2, 
the average discharge potential continuously decreases from 
2.57 to 2.45 V, and the average charge potential is slightly 
increased from 4.10 to 4.30 V. These results reveal that the 
composite cathode preserves the merits of low charge/dis-
charge overpotentials and high conductivity of NPMs as well 
as the high electrochemical stability of carbon materials.

To reduce the consumption of noble metals, a novel 
configuration employing low-cost metals to support noble 
metal catalysts has been proposed for the cathode design of 
LOBs. Zhao et al. [236] first prepared vertically aligned Ti 
nanowire arrays on Ti foam by a facile dealloying method 
of a Ti–Mo alloy and then deposited Au nanoparticles on 
the Ti matrix by cool spurting. The free-standing Ti@Au 
nanowire matrix provides abundant active sites to facili-
tate electrochemical reactions. Meanwhile, the absence 
of conductive carbon and the polymer binder in cathodes 
effectively inhibits side reactions and promote long cycle 
stability. Electrochemical measurements demonstrate that 
the Ti@Au nanowire cathode could achieve a high capacity 
of 5000 mAh  g−1 at 1 A  g−1. The good stability and high 
conductivity of the Ti nanowire array endow the batteries 
with excellent durability of more than 640 cycles within a 
capacity limitation of 1000 mAh  g−1 at a current density 
of 5 A  g−1. Apart from the traditional chemical dealloying 
method, Zhao et al. [237] also fabricated porous Ti foam via 
a liquid metal dealloying approach with Mg as the molten 
medium. After coating the surface with Au nanoparticles, 
this self-supported cathode also exhibits a good cycling life 
in LOBs (118 cycles at 2 A  g−1 with a capacity limitation 
of 1000 mAh  g−1). These results suggest that cost-effective 
NPN/NPT cathodes can be promising alternatives to NPG 
by employing rational design for LOBs.

To date, carbon-based materials with considerable cata-
lytic performance have been widely studied in LOBs, but 
these cathodes are usually unstable at high oxidation poten-
tials, owing to electrolyte decomposition and irreversible 
side reactions [238]. Recent works suggest that 3D NPGR 
could show exceptionally high electrochemical stability as a 
cathode substrate for high-capacity LOBs [239–241]. How-
ever, it would also cause poor wettability with electrolytes 
and weak interaction with the discharged product of  Li2O2. 
Moreover, the charge overpotentials are considerably high 
in NPGR-based LOBs, giving rise to low energy efficiency. 
An efficient strategy to solve these issues is the introduction 
of heteroatoms with precise atomic control. By optimizing 
the surface wettability and electronic conductivity, they can 
greatly facilitate the charge transfer and accelerate elec-
trode/electrolyte interactions. Han et al. [242] synthesized 
3D nanoporous nondoped/N-doped/S-doped graphene based 
on the NPM-based CVD method with benzene/pyridine/
thiophene as the carbon/nitrogen/sulfur sources. These three 

samples exhibit similar micro-morphology with nanopore 
channels and interconnected tubular graphene ligaments, but 
the heteroatom-doped graphene samples have larger specific 
surface areas and more lattice defects. The subsequent elec-
trochemical evaluation reveals that N-doping could effec-
tively enhance the ORR kinetics to deliver an extremely high 
discharge capacity of 10400 mAh  g−1, whereas S-doping is 
beneficial to promote  Li2O2 oxidation, inhibits accumula-
tion of side products, and finally sustains a longer cycling 
behavior of 300 cycles at 1000 mAh  g−1 (Fig. 11a).

Another modification strategy is the incorporation of an 
appropriate redox-active molecule in electrolytes to lower 
the critical impact of the electrode-Li2O2 interface and 
efficiently reduce charge potentials [243]. Han et al. [244] 
integrated a dealloyed NPGR cathode with a compatible 
TTF redox additive in a DMSO-based aprotic electrolyte. 
The NPGR substrate provides abundant reaction sites and 
efficient pathways for both oxygen reduction and oxygen 
diffusion in the nanochannels. XPS spectra after cycling 
(Fig. 11b) manifest that the amounts of alkylcarbonate and 
 Li2CO3 are significantly reduced with the TTF additive in 
the nanoporous graphene cathode. Combining the TTF-
induced catalyzed effect to lower the charge potential, the 
NPGR cathodes exhibit attractive comprehensive perfor-
mance including large reversible capacities of 2000 mAh 
 g−1 at 2000 mA g−1 and a long lifespan over 100 cycles. Of 
particular note is that this work first demonstrates that a TTF 
additive could function well with carbonaceous cathodes. 
Thus, further structural tailoring with dealloyed nanoporous 
carbons may produce more practical performance in LOBs 
by exploring suitable electrolyte mediators in future studies.

The incorporation of noble metal or metal oxide nano-
particles with high catalytic performance has also been 
proposed to enhance the reaction kinetics of graphene elec-
trodes [223]. However, the weak bonding between nano-
structured catalysts and the carbon surface could induce 
coarsening and agglomeration of the active components. To 
solve this issue, Guo et al. [245] fabricated N-doped NPGR 
with encapsulated  RuO2 nanoparticles. Figure 11c shows a 
schematic illustration of the preparation process. N-doped 
NPGR/RuO2 is initially prepared by chemically plating 
 RuO2 into the channels of dealloyed N-doped NPGR. The 
sample is then treated by the CVD process, during which 
 RuO2 nanoparticles are homogeneously encapsulated by 
atomic coating of N-doped graphene layers. HRTEM images 
confirm the elaborate structures of 3–5 nm  RuO2 particles 
encapsulated by two or three layers of graphene. The as-
made composite cathodes exhibit superiorstability toward 
 Li2O2 formation and decomposition owing to the additional 
graphene protection.

In summary, both NPMs and NPGR can serve as cathodes 
themselves or as scaffolds to load other high-performance 
catalysts in LOBs. Compared with conventional powder 
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cathodes, the continuity and integrity of nanoporous mem-
branes provide remarkable improvement in electron and ion 
transfers, which are two critical factors for large capacities, 
good rate performance, and extended cycling lifes. For stable 
electrodes such as NPG, the optimized cell configurations 
achieved by employing novel electrolyte systems demon-
strate very promising long-term stability. Even with low-cost 

materials including Ti-, Ni-, and C-based nanoporous sub-
strates, appropriate modifications of structures and compo-
sitions could result in significant advances in performance, 
indicating that dealloying technology holds a unique place 
in the rational design of oxygen cathodes. This is actually 
not surprising considering the successful applications of 
nanoporous materials in proton exchange membrane (PEM) 

Fig. 11  a Galvanostatic discharge–charge profiles of LOBs with 
nanoporous graphene cathodes at 200  mA  g−1; cycling stability of 
nanoporous N- and S-doped graphene LOBs. Reproduced with per-
mission from Ref. [242]. Copyright 2016, Wiley–VCH. b C 1s and 
Li 1s XPS spectra of pristine nanoporous graphene and graphene 

cathodes after 100 cycles (1000 mAh  g−1 and 1000 mA g−1) with and 
without TTF in the electrolyte. Reproduced with permission from 
Ref. [244]. Copyright 2017, Wiley–VCH. c Schematic of the prepa-
ration process of nanoporous N-doped graphene with encapsulated 
 RuO2 nanoparticles from Ref. [245]. Copyright 2015, Wiley–VCH
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fuel cells [246–248], where the design principles of mem-
brane electrodes are comparable to those of oxygen cathodes 
for LOBs in many aspects. Thus, it is highly possible that 
more valuable experience derived from PEM fuel cells can 
be extended to the LOB system by employing nanoporous 
materials as suitable media.

3.2.2  Nanoporous substrates for sulfur cathodes in Li–S 
batteries

Li–S batteries represent another promising alternative to 
LIBs due to their high theoretical capacity of 1672 mAh 
 g−1 and energy densities of 3500 Wh  kg−1. Sulfur is also 
a low-cost, environmentally benign and naturally abundant 
element, which is suitable for large-scale engineering pro-
duction [249–251]. Despite these promising merits, sulfur 
cathodes suffer from several critical challenges that hinder 
the practical development of Li–S batteries, including the 
electric and ionic insulating character of sulfur, large volume 
expansion upon discharge(up to 80%), and the serious poly-
sulfide shuttle effect on cycling. Nanostructure engineering 
and composition regulation are effective to address these 
issues [252]. Typically, the introduction of porous carbon 
(low density, high conductivity, high specific surface area 
and chemical stability) to form porous carbon/sulfur com-
posite electrodes can not only enhance the conductivity and 
sulfur utilization, but also trap the soluble polysulfides in 
the porous matrix by physical confinement [253]. Besides, 
polar metal oxides as additives or complexes in sulfur cath-
odes possess strong chemical interaction with polysulfides, 
which can further prevent polysulfides shuttle [254]. Deal-
loying is a versatile technology to fabricate porous metals, 
compounds and even carbon materials. When functioned as 
a sulfur host, these dealloyed nanoporous materials could 
endow considerably enhanced capacities and long-term sta-
bility even at a high sulfur loading.

A good example is NPGR that exhibits unique porous 
structure, interconnected conductive pathways and abundant 
free space. Based on chemically dealloying and modified 
CVD methods, Lu et al. [255] fabricated 3D interconnected 
NPGR after etching NPN templates. NPGR layer and pore 
structures could be readily adjusted, and macroscopic foams 
are also achieved by carefully controlling the processing 
conditions. Benefiting from the topological structure and 
enhanced electrical conductivity, the NPGR-sulfur compos-
ites with optimized tubular pores of 50 nm deliver 520 mAh 
 g−1 after 260 cycles. It has been demonstrated that physi-
cal adsorption between nonpolar carbon hosts and polar 
lithium polysulfides can only slow down the sulfur loss for 
a short term. The introduction of the heteroatoms (N or P) 
offers stronger adsorption of polysulfides by weak chemical 
interactions [256, 257]. By utilizing an analogous dealloy-
ing method (MgO as sacrificial materials), Shi et al. [258] 

proposed N-doped graphene skin on the 3D NPGR frame-
work as anchoring sites to inhibit polysulfide shuttle in Li–S 
batteries. Different from the routine N-doping with bulk dis-
tribution, such N-doped graphene skin could still maintain 
high electrical conductivity. After incorporating sulfur via a 
shearing dispersion-filtration method, the NPGR-S compos-
ite electrode delivers 667 mAh  g−1 after 400 cycles at 1 C.

Polysulfide confinement by reinforced chemical binding 
could also be achieved with certain metal oxides [221]. As 
discussed above, various NPMO can be straightforwardly 
fabricated by chemical dealloying in alkaline solutions, 
which has been demonstrated as nonconductive interlay-
ers for high-loading Li–S batteries. For example, a hier-
archically porous  TiO2 matrix is fabricated by etching the 
 Ti10Al90 (at.%) alloy in 2 M NaOH solutions for 72 h [259]. 
As a classic polysulfide reservoir, the dealloyed TiO2 with an 
interconnected porous structure and large surface area offers 
efficient contact between sulfur and host material, which 
helps trap the polysulfide species and relieves the shuttle 
effect. Nevertheless, metal oxides generally show poor elec-
trical conductivity, thus it is inevitable to regulate the cell 
configuration by combining the carbon host to achieve high 
sulfur loading. Based on this assumption, Wu et al. [260] 
utilized a similar chemical dealloying method to prepare 
porous  CeO2 as an interlayer and commercial Ketjen black 
as the sulfur host. Compared with the pristine sulfur/Ketjen 
black cathodes, the incorporation of nanoporous  CeO2 
greatly enhances cell cyclability for 120 cycles even with 
a high sulfur loading of 6 mg cm−2. It is demonstrated that 
the proper redox potential of the  Ce3+/Ce4+ couple could 
effectively catalyze polysulfides on the particle surface of 
 CeO2. Moreover,  Mn3O4 octahedral microparticles with 
strong adsorption capabilities to soluble polysulfides are 
also fabricated by chemical dealloying [261]. In Li–S bat-
teries, the obtained S/Mn3O4 cathodes can deliver a capacity 
of 679 mAh  g−1 after 150 cycles due to the strong catalytic 
properties of Mn-based oxides.

Unlike the wide applications in LOBs, there are so far 
only a few studies on dealloyed materials in Li–S batteries. 
Nonetheless, it is demonstrated either dealloyed carbon or 
metal compound could effectively enhance cell performance 
by providing a conductive porous matrix for sulfur to solve 
the volume expansion and electron transfer problems. On 
the other hand, the fabrication of nonconductive interlayer 
is another promising strategy to maintain active materials 
at the cathode side.

3.2.3  Nanoporous materials for Li‑metal anode protection

The Li-metal anode is featured by its high specific capac-
ity (3800 mAh  g−1),  lowest redox potential (− 3.04  V 
vs. standard hydrogen electrode), and low mass density 
(0.53 g cm−3). The implementation of Li-metal anodes is 
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critically important to achieve high-energy-density LOBs. 
Moreover, it is the source of Li ions to enable the cells to 
operate properly with Li-free oxygen and sulfur cathodes. 
The practical application of Li-metal anodes is hindered by 
dendrite-associated issues, which cause severe performance 
degradation over cycling as well as safety concerns. In a 
Li–O2 cell, the Li anode faces external contamination owing 
to the special operation atmosphere, which further compli-
cates Li protection. Several strategies have been introduced 
to address the Li anode issues, particularly for the inhibi-
tion of dendrite growth [262]. For example, studies from 
different groups have suggested a close correlation between 
plating/stripping currents and dendritic morphology in Li 
anodes, which can be explained by the well-known Sand’s 
time theory [263–265]. Porous frameworks with high sur-
face area can effectively reduce the actual current densi-
ties in electrodes and accommodate the significant volume 
expansion/contraction of anodes upon Li plating/stripping. 
Therefore, Li-composite anodes and current collectors with 
3D porous architectures have been extensively investigated 
for Li protection. Modifications of commercial Cu foil cur-
rent collectors have been implemented by different research 
groups, usually with complex procedures [262]. In contrast, 
the essential advantages of dealloying technology afford 

accurate design of desired nanoporous structures in a sim-
ple and controllable manner. In this section, we discuss the 
application of dealloyed NPC current collectors for Li-metal 
anode protection based on different preparation methods.

Brass is a commercially available alloy composed of cop-
per and zinc, with a typical Cu/Zn ratio of 3:2. Yun et al. 
[266] first produced NPC current collectors by selectively 
etching Zn from brass foils. The resulting copper has a typi-
cal 3D microstructure and the interconnected pore size in 
the Cu skeleton could be easily controlled by adjusting the 
dealloying time. Compared with 2D planar Cu, the opti-
mized 3D Cu frameworks provide abundant space for Li 
deposition upon cycling and reduce the practical electrode 
current to suppress dendrite formation. The Li/Li@Cu cell 
assembled with such NPC current collectors demonstrates 
excellent cycling stability with very high CE of > 97% over 
250 cycles at 0.5 mA cm−2, or a long lifespan up to 1000 h 
at 0.2 mA cm−2 with observably reduced polarization. When 
paired with a  LiFePO4 cathode, the prototype full cell exhib-
its increased capacity of 136 mAh  g−1 with high retention of 
89.7% after 300 cycles. To achieve better control of nanopo-
rous structures, Zhao et al. [267] developed a linear sweep 
voltammetry method to electrochemically fabricate compact 
3D Cu current collectors from brass (Fig. 12a). The robust 

Fig. 12  Schematic of different dealloying methods to fabricate the 3D 
Cu current collectors: a an electrochemical etching method; repro-
duced with permission from Ref [267]. Copyright 2018, Wiley–VCH. 
b Vacuum distillation dealloying method; reproduced with permis-
sion from Ref. [269]. Copyright 2019, Elsevier. c Liquid metal deal-
loying method. Reproduced with permission from Ref. [270]. Copy-
right 2019, Royal Society of Chemistry. d Photo images of Cu–Zn 

alloy tape and the as-prepared 3D Cu current collector. Reproduced 
with permission from Ref. [267]. Copyright 2018, Wiley–VCH. e 
Typical cycling performances of Li||Li@Cu cells using 2D and 3D 
Cu current collectors with an Li plating/stripping for 1 h at a current 
density of 1 mA cm−2. Reproduced with permission from Ref. [266]. 
Copyright 2016, Wiley–VCH
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ligaments and homogeneously porous structures induce 
smooth and stable SEI formation, which is a key factor to 
suppress dendritic growth and dead Li.

It is worth noting that Zn has a relatively low boiling 
point of 907 °C. Based on this characteristic, An et al. [268] 
produced a 3D porous Cu current collector by a one-step 
vacuum distillation method to avoid the time-consuming and 
complex manufacturing process. By regulating the distilla-
tion temperature and time, the optimized Cu current collec-
tor with proper voids could restrain the growth of Li den-
drite and accommodate the huge volume expansion of the 
Li anode during cycling, thereby ensuring a stable SEI layer 
and electrode structure. Subsequently, Liu et al. [269] also 
fabricated a porous conductive Cu current collector by uti-
lizing a similar vacuum dealloying approach (Fig. 12b). To 
further increase the specific surface area and pore volume, a 
subsequent chemical etching process is conducted, resulting 
in 3D nanoporous/macroporous structures. The microscale 
pores and skeletons are functionalized as “cages/hosts” for 
Li plating/stripping, and nanopores well-distributed in Cu 
skeletons effectively facilitate Li nucleation under a low 
overpotential to induce flat Li growth morphology in the 
sprouting stage.

In addition, Shi et al. [270] proposed a novel liquid metal 
dealloying strategy to fabricate a self-supported porous Cu 
current collector (Fig. 12c). At the elevated temperature of 
80 °C, liquid Ga can be homogeneously painted onto the 
surface of a commercial Cu foil to form a CuGa2 intermetal-
lic phase. After dealloying in a mixed acid solution of  HNO3 
and HF, both metallic Ga and  CuGa2 alloy are selectively 

etched away, during which Cu atoms undergo rearrangement 
to form the nanoporous structure, which effectively reduces 
polarization and enhances electrochemical performance dur-
ing cycling.

Table 5 summarizes the synthetic methods, morphology 
characterization, and electrochemical performance of these 
dealloyed porous Cu current collectors for Li-metal anode 
protection. Despite the different preparation techniques, 
they all show typical nanoporous morphology with strong 
mechanical flexibility as of the pristine brass tape (Fig. 12d). 
Compared with 2D planar Cu, these 3D porous Cu current 
collectors afford greatly enhanced cycling stability in both 
symmetric batteries and full batteries (Fig. 12e), which is 
mainly ascribed to the interconnected network with large 
surface area to effectively reduce the current densities. The 
abundant porosity and tunable structures provide the neces-
sary space for electrode volume expansion upon Li plating, 
and thus dendritic morphology can be suppressed by physi-
cally confining Li deposition within the nanopores. It should 
be noted that nanostructured Li-composite anodes have been 
extensively studied based on similar design principles. In 
our opinion, the modification of current collectors is a more 
attractive strategy in terms of maintaining the high capacities 
of the overall anodes. Additionally, the excellent conductiv-
ity of metal foils such as copper is also a key advantage over 
carbon-based frameworks when applied in full cells coupled 
with high-loading cathodes. Nonetheless, it is still challeng-
ing to fabricate robust current collectors with desired porous 
structures for practical applications. For example, a large 
areal capacity of > 3 mAh  cm−2 is necessary for the practical 

Table 5  Synthetic methods, morphology characterization, and electrochemical performance of selected dealloyed porous Cu current collectors 
for Li-metal anode protection

Materials Nanoporous Cu 3D porous Cu 3D porous Cu Nanoporous/macropo-
rous Cu

3D porous Cu

Precursor alloy Cu64Zn36 Cu–Ga alloy Cu30Zn70 Cu75Zn25

Synthetic methods Chemical dealloying Electrochemical deal-
loying

Liquid metal deal-
loying

Vacuum distillation dealloying

Morphology

Cycling performance 
of the symmetric 
battery

250 cycles at 
0.5 mA cm−2 for 
1 mAh  cm−2

200 cycles at 
1 mA cm−2 for 1 
mAh  cm−2

300 cycles at 1 
mA cm−2 for 
0.5 mAh  cm−2

After 200 cycles at 
0.5 mA cm−2 for 0.5 
mAh  cm−2

After 800 
cycles at 
0.52 mA cm−2 
for 0.26 mAh 
 cm−2

Full battery cathode LiFePO4 Li(NiCoMn)O2

Cycling performance 
of the full battery

136 mAh  g−1 at 
90 mA g−1 after 300 
cycles

127.5 mAh  g−1 at 
180 mA g−1 after 350 
cycles

~ 110 mAh  g−1 at 
90 mA g−1 after 150 
cycles

~ 150 mAh  g−1 at 
90 mA g−1 after 50 
cycles

128.8 mAh  g−1 at 
50 mA g−1 after 
300 cycles

Reference [266] [267] [270] [269] [268]
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development of Li–O2 batteries, which require the abundant 
porosity of 3D current collectors for plated lithium. How-
ever, the fabrication of such nanoporous frameworks with 
good flexibility and mechanical strength is yet to be proved 
for non-noble metals such as copper. Future studies may 
focus on the rational design of alloy current collectors that 
have more rigid ligaments to afford structural integrity upon 
the dealloying treatment.

4  Conclusions and prospects

Dealloying is a versatile technique to prepare a wide vari-
ety of nanoporous electrodes including metals (NPG, NPC, 
NPSN, NPN, and NPT), semiconductors (NPSI and NPGE), 
compounds (NPMO and NPMS), and even carbons (NPGR). 
The dealloyed materials possess typical open networks with 
nanoscale ligaments, tunable pore sizes, and rich surface 
chemistry, all of which make these materials very promis-
ing candidates for utilization in energy storage/conversion 
devices. This review has comprehensively presented the fab-
rication and modification of dealloyed nanoporous materials 
and their applications in rechargeable lithium batteries. Spe-
cifically, we introduced typical preparation and modification 
techniques to regulate the structures and functions to satisfy 
the special requirements in lithium batteries. Furthermore, 
recent advances in the applications of rationally designed 
electrodes in LIBs and LMBs are summarized.

Based on their electrochemical activities, nanoporous 
materials have been extensively studied as high-capacity 
anodes in LIBs. A large group of metals/alloys/compounds 
exhibit highly reversible capacities stemming from the alloy-
ing or conversion reaction mechanisms. However, the large 
volume variation of these anodes results in severe particle 
pulverization and hence capacity degradation upon cycling. 
Nanoporous materials are ideal candidates to solve this prob-
lem by providing abundant space to accommodate the vol-
ume expansion. Furthermore, certain nanoporous materials 
without electrochemical activity can serve as 3D scaffolds to 
load desired active components. This strategy has also been 
extended to the fabrication of oxygen cathodes in LOBs, 
in which both NPMs and NPGR can be functionalized as 
cathodes themselves or as scaffolds to load other high-per-
formance catalysts for the delivery of high specific capacity 
with superior cycling stability. Benefiting from the abun-
dant porosity and facile composition regulation, NPGR and 
NPMO as porous substrates for sulfur cathodes also effec-
tively mitigate serious shuttle effect and volume variation in 
Li–S batteries. As for Li-metal anode protection, we propose 
the application of NPC as current collectors prepared by 
different preparation methods. Based on the multifunctional-
ity of 3D porous Cu, the obtained LMBs exhibit much bet-
ter cycling stability with high energy and power densities. 

Generally, the superior electrochemical performance of 
nanoporous materials mainly originates from several intrin-
sic structural features: (1) 3D open architectures offer high 
surface areas that are readily accessible by carrier charges 
and electrolytes; (2) the interconnected nanopores and liga-
ments efficiently reduce the ion diffusion pathways between 
the electrolyte and the electrode, and promote the internal 
permeation of active substances; (3) the high porosity with 
considerable residual space in the electrode greatly alleviates 
the large volume expansion during cycling.

In spite of the promising progress, the practical develop-
ment of nanoporous materials in rechargeable lithium batter-
ies remains immature and several technical challenges need 
to be resolved: (1) the traditional etching process with corro-
sive acid/alkali is not environmentally benign; (2) the limited 
types of reported systems still cannot meet the comprehen-
sive requirements of designated composite designs; (3) the 
high cost of noble NPMs, especially for NPG, is a major 
obstacle to their commercialization and limits their scope 
of appropriate applications to lab-scale model systems; (4) 
additional complex optimization procedures increase the 
manufacturing cost; (5) the large specific surface area and 
low packing density usually lead to relatively low ICE and 
inferior volumetric energy density; (6) synergistic effects 
must be considered to promote the comprehensive perfor-
mance of batteries. For example, electrolytes as an essential 
component of battery construction should be fully regu-
lated to modify the SEI generation on electrode surfaces. 
In LOBs, the incorporation of a TTF mediator in DMSO 
solvent can allow for both lower charge/discharge overpoten-
tials and longer cycling lifespans in NPG-based LOBs [230].

Considering the above challenges, we propose the follow-
ing potential directions and perspectives for further devel-
opment of dealloyed materials. (1) It is urgent to explore 
more alloy precursors. To date, most studies have focused 
on binary alloy precursors. Considering rich alloy systems, 
the fabrication of complex alloys may lead to more control-
lable compositions and structures. For example, the use of 
NPM-based scaffolds must be carefully controlled because 
high mass density can decrease the overall energy density 
of composite electrodes. This is particularly important in 
the design of nanoporous current collectors for Li-metal 
anodes. (2) In spite of versatile dealloying techniques, it 
is still difficult to prepare alkali and alkaline-earth metals 
due to their high reactivity. Thus, more efficient dealloying 
routes should be developed for the preparation of these com-
monly used metals in rechargeable batteries. (3) In terms 
of physical structure, it is particularly desirable to acquire 
large dimension, free-standing membranes with sufficient 
porosity and controlled thickness, especially for electroac-
tive, economically affordable transition metals. (4) More in-
depth studies including high space and time resolution char-
acterization and theoretical calculations are recommended 
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to better seek suitable nanoporous functional materials and 
thoroughly understand the corresponding electrochemical 
behaviors. (5) Based on similar functional figurations and 
operation mechanisms, valuable experience from dealloyed 
technologies can be readily extended to other alkali-metal 
systems including Na- and K-ion batteries. The exploration 
of intrinsic correlations between structures and performance 
is necessary for the design of such electrodes to promote 
their performance in next-generation batteries.
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