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Abstract
Using panel data from Nepal Living Standard Surveys (NLSSs) from 2003 and 2010, this
study investigates the impact of climate change on rice production in Nepal. Specifically,
we use stochastic frontier model and incorporate both technical inefficiency and spatial
filtering technique to estimate the impact of increases in average and extreme rainfall and
temperatures on annual rice production. Our central finding is that a 1°C increase in
average summer temperature results in a 4183 kg reduction in rice production. However,
we find no evidence of such impact for increases in extreme temperature days. On the
other hand, although we do not find a direct link between increases in average monsoon
rainfall and rice production, our results show that extreme rainfall variation hurts pro-
ductivity. Moreover, we find that a large majority of agricultural households in rural
Nepal practice technically inefficient production methods. Households in districts with
higher road and river densities are more technically efficient despite climate challenges,
which suggests that improved irrigation and market access are needed for climate
adaptation.
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The disproportionate impacts of climate change on the poor living in rural areas of developing
countries are well documented (Hallegatte et al. 2015; Burgess et al. 2017; Hallegatte and
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Rozenberg 2017; Barbier and Hochard 2018; Hsiang et al. 2019). These impacts are partic-
ularly severe among populations living in less-favored agricultural areas (LFAAs), character-
ized by difficult terrain, poor soil quality, or limited rainfall and with limited market access. As
such, less-favored agricultural areas are prone to low agricultural productivity and severe soil
degradation (Barbier and Hochard 2018, p. 27, 35). Two broad categories of factors, namely
lack of access to credit and technology as well as the non-linearity in damage functions, result
in larger marginal damages among the poor populations (Hsiang et al. 2019). Because the poor
in LFAAs face marginal environmental conditions and are land-dependent, any exogeneous
changes in environmental conditions can push them into poverty-environmental traps (Carter
and Barrett 2006; Barbier 2010).

Nepal’s mountainous terrain, poor access to infrastructure and markets, and excessive depen-
dence on subsistence agriculture and ecosystem services place the rural Nepalese poor among the
most climate vulnerable groups within the LFAAs (Pender and Hazell 2000; Pender 2007).
Climate models show steady increases in both temperature and precipitation in South Asia and the
Hindu-Kush region, where Nepal is situated (Im et al. 2017; Janes et al. 2019). High altitude
regions including in the hill andmountains of Nepal bear the brunt of these changes (Shrestha and
Aryal 2011; Gentle et al. 2018). While there is evidence that long-term adaptation can mitigate
some of the negative impacts of climate change in the developed economies (Burke and Emerick
2016), tools and resources for effective long-term climate adaptation require higher upfront
investments that are not readily available to poor households in developing countries, such as
Nepal (Anttila-Hughes and Hsiang 2013; Rayamajhee and Bohara 2019a). Moreover, Nepal’s
unique physiographical and topographical distribution and enormous climatic and ecological
diversity add additional vulnerabilities (Shrestha and Aryal 2011).

Nepal has long been a predominantly agriculture-based subsistence economy, with over
70% households directly relying one or more forms of agriculture to meet their daily needs
(Joshi and Bohara 2017; Joshi et al. 2017). Land is among the few productive assets that most
households own. Rice is the most preferred staple crop, grown by 76% of all agricultural
households in Nepal (Sanogo and Maliki Amadou 2010). Despite its special significance, rice
productivity remains poor and uncertain (MoF 2013; Khanal et al. 2018). This is because
nearly two-thirds of total cultivation relies on red-fed farming methods, which are highly
sensitive to climate fluctuations (MoAD 2012). Given the sensitivity of rice yields to climatic
conditions and the subsistence nature of the Nepalese economy, climate change induced
changes in rice production can have devastating impact on household food security and overall
wellbeing.

As successful collective action toward climate mitigation at the global scale remains
elusive, significant barriers also exist for “small but positive steps” from private and public
actors at lower levels (Ostrom 2012). First, there is only limited research that quantifies the
impact of climate change on the livelihoods of agricultural households in Nepal (Eriksson et al.
2009; Kunwar and Bohara 2017). The lack of relevant research is well-reflected by the fact that
a majority (50.67%) of Nepalese households have not even heard about climate change (CBS
2017). This is disconcerting considering a large volume of studies examines the impact of
climate change on agricultural production outside Nepal1 (Schlenker et al. 2006; Schlenker
and Lobell 2010; Fisher et al. 2012; Lobell et al. 2013; Lobell et al. 2014; Moore et al. 2017;
Baldos et al. 2018; Baldos et al. 2019). This lack of knowledge presents major hurdles for

1 For an overview of the debate on different approaches to assessing climate impact on agriculture, see Blanc and
Reilly (2017).
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rational policymaking at the local or regional levels and prevents private actors from adopting
long-term adaptation strategies. Second, although evidence suggests that some households
have adapted to climate change (Chhetri et al. 2012; Gentle andMaraseni 2012), the extent and
nature of the trade-offs involved in adaptation and the resulting new sources of vulnerabilities
are still unclear. Thus, quantifying the impact of climate change on the livelihood of farming
households and identifying the sources of technical inefficiency should go hand in hand to
effectively reduce climate-vulnerability among Nepalese households.

This study estimates the impact of climate change on food production in Nepal using the
Stochastic Frontier Model based on the Cobb-Douglas production function theory (henceforth
referred to as the SFP model). The SFP model considers crop production (rice in this case) as a
function of agricultural inputs such as labor, capital, raw materials, and weather variables (Isik
and Devadoss 2006). SFP models generally offer more reliable estimates compared to the
traditional hedonic approaches, whose estimates are highly sensitive to the choice of control
variables, sample selection, and weight assignments (Deschênes and Greenstone 2007).
Moreover, it allows us to account for spatial correlations of climate variables across districts
and to integrate technical inefficiency model within the same framework to jointly identify
factors that could improve agricultural production.

We use panel data from Nepal Living Standard Survey data from the years 2003/2004 and
2010/2011 that are publicly available from Nepal’s Central Bureau of Statistics. Climate data
gathered from 36 ground weather stations was acquired from Nepal Study Center’s data
repository. We construct four climate indices based on the available temperature and precipita-
tion data: a) extreme temperature during cropping seasons (days with temperatures above 32°C),
extreme rainfall during cropping seasons (days with rainfall 3 standard deviation above the long-
run average), average monsoon temperature, and average monsoon rainfall. Because the length
of climate data varies across the weather stations, we base extreme climate indices on the
percentage of the days. Data on rice production, costs of production inputs, and other variables
come from NLSS. We use maximum likelihood estimation methods to run our models.

We address a number of shortcomings in the extant empirical literature on the impact of
climate change on agriculture in South Asia and the Hindu-Kush region. First, we allow for the
spatial correlation of error terms using the spatial filtering technique. The spatial distribution of
agricultural land within and across districts affects the error term structure thus resulting in an
underestimation of the true variance-covariance matrix and an overestimation of climate
change impacts (Schlenker et al. 2006). Second, we incorporate technical inefficiency into
our stochastic frontier model to account for inefficiencies in households’ rice production
methods. This allows us to examine technological and related factors that may hinder a firm
(or a farming household) from reaching its technological frontier (Movshuk 2004). Third, we
use spatial analysis to provide additional insights regarding the distribution of technical
inefficiency by district. The purpose is to show which districts are ahead or behind in adopting
technical changes and track their progress overtime.

We find that the rise in extreme precipitation has adverse effects on rice production. The
extreme climate conditions model suggests that a 1 % increase in the number of days with
extreme rainfall variation (i.e. 3 standard deviations above or below the long-term average)
decreases rice production by 0.28%, which amounts to 5.34 kg per household. However, we
do not find evidence of similar impacts of the rise in extreme temperature days. On the other
hand, results from the average climate conditions model indicate that an increase in long-term
average monsoon temperature has significant negative impacts on rice production. We find
that a 1°C increase in average summer temperature results in a 0.48% (4183 kg) reduction in
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rice production each season. This effect decreases with further increases in average tempera-
tures. However, we find no evidence linking rise in average monsoon precipitation with rice
production.

Log-likelihood ratio tests for both extreme and average climate conditions models confirm
the presence of technical inefficiency. Results from the best-fitting extreme climate model
show that road and river densities, availability of agricultural extension services, and education
significantly improve technical efficiency, but these variable estimates are not robust to
alternate model specifications. Nonetheless, we find that they jointly explain technical ineffi-
ciency across all models (at 5% significance level). Thus, although we are unable to identify
definitively what factors lead to technical inefficiencies, we conclude that technical inefficien-
cy is present across all models. Comparisons of technical efficiency scores across districts in
the years 2003 and 2010 tell us that households did not make progress in adopting technical
improvements over the years. 12 districts in the sample had better technical efficiency scores in
2010 (compared to 2003), whereas 13 districts slipped to lower scores.

The paper proceeds as follows. The next section presents theoretical model that forms the basis of
our analysis. Then, we provide the econometric model derived from the theoretical model. The next
section describes the data, variables, and hypotheses. Then, we discuss results from extreme climate
conditions model, average climate conditions model, and technical inefficiency model. The con-
cluding section summarizes results and discusses policy implications.

Theoretical Model

Stochastic Frontier Model with Technical Inefficiency for Panel Data

We follow Battese and Coelli’s (1995) model for technical efficiency in a stochastic produc-
tion function for panel data. First, we begin with a deterministic production model of the
following form:

yit ¼ f xitð ÞTEit ð1Þ
where yit is the actual agricultural output of household i at time t; xit is a vector of agricultural
inputs used by household i at time t; f(xit) is the maximum feasible output using xit; TEit is the
technical efficiency of production for household i at time t. TEit is defined by Eq. (3.2):

TEit ¼ yit
f xitð Þ ð2Þ

Since the actual output is less than or equal to the maximum feasible output, we write:
TEit ∈ [0, 1]. TEit = 1 represents maximum feasible agricultural output for household i at time
t. TEit < 1 indicates technical inefficiency; that is, the actual agricultural output is less than what
is technically feasible if produced at the production possibility frontier curve.

In order to capture the effect of the random shocks, we add the effect of random shocks and
rewrite Eq. (3.1) as:

yit ¼ f xitð Þexp vitf gTEit ð3Þ
The expression f(xit) exp {vit}TEit on the right-hand side is the stochastic production frontier,
where exp{vit} represents the effect of random shocks (Angelici 2011). Since TEit ≤ 1 and
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nonnegative, we use an exponential term exp{−uit}, to represent it, where uit > 0. We rewrite
Eq. (3.3) as:

yit ¼ f xitð Þexp vitf gexp −uitf g ð4Þ
For empirical estimation purposes, we take the linearized version of the logarithm of the
production function in Eq. (3.4) and specify it as:

lnyit ¼ β0 þ ∑t
1∑

i
1βitlnxit þ βcCCjt þ vit−uit ð5Þ

where yit is the production of rice in the tth period (t = 2003, 2010) for the ith

household; Xit is a vector of inputs; CCjt captures the climatic conditions for the jth

district. Note that, although temperature and precipitation are direct inputs in agricul-
tural production (Deschênes and Greenstone 2007), most applications of stochastic
production models based on standard Cobb-Douglas assumptions do not include them.
For brevity, the remainder of this section assumes xit also represents CCjt. The first
random error vit, is assumed to be independently identically normally distributed with
zero mean and constant variance N 0;σ2

v

� �
. It is also assumed to be independent from

uit. The second random error term, uit, is associated with technical inefficiency of
production. We write uit as a function of zit, a vector of explanatory variables
affecting technical inefficiency:

uit ¼ γzit þ εit ð6Þ
where γ is the associated vector of parameters; εit is a vector of random errors that
captures the random part unexplained by the variables included in the model. Fol-
lowing Battese and Coelli (1995), εit is assumed to be truncated, normally distributed
with zero mean and constant variance, σ2

u:

Spatial Filtering

We use spatial filtering technique to capture the spatial correlation in climate conditions
among adjacent districts. Compared to traditional spatial analysis models, such as spatial
autoregressive models and spatial error models, the spatial filtering approach offers more
flexibility (Griffith 2000; Getis and Griffith 2002; Tiefelsdorf and Griffith 2007). It
avoids restrictive assumptions of traditional linear models, incorporates spatial effects,
and provides more robust estimates (Patuelli et al. 2006). The procedure of spatial
filtering is straightforward. We split the variable (initially spatially correlated) into
spatial and non-spatial components and filter out spatially auto-correlated patterns to
reduce the stochastic noise in the residuals (Patuelli et al. 2006, p. 2). Spatial filtering is
done by using weight-matrix eigenvectors, which are synthetically created variables to
represent the data’s spatial structure (Wang et al. 2013). As a first step, we create
eigenvectors to generate a spatial weight matrix, W, which is developed from a conti-
guity or a distance-based weight matrix. We utilize a distance-based weight matrix since
our data do not consistently include adjacent districts. Distance is chosen (39,240 m.)
such that all districts are included within at least one neighborhood. If districts i and j are
within (outside) the chosen distance threshold, a value of 1 (0) was assigned to generate
a 46-by-46 regular symmetrically binary matrix. Next, a transformation matrix Ω is
generated from the spatial weight matrix W following Griffith (2000):
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Ω ¼ I−llT=n
� �

W I−llT=n
� � ð7Þ

where W is the binary spatial weight matrix; I is an n-by-n identity matrix. l is an n-by-1
vector of 1 s, T denotes transpose operator, and n is the number of neighborhoods. Then,
we decompose the matrix Ω to generate 46 eigenvectors that are associated with 46
eigenvalues (Griffith and Chun 2014). The eigenvectors and eigenvalues are denoted as
E = (E1, E2,…, En) and δ = (EV1, EV2,…, EVn) respectively. Since the eigenvectors are
orthogonal and uncorrelated (ibid.), we could apply more than one eigenvector in our
regression analyses.

Cobb-Douglas Frontier Model Incorporating Spatial Effect

After incorporating spatial correlation, the Cobb-Douglas Frontier model can be rewritten as:

lnyit ¼ β0 þ ∑βitlnxit þ δkEk þ vit−uit ð8Þ

uit ¼ zitγþ εit ð9Þ
where Ek is a vector of spatial filtering eigenvectors, and δk is a vector of corresponding
parameters. In the above model, Ek accounts for the spatial autocorrelation between the
residuals and constants across the years 2003 and 2010.

Finally, to incorporate technical change influencing agricultural production across different
years, we add another year dummy variable T in Eq. (8) (Battese and Coelli 1995). The revised
model is of the following form:

lnyit ¼ β0 þ ∑βitlnxit þ δkEk þ δkþ1T þ vit−uit ð10Þ

Econometric Model

Our econometric analyses are based on Eqs. (8), (9), and (10), which are specified in this
section to fit our data and context. We analyze how a set of agricultural inputs (e.g. land, labor,
capital, irrigation, etc.), climate variables, and technical factors (road, river, extension services,
etc.) affect agricultural production in rural Nepal.

Basic Econometric Model

The following base econometric model is used to define the stochastic frontier rice production
function considered in this paper:

lnagriijt ¼ β0 þ β1lnlabit þ β2lnfertit þ β3lnseedit þ β4irrigit þ β5lnlandit þ β6ccjt

þ β7Ekj þ vit−uit ð11Þ
In Eq. (11), lnagriijtis rice produced by household i residing in district j at time t; lab, fert, irrig,
and seed are inputs of labor, fertilizer, irrigation, and seed, respectively; cc represents climate
condition variables such as temperature and rainfall; and, Ekj is eigenvector k decomposed
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from the spatial weight matrix for district j. All inputs except for irrigation and climate
conditions are expressed in logarithms. Because spatial variation is not explained by the
eigenvectors whose MC values (for eigenvector, E j ¼ n

lTCl
*δ j) approach their expected MC

values, we exclude the eigenvectors with a MC value of less than 0.25, resulting in 14 feasible
eigenvectors (Griffith and Chun 2014). Therefore, following Griffith and Chun (2014), we
select the eigenvector that provides the best model fit, which is E3 in this case. Substituting Ekj

in Eq. (11) by E3j, we can rewrite it as:

lnagriijt ¼ β0 þ β1lnlabit þ β2lnfertit þ β3lnseedit þ β4irrigit þ β5lnlandit þ β6ccjt

þ β7E3 j þ vit−uit ð12Þ

Technical Inefficiency Model

To analyze technical inefficiency in agricultural production, Eq. (9) is further specified as:

uikjt ¼ φ1riverjt þ φ2roadjt þ φ3roadsqjt þ φ4scfarmjt þ φ5agrixtkt þ φ6heduit

þ φ7hgenderit þ εit ð13Þ
where i, j, k, and t denote household, district, village development committee (VDC), and time,
respectively. Factors influencing the technical inefficiency included in the model are: total
river length (river), total road length (road), social capital index for farmer groups (scfarm),
access to agricultural extension services (agrixt), and household demographics (e.g. education,
gender of household head).

Data, Variables, and Hypotheses

The main dataset employed for this study comes from 2003 and 2010 Nepal Living Standard
Surveys (NLSSs). Although NLSS’s panel-data for 1996 were also available, we do not
include the year 1996 in our analysis. Only half of the observations from the later waves were
included in 1996, which would reduce observations by a half. Rainfall and temperature records
from 36 ground weather stations in Nepal were accessed through Nepal Study Center’s data
repository.

Dependent Variable: Rice Production

The dependent variable is the amount of rice produced by each household in the years 2003
and 2010. Prior to analysis, we took the following steps to prepare our data. We converted all
units to kilograms for uniformity and dropped the outliers (less than 10 kg and greater than
15,000 kg). Urban households were excluded for our analysis for two reasons: urban agricul-
ture is relatively minimal in Nepal and rural agricultural households in the mountain regions
are particularly vulnerable to climate change impacts (Hussain et al. 2016; Shrestha and Nepal
2016). This results in a total sample size of 946 households (473 for each year). An average
rural household’s annual rice production was 1869.7 kg, with a significant variance ranging
from 19.2 kg to 14,929.6 kg. Figure 1 presents the distribution rice production, which shows a
clear right-tailed skewness. The overall rice production per household in 2010 (mean of
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2028.13 kg) is slightly higher than that in 2003 (1854.45 kg). Our primary interest is to
investigate the factors influencing rice production patterns.

Inputs in the Rice Production Function

We categorize variables in the production function into two groups: climate conditions and
other inputs. We first describe climate conditions, as they are of primary interest. Then we
proceed to conventional Cobb-Douglas inputs such as investments in capital, labor, fertilizers,
seeds, irrigation, and cultivated land area. In the subsequent subsection, we describe factors
effecting technical inefficiency separately.

Climate Conditions

We construct climate indices using rainfall and temperature records from 36 ground weather
stations which cover 28 districts in Nepal. The original data include daily mean rainfall, as well
as daily maximum and minimum temperatures. To circumvent data limitation issues arising
from missing climate information in other districts, we employ the following data extrapola-
tion technique. First, we compute means of weather indices for each district with more than
one weather stations. These 28 districts (here, we denote them as i) are assigned the mean
values of these indices. Second, using ArcGIS tools, we identify adjacent districts i (with
climate data) for each district j (without climate data) and conduct data imputation. Specifi-
cally, if a district j has only one adjacent district i, it is automatically assigned that climate data.
In cases with multiple adjacent districts i, spatial analysis based on the average rainfall and
temperature values is conducted to compute climate data for each j. Although this process does
not impute data for all 75 districts, we are able to gain significant information through the
imputation process described. The map in Fig. 2a illustrates districts with original weather data
(color coded in blue/darker shade), whereas that in Fig. 2b shows data available to us after
imputation (imputed data color coded in lime green/lighter shade).
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Fig. 1 Distribution of Rice Production. (x-axis: quantity in kilograms; y-axis: number of households)
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We construct four climate indices for rainfall variation and extreme temperatures
during cropping seasons and average rainfall and temperatures during the monsoon
seasons. We observe a significant variation in availability of extreme weather data
across weather stations, ranging from 13 years (1996 to 2008) to 28 years (1971 to
2008). Therefore, to avoid heteroskedasticity problems stemming from this variation,
we use the percentage of days to represent extreme temperature and rainfall condi-
tions. For districts with data available for more than 25 years, the most recent 25 years
before 2003 and 2010 were considered. Following similar studies in the region, we
define extreme temperature days as those days with temperatures greater than 32°C.
This is consistent with generally agreed upon definitions of extreme temperature (heat)
as those that hover above the 90th percentile from the long-term baseline temperature
(Revadekar et al. 2013; Shrestha et al. 2017). Also, consistent with established
conventions, an extreme rainfall day in a given district is defined as the day with
rainfall the exceeds three standard deviation from the long-run average (ibid.).

The first guiding hypothesis is that extreme climate events reduce total agricultural
production.

Hypothesis 1 : βRainExtreme ¼ 0 v:s:βRainExtreme < 0
& βTempExtreme ¼ 0 v:s:βTempExtreme < 0

Traditional rice-growing practices (called Ropain) in the Hindu-Kush region including
Nepal involve flooding the land once temperatures get warm enough (not hot). We
hypothesize that increase in average monsoon rainfall will serve that purpose, thereby
increasing rice production. On the other hand, increases in average summer temper-
ature may disrupt traditional practices. Thus, we expect that can reduce overall rice
production, particularly if cultural traditions dictating Ropain timeline are not adapted
to changing external conditions.

Hypothesis 2 : βRainAverage ¼ 0 v:s:βRainAverage > 0
& βTempAverage ¼ 0 v:s:βTempAverage < 0

(a)                                                                  (b)

Fig. 2 (a) Districts with original weather data and (b) Districts with original and imputed weather data
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Other Inputs

Other inputs for rice production include capital, labor, fertilizers, and seeds. In our model, we
incorporate these inputs using the log of costs incurred per input category within the house-
hold, which are reported in Nepalese Rupees2 (NRs).

Because NLSS does not provide direct measure of capital, we construct an aggre-
gated capital measure following a similar study conducted in Nepal (Devkota and
Upadhyay 2013). Capital measure is computed by summing up several types of
capital investments included in the survey: namely, the cost of agricultural machinery;
payments for tractors, threshers, and other rented equipment; investments toward the
improvement and maintenance of land, machines, and buildings. As reported in
Table 1, the average cost of capital is NRs. 1734.

With respect to labor, we sum up the costs of home-labor and hired-labor. The
mean value for labor costs is NRs. 4480. The information on irrigation costs is not
available in the NLSS dataset; therefore, following Battese and Coelli (1995), we use
the portion of irrigated land area as a proxy for irrigation input. A mean of 0.551
irrigation input indicates that, on average, more than half of the agricultural land is
irrigated. Although land area allocated for rice growth is not reported in the data, we
have information on all vegetables planted within specific plots of land. We construct
the land area variable by summing up all these areas. Finally, we convert all input
costs (if reported in NRs.) to their logarithmic values.

Technical Inefficiency Factors

In our analysis, we include three potential sources of technical inefficiency in agricultural
production relevant to rural Nepal: namely, natural and physical infrastructures, community
attributes, and household characteristics. The following section describes how we construct
these key variables.

Natural and Physical Infrastructures

Recent literature confirms that roads and rivers are critical to Nepal’s agricultural development
(Joshi et al. 2017; Bucheli et al. 2018). Proximity to rivers determine the agricultural potential
of land, whereas roads ensure agricultural products reach viable markets. So, we include the
total length of roads (Road) and rivers (River) within a district.

We calculate the total length of roads (categories: main trail, foot path, graveled
road, highway, metaled, and railway) from publicly available shapefiles data (2000
and 2009) provided by the Nepal government (GON). We find negligible change in
road density in that decade. We expect that road density contributes to technical
efficiency in agricultural production; that is, it is negatively correlated with technical
inefficiency.

Hypothesis 3:

βRoad ¼ 0 v:s:βRoad < 0

2 At the time of the study, I USD = NRs. 98.

120 Economics of Disasters and Climate Change (2021) 5:111–134



Proximity to a river increases access to irrigation. In places where kulos (traditional
irrigation systems) are technically infeasible, closer proximity can substantially reduce
costs toward the construction of modern irrigation systems. We calculate total river
length for each district. The mean river length is 821.3 km. We hypothesize that river
density leads to increased technical efficiency (or decreased technical inefficiency).

Table 1 Summary Statistics

Variable Definition Mean Standard
Deviation

Minimum maximum

Dependent Variables
Rice Quantity of rice production (in Kilogram) 1869.7 2255.091 19.2 14,929.6
Independent Variables
Labor Labor input: cost of labor in the household (in

logarithm)
4.711 4.176 0 12.143

Capital Capital input: cost of capital in the household (in
logarithm)

4.913 3.230 0 11.149

Fertilizer Fertilizer input: cost of fertilizer in the household
(in logarithm)

6.085 3.138 0 11.562

Seed Seed input: cost of seeds in the household (in
logarithm)

3.780 3.291 0 9.881

IrrigatedLand Irrigation input: Portion of land irrigated. 0.572 0.430 0 1
Land Input of amount of land in the household (in

logarithm)
−.0.814 1.118 −6.158 2.411

TempExtreme Percentage of days in which maximum
temperature exceeds 32°C over 1971 to 2008
(at the district level)

0.259 0.240 0 0.814

RainExtreme Percentage of days in which average rainfall
exceeds triple of standard deviation over 1971
to 2008 (at the district level)

0.032 0.013 0.007 0.072

TempAverage Average monsoon temperature at the district level
over 1971 to 2008 (June to August)

26.484 3.515 19.471 30.014

RainAverage Average monsoon rainfall over 1971 to 2008 at
the district level (June to August)

18.569 8.553 5.626 30.014

Female Dummy variable. Coded as 1 if gender of
household head is female, 0 otherwise

0.147 0.354 0 1

Read Dummy variable. Indicator for education. Coded
as 1 if household head can read, 0 otherwise

0.541 0.499 0 1

SocialCapital Indicator for social capital. Farming association
membership engagement at the district level

0.508 0.582 0 2.540

AgriExtension Dummy variable. Coded as 1 if there is
agricultural extension service existing in the
ward, 0 otherwise

0.108 0.310 0 1

River Total length of river at the district level (in
kilometer)

821.316 307.625 281.8 1607.3

Road Total length of road at the district level (in
kilometer)

558.978 199.83 26.456 1143.74

Observation 912

Data source: Nepal living standard survey 2003/2004 and 2009/2010, Nepal shape files

Note: the summary statistics are average values of panel data
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Hypothesis 4:

βRiver ¼ 0 v:s:βRiver < 0

Community Characteristics

Extant research finds that community-level features and resources such as social
capital (SocialCapital) and agricultural extension services (AgriExtension) play central
role in increasing farmland productivity and household food security in Nepal
(Adhikari and Nepal 2016; Rayamajhee and Bohara 2019a). Therefore, we include
them in our technical inefficiency model. Social capital is calculated using member-
ship size in farming associations at the district level. This is consistent with recent
empirical studies on social capital from Nepal (Rayamajhee and Bohara 2020;
Rayamajhee and Bohara 2019a). The variable for availability of agricultural extension
services is at the village level. We code AgriExtension as 1 if farmers can access
extension services such as training experience and weather information in the village.
If no such service is available, we code it as 0. We find that the mean value of the
variable is 0.11, which indicates that such services are scarce. We hypothesize that
community social capital and agricultural extension services both increase technical
efficiency (i.e. decrease technical inefficiency).

Hypothesis 5:

βSocialCapital ¼ 0 v:s:βSocialCapital < 0

Hypothesis 6:

βAgriExtension ¼ 0 v:s:βAgriExtension < 0

Household Characteristics

We also include household characteristics that influence technical efficiency in agri-
cultural production. Based on data availability, we include the gender of the house-
hold head (Female) and their education (Read). The gender variable is coded as 1 if
the household head is female (0 otherwise). The education variable (Read) is coded as
1 “if the head of household can read,” and 0 otherwise. Although more granular data
on the education level was included in the survey questionnaire, the actual data has
too many missing observations. Read has a mean value of 0.541, which shows that
45.9% households are illiterate.

Results and Discussion

We use the maximum likelihood estimation method to estimate the Stochastic Frontier
Production (SFP) Models. We conduct two separate analyses for extreme climate conditions
during cropping seasons and changes in average rainfall and temperatures during monsoon
seasons.
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Extreme Climate Conditions Model

First, we run the SFP models for extreme climate conditions. Results are presented in Table 2.
The base model results are presented in column 2 (labeled Model 2a). In Model 2b, we add
climate variables and the corresponding spatial filtering eigenvector. Model 2c accounts for

Table 2 Estimation Results (Extreme Climate Indices)

Model 2a Model 2b Model 2c Model 2d Model 2e

Basic Frontier Production Model
Inputs Labor 0.029*** 0.029*** 0.032*** 0.032*** 0.033***

(0.008) (0.008) (0.008) (0.008) (0.007)
Fertilizer 0.113*** 0.110*** 0.108*** 0.11*** 0.109***

(0.011) (0.011) (0.010) (0.010) (0.010)
Seed 0.016* 0.011 0.019** 0.018** 0.015*

(0.009) (0.009) (0.009) (0.009) (0.009)
Capital 0.052*** 0.053*** 0.040*** 0.040*** 0.039***

(0.010) (0.010) (0.010) (0.010) (0.009)
IrrigatedLand 0.368*** 0.371*** 0.405*** 0.383*** 0.391***

(0.072) (0.071) (0.066) (0.064) (0.064)
Land 0.892*** 0.888*** 0.923*** 0.924*** 0.912***

(0.088) (0.088) (0.079) (0.080) (0.078)
Climate TempExtreme −0.012 −0.097 −0.033 −0.051

(0.187) (0.167) (0.153) (0.165)
RainExtreme −29.484** −23.235*** −27.527*** −27.583**

(11.405) (9.124) (9.015) (9.485)
Eigenvector (E3) 0.676** 0.748*** 0.713*** 0.693***

(0.232) (0.193) (0.184) (0.190)
Time (tech Δ) −0.105 −0.090 −0.152 −0.125 −0.117

(0.104) (0.124) (0.079) (0.068) (0.074)
Constant 5.847*** 6.799*** 6.569*** 6.716*** 6.713***

(0.113) (0.387) (0.306) (0.310) (0.322)
Technical Inefficiency Model

Infrastructure River −7942.200 −7374.100 −8666.100*
(7162.700) (5064.300) (5005.600)

Road −3310.400 −2856.600 −3939.500*
(2985.100) (1960.700) (2272.100)

Community SocialCapital −205.780 −219.790
(140.710) (161.280)

AgriExtension −265.260 −75.339***
(180.590) (25.051)

Household Female 644.170
(435.860)

Read −96.682***
(36.687)

Constant2 −276.160 −265.260 −75.339
(262.420) (180.590) (25.051)

Variance Parameters SigmaSq 1.268*** 1.213*** 1066.300 1203.300 1085.9*
(0.146) (0.144) (944.370) (821.720) (632.450)

Gamma 0.600*** 0.581*** 0.992*** 0.993*** 0.992***
(0.055) (0.059) (0.001) (0.001) (0.001)

Log-likelihood −1148.834 −1141.331 −1128.152 −1116.501 −1109.308
AIC 2319.669 2310.662 2290.304 2271.003 2250.616
N 921 921 912 912 912

Note: *** denotes significant at the 1% level; ** denotes significant at the 5% level; and * denotes significant at
the 10% level. Numbers in the parentheses are standard deviations. The rice production and inputs except for
portion of irrigated land are in logarithm. The river and road variables are in logarithm divided by 100
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technical inefficiency but only natural and physical infrastructures are considered. In Model
2d, we expand the technical inefficiency model to include additional community characteris-
tics. Finally, in Model 2e, we add household characteristics into the technical inefficiency
model. Comparisons of AIC and the log-likelihood values for Models 2a-2e show that model
specifications in 2e provide the best fit. Therefore, we choose that as the final model.
Discussions that follow mainly focus on Model 2e.

With respect to extreme climate indices, the negative coefficients for TempExtreme (per-
centage of days with high extreme temperatures) across Models 2a-2e indicate that high
extreme temperatures negatively affect rice production. However, the effect is not statistically
significant. Our results are consistent with previous studies conducted in the Hindu-Kush
region (Peng et al. 2004; Nagarajan et al. 2010). In addition, we find that the frequency of
extreme precipitation (excessive rainfall or droughts) adversely impacts rice production. These
impacts are statistically significant and consistent across all model specifications (2b-2e). We
find that a 1% increase in the number of days with variant rainfall corresponds to a 0.28%
(5.34 Kg per household) decrease in rice production. Additionally, highly significant coeffi-
cients of the eigenvector (E3) across all models confirm spatial correlation between adjacent
districts.

The signs of the coefficients of all inputs are consistent with the hypotheses discussed in the
previous section. The coefficients for investments in labor, fertilizers, seed, capital, irrigation,
and land are all positive and statistically significant, indicating that they contribute positively
to rice production. Land is the most important input, with an elasticity of 0.912. This indicates
that land area is a decreasing-returns-to-scale input. That is, a 1 % increase in land area results
in a less than 1 % (0.912%) increase in rice production (18.14 kg). All other inputs also exhibit
decreasing returns to scale, with even lower elasticities. 1% increases in labor (42.7 NRs) and
capital (17.13 NRs) increases rice production by 0.033% (0.64 kg) and 0.039% (0.76 kg)
respectively. These effects are robust across the five models, including both magnitudes of
coefficients and statistical significance levels.

This study accounts for factors affecting technical inefficiency in rice production. Results
from the best-fitting model (2e) show that road and river densities, availability of agricultural
extension services, and education significantly improve technical efficiency. Coefficients for
River and Road variables are as hypothesized. The negative coefficient for River implies that
the districts with higher river density have higher technical efficiency of production. This may
be because farmers living closer to water sources face lower irrigation costs and more paddy
choices (Edmonds 2002). On the other hand, the negative coefficient for Road indicates that
road network improves technical efficiency of rice production. This can occur through
improved access to durable goods or through human capital channel such as access to better
education and training (Bucheli et al. 2018).

As for the community characteristics, we do not find a statistically significant relationship
between technical inefficiency and social capital. This is possibly due to the fact that part of the
effect may have been captured by education and road variables. However, we find a positive
relation between availability of agricultural extension services and technical efficiency. The is
consistent with Elias et al. (2016), who point out that extension services should focus on
technology choices to improve agricultural production. Gender appears to play a part in
technical efficiency. Female-headed households have lower technical efficiency. This hints
to gender disparity that hinders agricultural production. As expected, we also find that
educated households are more technically efficient than their non-educated counterparts.
Estimates for factors determining technical inefficiency are sensitive to alternate specifications,
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which prevents us from deriving definitive conclusions. Nonetheless, we find the presence of
technical inefficiency across all models (H0: γ = 0 is rejected throughout).

Average Climate Conditions Model

Next, we run SFP models to estimate the impact of changes in long-term average climate
conditions on rice production. We consider average climate conditions (average monsoon
rainfall and average monsoon temperature) over the period of 1971 to 2008 during the rice
growing seasons. Table 3 presents the results. We find that results for various input costs
(labor, capital, fertilizer, seeds, irrigation, and land) are very similar to those in the previous
models. We estimate five model specifications (shown as Models 3a-3e). Model 3a is the base
model without climate variables and technical inefficiency, hence identical to model 2a in the
previous section. Models 3b-3e follow similar modeling approaches as 2b-2e but with different
climate variables. That is, we include long-term average climate variables instead of extreme
climate variables. To capture the potentially nonlinear relationship between long-term climate
conditions and rice production, we also include square terms of the long-term rainfall and
temperature averages. Model comparisons based on AIC and log-likelihood values show that
the final model (2e) provides the best fit. So, we base our analysis on Model 2e.

The variables of interest in these models are climate change indices. We find positive
coefficient for average monsoon (summer) rainfall (RainAverage), whereas its squared term
(labeled RainAverageSqr) has negative coefficients. This indicates that increase in monsoon
rainfall is beneficial for rice production up to a threshold, beyond which the effect becomes
negative. However, these results are not statistically significant. On the other hand, we find that
increases in long-term average monsoon temperature (TempAverage) decreases rice production
significantly. TempAverage has a coefficient of −0.480 (0.157), significant at 1% level. This
indicates that a 1°C increase in average summer temperature decreases rice production by
0.48%. Crude calculations show that this translates to a 4183 kg reduction in net rice produced
per season. The positive sign for the squared term for TempAverage (i.e. TempAverageSqr)
means that this impact decreases with further increases in average summer temperatures.

We find that estimates from the technical inefficiency models are not robust to model
specifications in models 3c-3e. Although the signs of all coefficients are consistent with results
in models 2a-2e, their effects fade away.

Finally, although not directly relevant to rice production in the region, we rerun SFP models
for long-term average climate conditions with average climate variables for all three cropping
seasons (Spring, Summer, and Fall). Results are presented in Table 4. We find that effects of
summer climate conditions appear insignificant. However, we find significantly positive
effects of spring temperatures and fall rainfall, and adverse effects of fall temperatures. As
one would suspect, we find that these unexpected results were due to very high correlation
among seasonal averages. Average temperatures across seasons are almost perfectly correlated
(shown in Table 5).

Technical Efficiency Analysis

In order to examine technical inefficiency in rice production, we test the following hypothesis:

H0 : γ ¼ φ ¼ 0
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Table 3 Estimation Results (Average Rainfall and Temperature during Monsoon Season)

Model 3a Model 3b Model 3c Model 3d Model 3e

Basic Frontier Production Model
Inputs Labor 0.029*** 0.030*** 0.033*** 0.034*** 0.034***

(0.008) (0.008) (0.008) (0.008) (0.007)
Capital 0.052*** 0.051*** 0.038*** 0.037*** 0.037***

(0.010) (0.010) (0.009) (0.010) (0.010)
Fertilizer 0.113*** 0.103*** 0.101*** 0.103*** 0.102***

(0.011) (0.011) (0.010) (0.010) (0.010)
Seed 0.016** 0.009 0.016* 0.015* 0.013**

(0.009) (0.009) (0.009) (0.009) (0.009)
IrrigatedLand 0.368*** 0.345*** 0.373** 0.352*** 0.358*

(0.072) (0.072) (0.064) (0.064) (0.063)
Land 0.892*** 0.902*** 0.936*** 0.938*** 0.927***

(0.088) (0.088) (0.077) (0.079) (0.078)
Climate RainAverage 0.004 0.020 −0.013 0.013

(0.032) (0.033) (0.031) (0.029)
RainAverageSqr −0.0003 −0.001 −0.001 −0.001

(0.0008) (0.001) (0.001) (0.001)
TempAverage −0.491*** −0.458*** −0.484*** −0.480***

(0.214) (0.159) (0.169) (0.157)
TempAverageSqr 0.010** 0.010*** 0.010*** 0.010***

(0.004) (0.003) (0.003) (0.003)
Eigenvector (E3) 0.819*** 0.852*** 0.849*** 0.832***

(0.242) (0.190) (0.197) (0.199)
Time (tech Δ) −0.105 0.021 0.002 0.063 0.071

(0.102) (0.186) (0.171) (0.176) (0.164)
Constant1 5.847*** 11.488*** 10.915*** 11.287*** 11.229***

(0.113) (2.604) (21.915) (2.040) (1.883)
Technical Inefficiency Model

Infrastructure River −5145.500 −2039.600 −4326.400
(4613.400) (1671.000) (3126.800)

Road −2195.400 −829.130 −2085.200
(1966.700) (678.200) (1506.200)

Community SocialCapital −64.156 −104.050
(54.386) (71.419)

AgriExtension −164.140 −196.330
(127.650) (136.120)

Household Female 411.360
(286.500)

Read −69.142
(50.410)

Constant2 −657.720 −164.140 −196.330*
(577.260) (127.650) (136.120)

Variance Parameters SigmaSq 1.404*** 1.202*** 1030.900 470.930 776.920
(0.127) (0.141) (914.260) (376.320) (552.780)

Gamma 0.641*** 0.583*** 0.998*** 0.989*** 0.993***
(0.042) (0.058) (0.002) (0.002) (0.034)

Log-likelihood −1148.834 −1138.601 −1124.202 −1112.69 −1105.24
AIC 2319.669 2309.202 2286.404 2267.38 2256.480
N 921 921 912 912 912

Note: *** denotes significant at the 1% level; ** denotes significant at the 5% level; and * denotes significant at
the 10% level. Numbers in the parentheses are standard deviations. The rice production and inputs except for
portion of irrigated land are in logarithm. The river and road variables are in logarithm divided by 100
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whereφ is the variance parameter of the inefficiency model, and γ is a vector of parameters of
the factors influencing technical efficiency. This null hypothesis states that technical ineffi-
ciency is not present in the model.

Following Battese and Coelli (1995), we conduct likelihood-ratio tests to compare the two
chosen models for extreme (Model 2e) and average climate (Model 3e) conditions. In both cases,
we compare the models with and without their corresponding technical inefficiency models. The
results, presented in Table 6, show that the null hypothesis was rejected at the 5% significance
level in both models, leading us to conclude that technical inefficiency exists. This suggests that,

Table 4 Estimation Results (Average rainfall and temperatures during cropping seasons)

Model 4

Basic Frontier Production Model Technical Inefficiency Model

Coefficient S.E Coefficient S.E.

Inputs Labor 0.036*** 0.007 Household River −2670.700 2720.200
Fertilizer 0.101*** 0.011 Road −1454.200 1480.400
Seed 0.010 0.009 Community SocialCapital −59.868 63.109
Capital 0.039*** 0.010 AgriExtension −277.500 273.860
IrrigatedLand 0.313*** 0.063 Female 360.170 374.680
Land 0.885*** 0.076 Infrastructure Read −80.120 76.481

Climate SpringRain −0.018 0.381 Constant2 −277.500 273.860
SpringRainSqr 0.031 0.107
SpringTemp 0.826*** 0.218
SpringTempSqr −0.019*** 0.005
SummerRain 0.008 0.038
SummerRainSqr 0.000 0.001
SummerTemp −0.210 0.512
SummerTempSqr 0.006 0.009
FallRain 0.470*** 0.087
FallRainSqr −0.024*** 0.005
FallTemp −1.180** 0.553
FallTempSqr 0.022** 0.011
Eigenvector (E3) 0.517** 0.255
Time (tech Δ) −0.017 0.190
Constant1 12.487*** 2.862

Variance
Parameters

SigmaSq 701.450 699.740
Gamma 0.996*** 0.000
Log-likelihood −1079.528
AIC 2221.055
N 912

Note: *** denotes significant at the 1% level; ** denotes significant at the 5% level; and * denotes significant at
the 10% level. The rice production and inputs except for portion of irrigated land are in logarithm. The river and
road variables are in logarithm divided by 100

Table 5 Correlation between the average temperature during cropping seasons

Spring Temperature Summer Temperature Fall Temperature

Spring Temperature 1 0.91 0.91
Summer Temperature 0.91 1 0.99
Fall Temperature 0.91 0.99 1

Source: Authors’ Calculation
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although variables in the technical inefficiencymodel do not seem to have any independent effects
in Model 3e, natural and physical infrastructures, community features, and household character-
istics jointly explain technical inefficiency in rice production in both models.

Next, we look at the frequency distribution of technical efficiency (TEF) scores for 2003
and 2010 separately to analyze technical progress overtime. Table 7 reports the results for
extreme weather model (average weather model results are near identical). We find that
average TEF scores are similar for both years. That is, households had not made significant
progress in the years we studied. For instance, the mean TEF score in 2003 is 0.637 for the
extreme weather model.3 In 2010, the score dropped slightly to 0.622. We find that the range
increased from 0.024 to 0.885 in 2003 to 0.019 to 0.911 in 2010. This indicates that more
households moved to the extreme (lowest and highest) efficiency score categories. Frequency
distribution shows that additional households shifted to the least technically efficient produc-
tion category in 2010. The percentage of households with TEF scores below 0.5 increased
from 15.9% in 2003 to 20.3% in 2010. On the other hand, we find that the percentage of
households with highest efficiency scores (>0.8) decreased from 10.5% in 2003 to 7.7% in
2010. In both years, this category includes fewest percentage of total households. We also find
that the percentage of households in the 0.5–0.6 efficiency score category remained steady
(13.7% in 2003 versus 13.2% in 2010), whereas that in the 0.7–0.8 category increased slightly
(32.7% in 2003 to 36.9% in 2010).

Finally, we look at the district-wise distribution of TEF scores in 2003 and 2010. Figure 3
presents results from spatial analysis. Of the 44 districts covered in the sample, 12 districts
climbed to higher efficiency score categories, whereas 13 slipped to lower categories.
Mahottari district (market M) experienced the largest improvement, whereas Kailali district
(marked K) had the largest decline in TEF scores.4 Only one district (Surkhet, marked S) had
maintained an efficiency score above 0.8 in both periods. The technical efficiency scores
across the 44 districts in the sample range from 0.339 to 0.866 in the year 2003 and from 0.262
to 0.868 in the year 2010.

Conclusion and Policy Implications

Our findings make it abundantly clear that rural agricultural households in Nepal are vulner-
able to the impacts of climate change. We find that changes in average and extreme

Table 6 Technical Inefficiency Tests

Null Hypothesis Chi-square value Conclusion

Model 2e No inefficiency effect
(γ =φ = 0)

94.769 Reject Null

Model 3e No inefficiency effect
(γ =φ = 0)

101.31 Reject Null

Source: Authors’ Calculation

3 The mean technical efficiency score for the average weather model is 0.627 (full results not reported).
4 Mahottari’s technical efficiency score jumped from below 0.5 in 2003 to 0.6–0.7 in 2010. Kailali’s score
declined from 0.7–0.8 in 2003 to 0.6–0.7 in 2010.
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precipitation and temperatures have significant negative impacts on rice production. In
particular, we find that increasingly aberrant extreme rainfall patterns and long-run rise in
average temperatures are significant threats to rice production. Back-of-the-envelope calcula-
tions based on temperature projections from Janes et al. (2019) in the Himalayas suggest that
temperature rise will result in 27.6 tons to 36.8 tons annual loss in rice production in the next
50 to 100 years.5 They also project a 10–40% increase in average monsoon precipitation in
central India. A similar increase in the Himalayan region can result in a considerable rise in
extreme precipitation days. We estimated that a 1% increase in extreme precipitation days
results in a 5.34 kg loss in rice production per household. Based on this, we can conclude that
the effects will be significant.6 In light of the already high food insecurity levels in Nepal and
the significance of rice for the livelihood of rural households, these findings are disconcerting
(Sanogo and Maliki Amadou 2010; Rayamajhee and Bohara 2019a). Moreover, changes in
land use pattern resulting from low agricultural productivity are likely to result in the
deterioration of forests, watersheds, and other common pool resource systems, which provide
vital ecosystem amenities to rural households (Field et al. 2012). When climate change
threatens land productivity and the sustenance of other critical resource systems, the result is
an increased threat of vicious poverty-environment traps that are only reinforced by further
environmental shocks and asset depletion.

Extant studies show that technical efficiency in rice production can be improved signifi-
cantly (Huang et al. 2015). We also find that much of the detrimental impacts of climate
change on rice production can be explained by technically inefficient production methods.
This points to some low hanging fruits for effective climate adaptation in Nepal and the Hindu-
Kush region. Much of the climate impact on agriculture that could be mitigated by diverting
resources from broader, less certain mitigation policies toward improving technical efficiency
in agricultural production. We find some evidence to suggest that access to roads and river
may minimize technical inefficiencies. Other studies show that access to irrigation facilities
can reduce the severity of climate change impacts on crop production (Mendelsohn and Dinar
2003). Crop-insurance programs such as weather-indexed micro-insurance may help alleviate
some of the food security issues from reduced crop production (Ranganathan et al. 2018;

5 Janes et al. (2019) model projects that the Himalayas/Tibetan Plateau region will experience warming of
between 6 and 8 °C in the next 50–100 years. Projections for other parts of South Asia vary considerably.
6 Calculations assume no improvement in technical efficiency.

Table 7 Frequency distribution of technical efficiency scores

Efficiency Score Year 2003 Year 2010

No. of households Percentage No. of households Percentage

0–0.5 73 15.9 92 20.3
0.5001–0.6 63 13.7 60 13.2
0.6001–0.7 125 27.2 99 21.9
0.7001–0.8 150 32.7 167 36.9
>0.8 48 10.5 35 7.7
Mean 0.637 0.622
Max 0.885 0.911
Min 0.024 0.019
Observations 459 453

Source: Authors’ calculation
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Sibiko and Qaim 2020). Because different districts face different production opportunities and
technology sets owing to differences in resource endowments, factors that can improve
technical efficiency are likely to vary across districts. Focused microeconomic studies are
needed to shed more light on this issue.

Research shows that Indo-Nepal trade has partly compensated for the loss in domestic
agricultural production (Pyakuryal et al. 2010). However, the benefits from trade are mostly
confined to the Terai plains, with mountains and hills receiving little to no fruits of market
liberalization. One reason for this is the land ownership issue. Land ownership is among the
most strong determinant of food security in Nepal (Pyakuryal et al. 2010, p. 22, 27). However,
a number of institutional issues such as patrilineal inheritance traditions and vestiges of
jamindari-pratha (feudal system) preclude equal ownership rights, particularly for women
and many indigenous groups (Allendorf 2007; Mishra and Sam 2016). This has led to wide
differences and hierarchies in land ownership structures across Terai, hills, and mountains.
Moreover, the lack of transportation infrastructure in Nepal, especially in hills and mountains,
continue to raise transaction costs and hinder trade (Sanogo and Maliki Amadou 2010; Chand
2018). One set of policy suggestions is to work toward mitigating institutional and infrastruc-
tural barriers and further easing Indo-Nepal commodity trade to compensate for agricultural
production loss.

However, implementing such broader policy reforms requires strong political will
and consensus. The decade-long Maoist insurgency and political instability that ensued
have resulted in the weakening and fragmenting of public institutions needed to
implement effective climate (and food) policies (Rayamajhee and Bohara 2019b).
The seemingly more pressing ethnic and social issues continue to divert economic
resources and political attention away from environmental challenges. Therefore, a
more feasible second set of policy suggestions could be to facilitate greater partici-
pation of the private sector or voluntary local institutions in addressing many of these
challenges. There is a strong public preference for community-based management of
common resources in Nepal (Kunwar et al. 2020). A heap of studies from Nepal,
particularly from the common pool resource and disaster literature, shows that bottom-
up approaches from local self-governing institutions are better equipped to address
many environmental problems (Benjamin et al. 1994; Ostrom et al. 1994; Varughese
and Ostrom 2001; Shivakoti and Ostrom 2002; Rayamajhee and Joshi 2018;
Rayamajhee 2020; Rayamajhee et al. 2020a; Rayamajhee et al. 2020b; Rayamajhee

(a: Technical Efficiency scores 2003) (b: Technical Efficiency scores 2010)

Fig. 3 Technical Efficiency Scores by district in 2003 and 2010. (Source: Authors’ Calculation)
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and Paniagua 2020). Therefore, “small but positive steps” from private and public
actors, as Ostrom (2012) suggested, may in fact bear more fruits.
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